
IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 31 March 2015; revised 5 June 2015; accepted 7 June 2015.
Date of publication 23 June 2015; date of current version 7 September 2016.

Digital Object Identifier 10.1109/TETC.2015.2446192

Gradually Learning Programming Supported
by a Growable Programming Language

WALTER CAZZOLA AND DIEGO MATHIAS OLIVARES
Department of Computer Science, Università degli Studi di Milano, Milan 20135, Italy

CORRESPONDING AUTHOR: W. CAZZOLA (cazzola@di.unimi.it)

This work was supported by the Italian Ministry of Education, University and Research through
the Project Compositionality, Interaction, Negotiation, Autonomicity.

ABSTRACT Learning programming is a difficult task. The learning process is particularly disorienting
when you are approaching programming for the first time. As a student you are exposed to several new
concepts (control flow, variable, etc. but also coding, compiling, etc.) and new ways to think (algorithms).
Teachers try to expose the students gradually to the new concepts by presenting them one-by-one but
the tools at student’s disposal do not help: they provide support, suggestion, and documentation for the
full programming language of choice hampering the teacher’s efforts. On the other side, students need to
learn real languages and not didactic languages. In this paper, we propose an approach to gradually teach
programming supported by a programming language that grows—together with its implementation—along
with the number of concepts presented to the students. The proposed approach can be applied to the teaching
of any programming language, and some experiments with Javascript are reported.

INDEX TERMS Teaching of programming, gradual learning, modular development of programming
languages, modularity.

I. INTRODUCTION
Learning programming is a difficult task. It is widely
accepted that to turn a novice into an expert it takes more or
less ten years [1], [2]. Some studies [3]–[6] have been done
about why to learn programming is so complex and basically
it has turned out that the chosen programming language and
the exposure to the single programming concept are part
of the problem. Schneider [7] pointed out ten principles—
still up-to-date—about teaching programming that can be
summarized in: learning programming is not learning
a programming language and students must learn real
programming languages and tools. The survey reported in [8]
and the TIOBE index1 show that imperative programming
languages such as Java, C and C++ are themost popular both
in enterprise and in educational sectors. While their potential
and versatility is mostly undisputed, their innate complexity
and the complexity of their tools could risk to divert students’
attention from the key point of learning appropriate program-
ming techniques in general. Students that approach learning
programming tend to focus on learning the programming
language since it looks more practicable and it needs a certain

1www.tiobe.com

and—in students eyes—quantifiable amount of time to learn
how to use it, its syntax and its tools. The prominent issue
lies within the core components of these languages: each
programming language consists of many different features—
such as control flow, variable definition, functions, and
so on—, each bound to a different construct or group of
constructs of the language. Due to their strict intertwining, the
students are forced to keep up with a considerable quantity of
unknown constructs and concepts since the beginning. This
issue aggravates if we consider that many of these constructs
are not meant to be fully explained until much further in the
course, or worse, never. Let us consider the Java version of
the HelloWorld program:

This code snippet is typically used in the very first lesson
to explain students a couple of basic concepts—such as
strings and standard output—but they are also accidentally
exposed to many more concepts that cannot be hidden: class
declaration, methods (declaration and use), access modifiers,

404

2168-6750 
 2015 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 4, NO. 3, SEPTEMBER 2016



Cazzola and Olivares: Gradually Learning Programming Supported by a Growable Programming Language

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

packages, static members, arrays, arguments and types.
Typically, the teacher skips such concepts asking the students
to learn them by heart promising a proper explanation in
due time. Such an approach contributes to create a sense
of incompleteness and disorientation and the students get
the whole picture and have a full comprehension of what
they do only at the end. Look at [9] and [10] to have a
full comprehension of the problem of anticipating advanced
concepts at the beginning of the learning. Also support tools,
as IDEs, do not help the teacher in the compartmentaliza-
tion of the programming concepts [11] since they provide
the students with code skeletons to fill—e.g., look at the
effect of the Eclipse’s «new↪→class» menu entry—without
considering any language restriction.

Bruce et al. [12] presented a phenomenographic study
about how first-year university students perceive the first
programming course experience. As a study result, they
categorized the replies upon what the students focus on
and expect from an introductory programming course. From
Bruce et al.’s study it is fairly evident that the more a student
refines his idea about what being a programmer and solving
problems implies, the less he recognizes the language syntax
as a fundamental basis for the course. The need for a precise
syntactic pattern to smooth the learning curve is directly
proportional to the desire of just ‘‘passing’’ the coursewithout
any genuine interest in it. On the opposite a student aware
and committed to his role as a programmer and confident
in the rest of the programming community manages to see
a language as a mere tool to solve problems.

Teaching basic and advanced programming courses taught
us that students tend to confuse the learning of programming
with the learning of the programming language. The students
try to master the programming language by learning any
tiny little detail of it; in the hope that such details hide an
easy solution to the proposed assignments: to master the
language to rule over all the problems. Evidently,
this approach promotes the wrong belief that to learn
programming means to learn the programming language
instead of the correct thinking that programming is a matter
of being able to solve problems independently of the used
programming language. As Victor [13] said «Learning about
‘‘for’’ loops is not learning to program, any more than
learning about pencils is learning to draw.»
Problem solving is typically taught by examples [14] and

this approach seconds the misbelief the students have about
what programming is. The solution to a problem is often
presented as an already cooked algorithm written in the pro-
gramming language of choice. Hardly the teacher has the time
during his/her lesson to present the mind process to get to
such a solution, since he/she is already busy in describing the
syntactic constructs used in the program, what they do, and
all the possible variants the language proposes. Students that
still have to tune up their programming skills are disoriented
by this approach: they understand what the program does
but they cannot either cook their own solution or adapt the
proposed solution to a different context (see [4] for a study

that supports this observation). More pre-cooked solutions
they get and more difficult for them becomes to separate
the programming language from the problem solving. At the
very end, students rarely get acquainted to the full-extent of
the programming language they use, and they feel disori-
ented when facing problems that slightly divert from those
presented in the lectures. Even smarter students maintain a
solving approach based upon few constructs that they master
at the best, which often is not the most effective approach: it is
really hard to eradicate bad habits when students are focused
on learning the language rather than the problem to solve. The
first programming language learned marks the programmer
indelibly [15] and this also applies to the language constructs
the programmer learns first. This is a more evident side-effect
when the learner is exposed to the whole language since the
beginning and without any constraints on what construct to
use in solving a given problem. As Mason and Cooper [16]
found out through their experiment most of the problems
students have with learning how to program is bound to
the cognitive resources the students put at disposal and the
excessive cognitive load to learn a full programming language
demands them.

Training students to problem solving means to let them
fully explore what they have at their hands, sometimes
addressing them to different solution strategies but if the tool
is too complex, the exploration requires too much time that
the students steal from thinking about the problem. Some-
times the only way to get students to experiment something
is to force them in that direction by limiting the choice to
a particular group of language constructs. Some extreme
positions include to delay the coding and thus the learning of
the language2 and to substitute a programming language—
rich of syntactic constraints—with a formalism independent
of any syntatic aspect as either a modelling language as
in [17] or pseudo-code as in [18]. In our opinion, this could
help the students to focus on the problem solving aspect of
programming but coding and all the other aspects related to it
(e.g., compiling, debugging) are part of the learning process
and cannot be avoided. However, we agree that if the students
could have access to only a portion of the language and ade-
quate support tools at any stage of their learning process they
could focusmore on the problem solving aspect and gradually
master both the language and how to use it to solve problems.
This view is perfectly in line with Kirschner et al. [19] exper-
iment that reports a failure in teaching programming without
a deep and gradual guidance as accidentally happens when
the students are exposed to full language since the beginning.
In the remainder of the paper we present our approach to
teach how to program that adopts a programming language
customizable by the teacher to his/her needs.
Paper Outline: In Sect. II we describe a general idea

and model about how programming can be gradually
taught to students with the support of an incremental

2http://www.edutopia.org/blog/radically-transforming-teaching-
programming-1-ajit-jaokar

VOLUME 4, NO. 3, SEPTEMBER 2016 405



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Cazzola and Olivares: Gradually Learning Programming Supported by a Growable Programming Language

development framework. In Sect. III, we instantiate the
proposed teaching model to use the Neverlang development
framework to teach Javascript and summarize our first experi-
ence. Finally in Sect. IV and Sect. V we discuss some related
work and draw our conclusion respectively.

II. GRADUAL LEARNING OF PROGRAMMING
Summarizing our experience as teachers and those reported in
the literature (see Sect. I), we could conclude that the students
have to:
• focus on problem solving;
• learn mainstream programming languages; and
• be gradually exposed to new concepts

in order to render more effective the learning of program-
ming. Therefore the teaching strategy that accomplishes
such requirements should be the one where the students
are guided to learn how to program with a language
through a gradual and tool supported disclosing of language
features.

A. GRADUAL LEARNING: THE IDEA
In other words, students should interact with a growing subset
of the language along the whole course to master one concept
at a time.

Basically, this is what every teacher does by
compartmentalizing the arguments but this is normally
hampered by support tools that consider the language as
a whole [11]. To really turn on, this idea we need a
(mainstream) programming language whose charateristics
and implementation can modularly grow together with the
number of concepts the students have already learned.
Unfortunately, all the mainstream programming languages
miss this last characteristic. Their compilers/interpreters
are monolithic, the languages are designed as a whole,
and although students could be guided with some formal
restrictions, the support tools ignore such restrictions. The
development of ad hoc support tools as ProfessorJ [11] can
support the teacher with language restrictions only as long
as the students will not directly interact with the language
interpreter/compiler. Consequently, the teacher should rely
on a programming language whose implementation grows at
the pace of what the students are learning and whose growth
can be conveyed according to the teaching needs.

One possibility could be that the teacher partitions the
language of choice in subsets according to the desired teach-
ing order and then implements the compilers/interpreters
corresponding to each subset. This solution subsumes that
the teacher has a good knowledge about language grammars
and compiler development, and this would also be a highly
time-consuming task and a teacher could be disheartened by
such a burden. In alternative, the teacher could exploit one
of the frameworks that already supports the partitioning of
the language to teach (see Sect. IV). The problem with such
frameworks is their low degree of freedom: the proposed
partitions are predefined and can rarely be customized by
the teacher; both teacher and students are subdued to the

framework’s developers decisions about the right
learning/teaching pace.

Nowadays however new instruments allow the language
designer to build compilers and interpreters in a different
and non-monolithic way. The concept of modularity has
spread from basic software engineering to programming lan-
guage development as well: with the introduction of tools
like LISA [20], Silver/Copper [21], Spoofax [22], and
Neverlang [23]–[25] the development of programming lan-
guages has taken a new turn towards language extensibility
and reusability. As we will show, these tools can be used
to develop a complete implementation of the language of
choice, that can be restricted and extended following the
teacher decision with little or no effort. This will smoothly
support gradual learning and will enable the teacher to define
his subdivision of the language at any time and towards any
direction.

Clearly, a modular language design framework is not suf-
ficient by itself to accomplish our idea. In the first place
a complete modular implementation of the language of our
choice is necessary. This will be the foundation for the whole
compartmentalization used in the course; besides, the teacher
should be enabled to easily navigate, select and compose the
available set of language features to form the necessary sup-
port tools. Tools as FeatureHouse/FeatureIDE [26], [27]
for Spoofax and AiDE [28]–[30] for Neverlang can support
the teacher on such a task.

B. GRADUAL LEARNING: THE MODEL
In the proposed model, the teacher initially has to prepare the
course by partitioning the programming language of choice
in a set of usable sub-languages according to the program-
ming concepts he wants to present and in which order. Such
sub-languages must be sortable in a sequence where—apart
from the first sub-language—every sub-language adds some
programming concepts to the previous one in the sequence
and the last one corresponds to the original language. Given
such a sequence, the learning process passes through three
reiterated steps (depicted in Fig. 1):

1) language growth;
2) exposure to new concepts; and
3) students’ practice

An iteration through these three steps is—what we call—
a learning stage and it coincides with the teaching/learning
of one sub-language. The three steps have to be reiterated
until all the sub-languages have been taught or the desired
language coverage is reached.

1) LANGUAGE GROWTH
This step corresponds to the work the teacher has to do to
pass from one learning stage to the next in the sequence.
As the language grows—that is, when the teacher decides
it is time to present new programming concepts—the support
tools have to grow as well—that is, the students must have
a compiler/interpreter that supports exactly the programming
concepts they should know at the end of that learning stage.

406 VOLUME 4, NO. 3, SEPTEMBER 2016



Cazzola and Olivares: Gradually Learning Programming Supported by a Growable Programming Language

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 1. The learning stage.

For example, if the language used in the previous learning
stage and the new one differ for the presence of the for
loop the new compiler will be compliant to the one used
by the students so far and it will also support the for loop.
Technically speaking, the teacher decides which
programming concepts wants to teach and to let the students
experiment on; selects the modules corresponding to such
programming concepts among those provided by the modular
language design framework and composes them to form the
needed compiler. Each learning stage relies on the tools
prepared in the previous stage enriched only by the modules
for the newly introduced concepts [31]. The selection and
composition of the modules can be eased by using specific
tools [27], [29]. Basically, the idea is that each new learning
stage provides a number of new concepts that the students
have to focus on. Thus, the approach is more effective as
the number of new concepts to master is small and strictly
related to each other. The new support tools are installed in
the laboratories and passed to the students.

2) EXPOSURE TO NEW CONCEPTS
The teacher exposes the students to the new concepts.
This is done through a batch of frontal lectures and some
hands-on sessions where the students will experiment
the new concepts on the development framework prepared in
the previous step. The length of the exposure depends on the
number of new concepts introduced, the estimated difficulty
of the new concepts and the learning pace of the class. This
last point affects the length of a single learning stage that
could change from a course edition to another. The teacher
can shorten or widen the learning stage acting on the number
of hands-on sessions: if the students master the new concepts
faster than expected, some hands-on sessions can be removed,
otherwise, some should be introduced to help the students.

The gradual introduction of programming concepts helps
the students to exclusively focus on the new concepts.

This has the benefit that at any time any example the
teacher shows to the students will only use those concepts
that the students are acquainted with. Let us reconsider the
HelloWorld example, presented in the introduction, and
the number of issues it has when used in the first lecture
on Java. With our approach these issues can be avoided
by restricting the first Java’s sub-language to only contain
constant strings and the printing functionality, as in:

As said before, the programming concepts in a real
programming language are intrinsically intertwined and the
later introduction of a new concept can affect how the
concepts already in the language behave. For example, a
partition where the expression language on integers is a sub-
language that is extended with strings and the juxtaposition
operator (+). In this case, integers and strings can be used
in the same expression—as in ‘‘a’’+0—whose interpreta-
tion hides some extra concepts—as implicit type conversion.
Thus, the frontal lessons should face the intertwining of the
new concepts with those already learned and should show
their interoperability within the language context. Particular
emphasis should be put on how some language constructs
evolve through these additions, and how the composition of
constructs from different sources can increase the complexity
and the variability of the language semantics. As with a
standard course, each of these new topics should be contex-
tualized within a proper set of examples, which will work
as guidelines for the next steps; some examples can be used
along the whole course to show how these can vary when new
concepts are introduced.

3) STUDENTS’ PRACTICE
The last step of a learning stage focuses on self-learning.
Students cannot really master new programming concepts
if their only exposure to them is through the guidance
of the teacher: they have to autonomously work with the
new concepts on some homework prepared by the teacher.
In the traditional approach this activity represents a potential
risk for information smuggling: students can look for help
on different sources—as the Internet, friends and relatives—
that could provide suggestions that pass over the compart-
mentalization imposed by the teacher. As seen in [4], to
anticipate new concepts can disorient the students—they can
apply the solution without understanding how and why it
works—, the students will focus their attention on exploring
the new concepts rather than mastering the concepts already
at their disposal and last but not least the students will spend
more time on the programming language than on the problem
solving aspect [32]. It is important to notice that in every
learning stage only a subset of the programming language is
available and the code written for that subset cannot run in a
standard environment for that language but it only runs on the
environment prepared by the teacher. Therefore, each stage
has its own support tools that will render useless those helps
that need programming concepts not in the language yet.

VOLUME 4, NO. 3, SEPTEMBER 2016 407



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Cazzola and Olivares: Gradually Learning Programming Supported by a Growable Programming Language

Students are forced to solve these problems within the
boundaries of their environment, and in some cases they are
driven to solve previous problems using a whole different
approach. Being driven tomake asmuch profit as possible out
of such a limited set of resources is what in our view trains
problem solving versatility in the most effective way.

C. MODULARITY AS A LEARNING ASSET
The high mutability derived from modular composition
could improve a programming course in several ways. First
of all, a compiler created in this way can be adapted to
fit in—without exceeding—what the students should learn
lesson by lesson. A restricted scope helps to concentrate and
exploit available features in a better way. This is particularly
important when the teacher has to deal with both novice
learners and autodidact programmers. It is undeniable and
commonly appreciated that the interest in a computer science
degree often derives from a self-nurtured interest. However
unsupervised learning has the possible downside of result-
ing in some acquired quirks, not to say completely wrong
coding behaviors. In our field experience, this commonly
involves misuses of language constructs, limited problem
solving capabilities—they code before thinking—and poor
coding etiquette. The proposed teaching process can there-
fore be seen as a complete rewiring of what students should
already know, aimed at making them (re)discover all possible
approaches when facing a problem.

Moreover, the flexibility of a modular structure enables
different learning paths tailored on the degree
characteristics and course targets. So far, we chose—for
sake of comprehensibility—to describe the approach as to
be bound to a linearly incremental model, but this is far
from being mandatory. Let us remind that language features
cannot be considered as independent compartments: most
of them actually have strong cooperative bounds between
each other representing their related crosscutting concerns.
These relationships would come to light as soon as any
pervading feature gets included into the compiler bundle.
If the teacher perceives that this could trigger some learning
dynamics which he wants to postpone, he can as well decide
to temporarily remove some old features in order to force
the students to focus on the new features and to postpone the
effects these concepts have on those already learned.

Such versatility implies another interesting asset: compiler
growth guidelines do not have to be unique and predefined.
It is true that the final goal should always be to help students
learn programming and master a programming language as
a versatile and complete tool, but we are not limited to a
single learning path. Figure 2 shows the interdependences
between the programming concepts of a language and the
possible learning paths a teacher can follow. The origin of
the radar chart represents the empty language and each axis
represents the degree of completion of a given programming
concept—the complete language coincides with the external
boundaries of the chart. According to what the teacher wants
to prioritize, the growth of the language can protrude toward

FIGURE 2. Radar chart describing some of the potential learning
paths.

different directions before completeness. For example,
it is either possible to prepare a course that starts by
exploring in detail imperative constructs and internal state
mutability, or a course based on the functional paradigm
with first order functions, list type, operations and so on.
The essential condition is that within every learning stage,
modules should be added with respect to their dependency
requirements (see [28]–[30]). This has to be done to maintain
the internal language grammar consistent and devoid of gaps
or unsatisfied rules—e.g., adding a list comprehension feature
before defining other basic list manipulation constructs is
useless. Both the incremental nature of this method and the
finiteness of the language guarantee that regardless of the
chosen approach, the final progression status will coincide
with the complete language.

D. COURSE/LANGUAGE PARTITIONING
Few things should be considered when partitioning
a programming language for teaching:
• Each sub-language must be usable, that is, at each
learning stage the sub-language contains enough
programming concepts to permit the students to
experiment with them.

• Each programming concept depends on other
programming concepts—e.g., conditional statements
need boolean expressions or something equivalent.

• Each sub-language must be self-contained—i.e., all
the dependencies of a programming concept must be
satisfied by the concepts in the sub-language itself.

Dependencies among programming concepts provide a
relationship useful to group the programming concepts
and partition the language. Programming concepts can be
structured in a dependency graph and topologically sorted.
Slicing the dependency graph according to the topological
sort provides a set of sub-languages that respect the last
two considerations. On the other hand, the resulting partition
could be far from any teaching asset and the sub-languages
could contain too many programming concepts to fit in the

408 VOLUME 4, NO. 3, SEPTEMBER 2016



Cazzola and Olivares: Gradually Learning Programming Supported by a Growable Programming Language

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

proposed learning model or could break the first
consideration at all. Dependencies can be used to
automatically provide an initial partition, but the teacher has
to fine tune the result to his teaching decisions.

Dependencies represent also the blocking factor for
the whole process. Programming concepts could be too
interdependent and therefore difficult to split in separate
sub-languages according to the teaching needs. For example,
exception handling in Java relies on objects—exceptions in
Java are objects—but exception handling is a general pro-
gramming concept and it could be desirable to introduce it
independently of the object-oriented concepts. To accomplish
this need, some less demanding variants can be provided
for any programming concept—e.g., an exception handling
mechanism that deals with integers instead of objects—that
will be replaced by the full version once the students are
acquainted with all the needed concepts, i.e., they are in the
sub-language used in the current learning stage.

Partitioning can be carried out by directly choosing
which modules should or should not be composed in the
sub-language compiler. This, even if feasible, implies that
the teacher has enough skills and time to dig through com-
piler code and can manually recognizes the dependencies to
respect. This is not always the case and this process should
be assisted by specific tools as in [27] and [28].

III. GRADUAL LEARNING: AN EXPERIMENTAL SET-UP
In the previous sections, we motivated and presented a
general model for gradually teaching programming to
freshmen students. Basically, this model relies on expos-
ing the students to few programming concepts at a time
with the support of an extensible language whose growth
follows the teacher’s teaching pace. Now we present an
instantiation of the model that exploits the Neverlang devel-
opment framework, the description of an experiment with the
gradual teaching of Javascript, and the discussion of some
initial results.

A. NEVERLANG LANGUAGE ENVIRONMENT & AIDE
The Neverlang [23]–[25] development framework promotes
code reuse and sharing by making language units first-class
concepts. Language components are developed as separate
units that can be compiled and tested independently, enabling
developers to share and reuse the same units across different
language implementations. The base unit is the module
(Listing 1). A module—that coincides with a programming
concept—may contain a syntax definition and/or a
semantic role. A role defines actions that should be
executed when some syntax is recognized, as prescribed
by the syntax-directed translation technique. Syntax defini-
tions are portions of BNF grammars represented as sets of
grammar rules or productions. Semantic actions are defined
as code snippets that refer to nonterminals in the grammar.

Syntax definitions and semantic roles are tied
together using slices. For instance, module
com.example.AddExpr in Listing 1 declares a reference

syntax for sum, and actions are attached to the
nonterminals on the right of the two productions by
referring to their position in the grammar. The slice
com.example.AddExprSlice declares that we will be
using this concrete syntax in our language with that particular
semantics. Finally, the language descriptor (Listing 1),
indicates which slices are required to be composed together
to generate the compiler for the language. The language
descriptor is the cornerstone of the whole mechanism and
allows for easily restricting or extending a programming
language. To transparently cope with the dependencies each
programming concept has on other programming concepts,
the AiDE tool is provided to select the desired components
and to automatically generate the corresponding language
descriptor.

LISTING 1. Neverlang’s slice and language constructs.

The AiDE tool uses an internal clustering algorithm
exploiting Neverlang dependency definitions to synthesize,
optimize and manipulate the language’s feature model
(See Fig. 3). Through an interactive graphical user interface,
the user can toggle different nodes of the feature model, trig-
gering chain activation toward their parents or deactivation
toward their leaves if required. While, an internal builder
dynamically updates an internal implementation of a tempo-
rary language, adding or removing slices as necessary. The
user can bind the ongoing language interpreter configuration
to an interactive console, to verify the consistency of its
language and test its behavior. When the language satisfies
the required expectations, a stable copy of the development
environment is prepared and ready to be dispatched to any
JVM compliant workstation.

The Neverlang development framework is shipped
with a modular implementation of Javascript [33]. This
implementation covers the ECMAScript 3 language
specification. This Javascript modularization provides more
than 50 programming concepts implemented in 73 slices—
over 3000 code lines). A Java modularization is under
implementation.

VOLUME 4, NO. 3, SEPTEMBER 2016 409



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Cazzola and Olivares: Gradually Learning Programming Supported by a Growable Programming Language

FIGURE 3. AiDE screenshot showing part of the feature model for Neverlang.JS (selected features are in green).

B. GRADUAL LEARNING EXPERIMENT
At the moment, the experimentation is quite limited and
it has mainly focused on tuning up the whole process.
Javascript was a forced choice since it is the only real
programming language with a modular implementation in
Neverlang. While it is true that rarely Javascript is mentioned
as a propaedeutic programming language [34], its richness of
programming concepts provided an interesting test bed for
the course compartmentalization.

The Javascript has been split in 13 sub-languages or learn-
ing stages. Figure 4 shows the chosen partitioning and also
the adopted teaching path. Each sub-language extends the
previous in the sequence with more programming concepts.
The last sub-language coincides with the full Javascript. The
considered sub-languages are:

1) the expression language on numbers;
2) boolean type with boolean and relational operators;
3) string type with operators on strings;
4) variable declarations and assignments;
5) conditional statements;
6) loop statements;
7) code block, scope, break and continue statements;
8) functions without recursion;
9) recursion;

10) first-class functions;

11) objects and methods;
12) exception handling and
13) constructors and the prototype model
Once decided the learning stages, we followed the idea of a

smooth expansion of the language capabilities, starting from
an essential core calculator and gradually adding different
kinds of expressions, literals and statements to finish with
more complex concepts as functions, objects and exception
handling, in accordance to the programming concepts rele-
vant to each single stage in the chosen learning path. From the
teaching point of view, we focused on the main programming
concepts: to what extent these have to be taught is at teachers’
discretion.

Each sub-language has its own interpreter that imposes the
students’ boundaries about what they can or cannot experi-
ment with. Particular relevance relies on the evolution of the
programming concepts when other concepts are introduced,
e.g., in the first ten sub-languages numbers and booleans
were just primitive types; once the objects are introduced
in the language (11th sub-language) they are wrapped into
objects whenever a method is applied to them. This was real-
ized through different implementations of the same concept
to be used according to the progress of the learning path.
These extra modules were realized for this experiment since
not available in the original modularization. The code we

410 VOLUME 4, NO. 3, SEPTEMBER 2016



Cazzola and Olivares: Gradually Learning Programming Supported by a Growable Programming Language

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 4. Learning stages used to teach Javascript.

FIGURE 5. An abstraction of the Javascript feature model.3

additionally implemented represents more or less the 7% of
the total.

The subdivision of the concepts in learning stages has
been done without considering the language modularization
provided by Neverlang but according to the teaching needs.
Once all the stages were clearly defined we started to
cope with Neverlang and AiDE to realize the support
tools (the interpreters of the sub-languages in our case).
AiDE (Fig. 3) provides a graphical interface to the available
programming concepts to choose from. Basically, all the
programming concepts are structured in a feature model [35]
that shows the dependencies, alternatives, and incompatibil-
ities between concepts. Selecting a programming concept
automatically includes all the programming concepts
such a concept depends on—e.g., the inclusion of
the * operator automatically includes the numeric primitives.
The few variants—of the same concept we had to define—
were introduced as mutually exclusive alternatives and an
explicit choice was necessary to include the correct version
at each learning stage.

3The full feature model we get from AiDE is available at
http://neverlang.di.unimi.it/aide/njs_graph.png.

Figure 5 depicts an abstract view of the Javascript
feature model. In particular, it shows the AiDE configu-
ration related to the fifth sub-language. All the program-
ming concepts with a solid border are part of the language.
Nodes filled with the same pattern represent programming
concepts belonging to one of the previous sub-languages:
numeric , booleans , and conditional statement
concern . The red dashed lines represent
dependency relationships between single features, that must
be respected to guarantee a stable growth. Inner nodes rep-
resent groups of programming concepts, while nodes with
a dashed border denote programming concepts not
selected yet. Out of this configuration we get an interpreter
supporting only the selected programming concerns and that
can be used by the students in the corresponding learning
stage.

Each learning stage focused on the study of the new
programming concepts both in theory through frontal lectures
but especially on hands-on sessions and homeworks. The
hands-on session had a semi-tutorial structure and helped in
focusing on some proposed problems and their solution with
the available programming concepts. Some of the proposed
problems are repeated from a learning stage to the other

VOLUME 4, NO. 3, SEPTEMBER 2016 411



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Cazzola and Olivares: Gradually Learning Programming Supported by a Growable Programming Language

LISTING 2. Evolution of the factorial implementation with the evolution of the Javascript sub-sets.

to permit the students to experiment on how the problem
solution can benefit from the newly introduced concepts.
For example, the factorial is one of the recurring problems
and Listing 2 reports some of the most interesting variants.
These four code fragments show the evolution of the factorial
implementation along with the progresses on the Javascript
coverage:

1) The first script has been realized in a pure
imperative context, with only variables, numeric and
boolean types, arithmetic and relational expressions,
assignments, conditional and loop statements.

2) The context evolves through the addition of functions
without either recursion or first-class.

3) The next step adds the availability of recursion
within function body allowing for a significant code
simplification.

4) In the last version, an object is created as a container for
the value, and the function is used as one of its methods.
This further expands the idea of variable scoping and
contextual binding (this).

Few things should be said about the considered learning
path. We decided to initially focus on the imperative aspect
of Javascript then on functions and only finally on objects.
We are aware that this could be arguable, but this is not
our point: any teacher can be comfortable in teaching pro-
gramming following the path he prefers. The proposed model
is not stick to a particular learning path, but it depends
only on the teacher’s decisions: this is the point. It is pretty
easy to change the learning path and give more emphasis to
functional programming: it is just a matter of selecting
the programming concepts related to function declaration,
function call, recursion, and first class functions before
those about variables, assignments and control flow state-
ments. Roughly speaking the 8th, 9th and 10th sub-languages
in Fig. 4 should be set before the 4th sub-language in the
learning path. The ‘‘roughly’’ is because the new partition-
ing would have completely new sub-languages than those
we used. This also bring forth to some different implemen-
tations of the proposed exercises, e.g., a first significant

version of the factorial script can already be realized with the
5th sub-language:

that will be completely functional and a gradual language
increment will divert factorial implementation from those
shown in Listing 2—e.g., to show a functional version that
does not use recursion becomes impossible since without
both loops and recursion you cannot implement the factorial.

Also the linear progression is not set in stone, as program-
ming concepts can be added from a learning stage to the
other it is also possible to remove them and it is completely
up to the teacher. Hence, for example, if the teacher decides
that functions and recursion are not necessary—if not an
obstacle—to the learning of the full extent of the control
flow statements he can remove them from the programming
language and fork the learning path.

C. EXPERIMENTAL EVALUATION
The initial experimentation has been done with a set
of 10 subjects chosen among the freshmen enrolled to the
first year programming course of the computer science
degree. The students volunteered and they represented more
or less the 10% of the whole class. The students went to
different high schools with different backgrounds and differ-
ent final marks; half of them already learned programming,
a couple of them were autodidacts and one of them was
already acquainted with Javascript.

The course lasted 14 weeks with 8 teaching hours per
week. Basically each frontal lecture has at least one hands-on
session associated. Homeworks were done out of the teaching
hours. The first two weeks covered the learning stages from
one to four; since then any learning stages lasted one week
apart 4 weeks for the stages from eight to ten and 2 weeks
each per the eleventh and thirteenth stages. In parallel the
remaining students were learning Java with the traditional
approach. The 10 students had to do the exams with the other

412 VOLUME 4, NO. 3, SEPTEMBER 2016



Cazzola and Olivares: Gradually Learning Programming Supported by a Growable Programming Language

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

students on Java, thus a fewmore lessons (a week) to catch up
the differences with Java were necessary. Table 1 summarizes
the distribution of the learning stages over the fourteenweeks.
Note that the term week is used as a logical container for four
lessons not necessarily these lessons occurred in the same
calendar week but they could span several calendar weeks to
consider holidays, breaks and strikes. Table 1 also highlights
the number of frontal and hands on sessions dedicated to each
learning stage (each slot lasts 2 consecutive hours).

The experiment has been evaluated through a questionnaire
to answer the following research questions:

1) does the proposed learning process favorite problem-
solving over programming language?

2) does the proposed learning process annihilate previous
knowledges about programming?

The questionnaires were anonymous and delivered to the
students once they passed the exam; this freed the students
from the fear of retaliation in case of a negative judgement.
The questionnaire is divided into two parts. The first part
asked for the students’ previous knowledge of programming
with questions as which languages they know, how and when
they learned it and so on—the figures at the begin of this
sub-section summarize the results of these questionnaires—
the second part were open questions about the course and the
learning process. Some of the questions were:
• Did the limited number of concepts at disposal help you
focusing on problem solving?

• Did an interpreter that supports only the known concepts
help you focusing on problem solving?

• If you already knew how to program did you benefit
from your previous knowledges?

• If you already knew how to program did you learn
programming differently from the first time?

Single answers were terse (more or less one sentence each)
and we could manually analyze them. All the answers to the
same question where collected together. From each answer
we extracted all the nouns and the associated adjectives. For
each noun the extracted adjectives have been normalized
through the use of a simple ontology and all synonyms were
replaced by a champion adjective provided by the ontology;
the normalization was necessary to level the different
terminology used by the students. Then the frequency of
the normalized adjectives has been calculated and used to
establish the percentage of satisfaction. The comments were
positive. All the students stated that the approach nurtured
the focusing on problem solving (50% of the students gave
an excellent judgement whereas the other 50% a very good
judgement, these last set includes all the students already
acquainted with programming). The question about the inter-
preter got identical remarks and the sensation is that the
students tend to unify the number of concepts with the inter-
preter that supports them. All the students already acquainted
with programming admitted that they did not benefit from
the previous knowledges and that learning was different
since they had to approach problem solving from a different
perspective—limited and fixed number of concepts

TABLE 1. Distribution of the learning stages over the 14 weeks.

at disposal. To further sum up the answers:
i) a development framework that grows with students’

knowledges helps to focus on the problems rather than
on the language,

ii) experienced students are challenged to solve the
problems without relying on the previous knowledges
and from a different perspective.

This positively satisfy our initial research questions. The
feelings of the students were in line with our expectations.
In particular, we were aware that the students already
acquainted with programming could be disappointed or
annoyed by the proposed approach, in fact, reading the
comments (and not their simplification) we discover that
they were initially frustrated by the approach that limited
their possibility especially on the initial problems too easy for

VOLUME 4, NO. 3, SEPTEMBER 2016 413



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Cazzola and Olivares: Gradually Learning Programming Supported by a Growable Programming Language

them. In the end they were happy about the process since it
permitted to approach different solutions to the same problem
with different programming concepts.

We are far from a real evaluation but we are pretty satisfied
with the students’ comments. Especially considered that all
of them were able to pass the exam on a different—even
if—close language. In the future, we are going to do a more
exhaustive evaluation tailored on the learning rather than on
the process that will involve more colleagues and different
programming languages.

IV. RELATED WORK
The Mini-languages approach [32], [36] arose significantly
after the first release of the didactic language Logo [37].
Those languages consist of a simple and mostly graphic pro-
gramming environment, where an actor has to find his way
to solve a given task within its microworld: this is possible
through the insertion of a list of commands in sequence, given
by the student, by way of a simple but structured scripting
language. Most of them provide basic control structures—
conditionals, loops, recursions—and even mechanisms to
create custom instruction sets. There are many examples of
them, with distinct types of target audience ranging from
elementary school students to college freshmen. It was largely
demonstrated how the short time required to master a mini-
language allowed the students to focus on the more important
issues of problem solving and algorithm development [32],
therefore setting a well-founded basis for the learning of
more complete languages. The downside is that these
languages can hardly be extended outside the scope of their
micro-world, and so they mostly fulfill their utility as a
preliminary learning tool. Domain-specific languages can
be considered today’s mini-languages, their development is
flexible enough to ease their growing [31], [38] and therefore
they could be used to teach programming as described in
this work.

SP/k [39] was one of the first experiments aimed at
teaching how to program in a complete language—in this
particular case PL/I—by providing a controlled subset.
In a similar fashion to our proposal, they developed distinct
learning steps: each of them adds new language features
while retaining the previous ones. The difference is that
these steps are precompiled, non interchangeable and strictly
sequential: SP/1 starts from simple expression interpretation,
SP/2 introduces variables and assignment, SP/3 selection
and repetition, and so on. Though being considered a subset
of PL/I, SP/k has its own compiler, since some semantic
concerns implicitly solved in PL/I—e.g., automatic type con-
version, typos in reference names—are treated differently in
SP/k, to solicit the attention of the students. Of course being
PL/I an obsolete language itself, it is not realistic to think to
employ such tool within modern programming courses.

DrScheme [40] is a tool based on the Scheme
programming language, which acts as a proxy environment.
It is designed to limit the syntax for those Scheme
features that are commonly misleading when used by

unexperienced programmers.Moreover it is capable of giving
more precise responses when dealing with particular errors
or corner cases. The provided environment allows to enable
different levels of syntax and protection by some predefined
settings. As a complete toolset it includes a syntax checking
tool and a static debugger. Even DrScheme is not actually
modular by definition, and as much as SP/k is created as a set
of increasing clusters upon the language syntax and features.
As a learning toolset, it is strictly paired with its graphical
development environment and its usage within the original
Scheme interpreter is hardly possible.

ProfessorJ [11] is another similar tool which uses the same
approach of DrScheme applied to Java, as its graphical pro-
gramming environment itself maintains the same structure.
As an additional feature, much of Java auxiliary constructs—
class and method modifiers for instance—are given as
hidden, implicitly defined, and non-rewritable at the core
of the environment, to show their proper usage little by
little, each increasing cluster upon the language. Similarly
to DrScheme the increasing clusters are quite coarse and
prearranged in a fixed way.

V. CONCLUSION
Teaching how to program is a hard task. It is particularly
difficult to separate the teaching of the programming
language from the teaching of the problem solving aspect.
Teachers try to compartmentalize the programming concepts
to expose the students to few concepts at a time and get
their attention on solving the problem rather than on learning
the language syntax. This approach tends to fail due to a
lack of support by the tools that instead immediately expose
the students to the whole language. This work proposes an
assisted teaching model that permits to expose the students
to few programming concepts at a time with the support of an
incremental development framework. We experimented this
teaching model by teaching how to program with Javascript.
The experience is just at the beginning but the results look
promising.

REFERENCES
[1] L. E. Winslow, ‘‘Programming pedagogy—A psychological overview,’’

ACM SIGCSE Bull., vol. 28, no. 3, pp. 17–22, Sep. 1996.
[2] A. Robins, J. Rountree, and N. Rountree, ‘‘Learning and teaching pro-

gramming: A review and discussion,’’ Comput. Sci. Edu., vol. 13, no. 2,
pp. 137–172, Mar. 2003.

[3] Y. Hofuku, S. Cho, T. Nishida, and S. Kanemune, ‘‘Why is programming
difficult? Proposal for learning programming in ‘small steps’ and a proto-
type tool for detecting ‘gaps,’’’ in Proc. 6th Int. Conf. Informat. Schools,
Situation, Evol. Perspect. (ISSEP), Oldenburg, Germany, Feb./Mar. 2013,
pp. 13–24.

[4] I. Milne and G. Rowe, ‘‘Difficulties in learning and teaching
programming—Views of students and tutors,’’ J. Edu. Inf. Technol.,
vol. 7, no. 1, pp. 55–66, Mar. 2002.

[5] P. Charters, M. J. Lee, A. J. Ko, and D. Loksa, ‘‘Challenging stereotypes
and changing attitudes: The effect of a brief programming encounter on
adults’ attitudes toward programming,’’ in Proc. 45th ACM Symp. Comput.
Sci. Edu. (SIGCSE), Mar. 2014, pp. 653–658.

[6] R. F. Paige, F. A. C. Polack, D. S. Kolovos, L. M. Rose, N. Matragkas, and
J. R. Williams, ‘‘Bad modelling teaching practices,’’ in Proc. ACM/IEEE
17th Int. Conf. Model Driven Eng. Lang. Syst. (MoDELS), Valencia, Spain,
Oct. 2014, pp. 1–12.

414 VOLUME 4, NO. 3, SEPTEMBER 2016



Cazzola and Olivares: Gradually Learning Programming Supported by a Growable Programming Language

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

[7] G. M. Schneider, ‘‘The introductory programming course in computer
science: Ten principles,’’ in Proc. SIGCSE/CSA Tech. Symp. Comput. Sci.
Edu. (SIGCSE), Feb. 1978, pp. 107–114.

[8] A. Pears et al., ‘‘A survey of literature on the teaching of introductory
programming,’’ in Proc. 12th Annu. Conf. Innov. Technol. Comput. Sci.
Edu. (ITiCSE), Jun. 2007, pp. 204–223.

[9] S. Wiedenbeck and V. Ramalingam, ‘‘Novice comprehension of small
programs written in the procedural and object-oriented styles,’’ Int. J.
Human-Comput. Stud., vol. 51, no. 1, pp. 71–87, Jul. 1999.

[10] K. Malan and K. Halland, ‘‘Examples that can do harm in learning
programming,’’ in Proc. 19th Annu. Conf. Object-Oriented Program. Syst.,
Lang., Appl. (OOPSLA), Vancouver, BC, Canada, Oct. 2004, pp. 83–87.

[11] K. E. Gray and M. Flatt, ‘‘ProfessorJ: A gradual introduction to Java
through language levels,’’ in Proc. 18th Annu. Conf. Object-Oriented
Program., Syst., Lang., Appl. (OOPSLA), Oct. 2003, pp. 170–177.

[12] C. Bruce, L. Buckingham, J. Hynd, C. McMahon, M. Roggenkamp, and
I. Stoodley, ‘‘Ways of experiencing the act of learning to program: A phe-
nomenographic study of introductory programming students at university,’’
J. Inf. Technol. Edu., vol. 3, no. 1, pp. 143–160, 2004.

[13] B. Victor. (Sep. 2012). Learnable Programming. [Online]. Available:
http://worrydream.com/LearnableProgramming

[14] J. Rogalski and R. Samurçay, ‘‘Acquisition of programming knowledge
and skills,’’ in Psychology of Programming, J.-M. Hoc, T. R. G. Green,
R. Samurçay, and D. J. Gilmore, Eds. New York, NY, USA: Academic,
1990, ch. 2.4, pp. 157–174.

[15] M. Petre, ‘‘A paradigm, please—And heavy on the culture,’’
in User-Centred Requirements for Software Engineering Environments
(Lecture Notes in Computer Science), vol. 123, D. J. Gilmore,
R. L. Winder, and F. Détienne, Eds. Berlin, Germany: Springer-Verlag,
1994, pp. 273–284.

[16] R. Mason and G. Cooper, ‘‘Why the bottom 10% just can’t do it: Mental
effort measures and implication for introductory programming courses,’’
in Proc. 14th Austral. Comput. Edu. Conf. (ACE), vol. 123. Melbourne,
VIC, Australia, 2012, pp. 187–196.

[17] J. Bennedsen and M. Caspersen, ‘‘Model-driven programming,’’
in Reflections on the Teaching of Programming (Lecture Notes in
Computer Science), vol. 4821, J. Bennedsen, M. E. Caspersen, and
M. Kölling, Eds. Berlin, Germany: Springer-Verlag, 2008, pp. 116–129.

[18] A. L. Olsen, ‘‘Using pseudocode to teach problem solving,’’ J. Comput.
Sci. Colleges, vol. 21, no. 2, pp. 231–236, Dec. 2005.

[19] P. A. Kirschner, J. Sweller, and R. E. Clark, ‘‘Why minimal guidance dur-
ing instruction does not work: An analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching,’’ Edu.
Psychol., vol. 41, no. 2, pp. 75–86, 2006.

[20] M. Mernik and V. Umer, ‘‘Incremental programming language develop-
ment,’’ Comput. Lang., Syst. Struct., vol. 31, no. 1, pp. 1–16, Apr. 2005.

[21] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan, ‘‘Silver: An extensible
attribute grammar system,’’ Sci. Comput. Program., vol. 75, nos. 1–2,
pp. 39–54, Jan. 2010.

[22] L. C. L. Kats and E. Visser, ‘‘The Spoofax language workbench: Rules
for declarative specification of languages and IDEs,’’ in Proc. ACM Int.
Conf. Object-Oriented Program. Syst. Lang. Appl. (OOPSLA), Oct. 2010,
pp. 444–463.

[23] W. Cazzola, ‘‘Domain-specific languages in few steps: The Neverlang
approach,’’ in Proc. 11th Int. Conf. Softw. Composition (SC), vol. 7306.
Jun. 2012, pp. 162–177.

[24] W. Cazzola and E. Vacchi, ‘‘Neverlang 2: Componentised language devel-
opment for the JVM,’’ in Proc. 12th Int. Conf. Softw. Composition (SC),
vol. 8088. Jun. 2013, pp. 17–32.

[25] E. Vacchi and W. Cazzola, ‘‘Neverlang: A framework for feature-oriented
language development,’’ Comput. Lang., Syst. Struct., Oct. 2015.

[26] S. Apel, C. Kästner, and C. Lengauer, ‘‘FEATUREHOUSE:
Language-independent, automated software composition,’’ in Proc.
IEEE 31st Int. Conf. Softw. Eng. (ICSE), May 2009, pp. 221–231.

[27] J. Liebig, R. Daniel, and S. Apel, ‘‘Feature-oriented language fami-
lies: A case study,’’ in Proc. 7th Int. Workshop Variability Modelling
Softw.-Intensive Syst. (VaMoS), Jan. 2013, Art. ID 11.

[28] E. Vacchi, W. Cazzola, S. Pillay, and B. Combemale, ‘‘Variability support
in domain-specific language development,’’ in Proc. 6th Int. Conf. Softw.
Lang. Eng. (SLE), vol. 8225. Oct. 2013, pp. 76–95.

[29] E. Vacchi, W. Cazzola, B. Combemale, and M. Acher, ‘‘Automating
variability model inference for component-based language implementa-
tions,’’ in Proc. 18th Int. Softw. Product Line Conf. (SPLC), Sep. 2014,
pp. 167–176.

[30] T. Kühn, W. Cazzola, and D. M. Olivares, ‘‘Choosy and picky: Configu-
ration of language product lines,’’ in Proc. 19th Int. Softw. Product Line
Conf. (SPLC), Jul. 2015.

[31] W. Cazzola and D. Poletti, ‘‘DSL evolution through composition,’’ in Proc.
7th ECOOPWorkshop Reflection, AOPMeta-Data Softw. Evol. (RAM-SE),
Jun. 2010, Art. ID 6.

[32] P. Brusilovsky, E. Calabrese, J. Hvorecky, A. Kouchnirenko, and P. Miller,
‘‘Mini-languages: Away to learn programming principles,’’ J. Edu. Inf.
Technol., vol. 2, no. 1, pp. 65–83, 1997.

[33] E. Vacchi, D. M. Olivares, A. Shaqiri, and W. Cazzola, ‘‘Neverlang 2:
A framework for modular language implementation,’’ in Proc. 13th Int.
Conf. Modularity (MODULARITY), Apr. 2014, pp. 29–32.

[34] R. Ward and M. Smith, ‘‘JavaScript as a first programming language for
multimedia students,’’ in Proc. 6th Annu. Conf. Teach. Comput. (ITiCSE),
Aug. 1998, pp. 249–253.

[35] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
‘‘Feature-oriented domain analysis (FODA) feasibility study,’’
Softw. Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU/SEI-90-TR-21, Nov. 1990.

[36] H. F. Ledgard, ‘‘Ten mini-languages: A study of topical issues in pro-
gramming languages,’’ ACM Comput. Surv., vol. 3, no. 3, pp. 115–146,
Sep. 1971.

[37] W. Feurzeig, S. Papert, M. Bloom, R. Grant, and C. Solomon,
‘‘Programming-languages as a conceptual framework for teaching
mathematics,’’ ACM SIGCUE Outlook, vol. 4, no. 2, pp. 13–17, Apr. 1970.

[38] I. Fister, Jr., T. Kosar, I. Fister, and M. Mernik, ‘‘EasyTime++:
A case study of incremental domain-specific language development,’’ Inf.
Technol. Control, vol. 42, no. 1, pp. 77–85, 2013.

[39] R. C. Holt, D. B.Wortman, D. T. Barnard, and J. R. Cordy, ‘‘SP/k: A system
for teaching computer programming,’’ Commun. ACM, vol. 20, no. 5,
pp. 301–309, Apr. 1977.

[40] R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi, and M. Felleisen,
‘‘DrScheme: A pedagogic programming environment for scheme,’’
in Proc. 9th Int. Symp. Program. Lang., Implement., Logics,
Programs (PLILP), vol. 1292. Sep. 1997, pp. 369–388.

WALTER CAZZOLA is currently an Associate
Professor with the Department of Computer
Science, Università degli Studi di Milano, Italy,
and the Chair of the ADAPT Laboratory.

He is the designer of the mChaRM framework
of the @Java, [a]C#, Blueprint programming
languages. He is involved in the designing
and development of the Neverlang general-
purpose compiler generator. He has written over
100 scientific papers. His research interests

include reflection, aspect-oriented programming, programming methodolo-
gies, and languages. He served on the program committees or editorial boards
of the most important conferences and journals about his research topics.

Dr. Cazzola has taught several courses about programming either in
the undergraduate, graduate, and the Ph.D. course of studies, in the last
20 years.

DIEGO MATHIAS OLIVARES is currently
pursuing the Ph.D. degree with the Department
of Computer Science, Università degli Studi di
Milano. He is a Teaching Assistant with the
Università degli Studi di Milano. He is also a
member of the ADAPT Laboratory.

He is one of the contributors to the Never-
lang framework; in particular, he developed the
AiDE tool and the Neverlang implementation of
Javascript. His research interests are about the

teaching of programming and development of programming languages.

VOLUME 4, NO. 3, SEPTEMBER 2016 415


