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ABSTRACT
The idea to treat domain-specific languages (DSL) as software prod-
uct lines (SPL) of compilers/interpreters led to the introduction of
language product lines (LPL). Although there exist various method-
ologies and tools for designing LPLs, they fail to provide basic IDE
services for language variants—such as, syntax highlighting, auto
completion, and debugging support—that programmers normally
expect. While state-of-the-art language development tools permit
the generation of basic IDE services for a specific language variant,
most tools fail to consider and support reuse of basic IDE services
of families of DSLs. Consequently, to provide basic IDE services for
an LPL, one either generates them for the many language variants
or designs a separate SPL of IDEs scattering language concerns. In
contrast, we aim to piggyback basic IDE services on language fea-
tures and provide an IDE for LPLs, which fosters their reuse when
generating language variants. In detail, we extended the Neverlang
language workbench to permit piggybacking syntax highlighting
and debugging support on language components. Moreover, we
developed an LPL-driven Eclipse-based plugin that includes a syn-
tax highlighting editor and debugger for an LPL with piggybacked
basic IDE services, i.e., where modular language features include
the definition for syntax highlighting and debugging. Within this
work, we introduce a general mechanism for fostering the basic IDE
services’ reuse and demonstrate its feasibility by realizing context-
aware syntax highlighting for a Java-based family of role-oriented
programming languages and providing debugging support for the
family of JavaScript-based languages.
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• Software and its engineering→Domain specific languages;
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1 INTRODUCTION
Tools for the development of domain-specific languages (DSL) and
programming languages have made a major leap. Employing state-
of-the-art language workbenches, designing custom DSLs or ex-
tensions to established languages became feasible for researchers
and practitioners alike [15]. This led to a large amount of DSLs and
multiple language extensions. Recently, researchers started investi-
gating combining different language variants to develop families
of DSLs as well as programming languages, e.g., [16, 25, 28]. Yet,
as state-of-the-art language development tools have limited sup-
port for reusing language features1 between different languages,
they are not suitable to develop families of DSLs and programming
languages. To overcome their limitations, researchers currently
apply ideas from software product lines (SPL) to embrace the need
for multiple variants of a language. Simply put, language families
can be created as an SPL of compilers/interpreters, whereas each
product corresponds to a language variant [23]. These product lines
are denoted language product lines (LPL) and have been successfully
employed for families of DSLs [17, 26, 33, 39, 40] and general pur-
pose programming languages [6, 22, 23]. While these approaches
introduced various methodologies and tools to design LPLs, they
fail to provide an integrated development environment (IDE) for
users of a selected language variant. This hinders the acceptance
of these approaches among users and programmers, as they expect
at least basic IDE services, such as syntax highlighting, auto com-
pletion, and debugging support. Although language development
tools permit easy generation and/or implementation of basic IDE
services for a specific DSL [15], it is infeasible to generate and/or
implement them for all possible language variants. Similarly, de-
signing and maintaining a separate SPL of IDEs corresponding to

1In line with [23], language features are either language constructs, e.g., for loop, or
language concepts (without concrete syntax), e.g., scope and coercion.
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the LPL leads to scattering of language concerns between two prod-
uct lines. Arguably, a better solution follows “the road to feature
modularity” [19] and packs a language feature together with its ba-
sic IDE services. Hence, we aim to piggyback basic IDE services on
language features and, therefore, to automatically provide IDE sup-
port for LPLs, which fosters their reuse when generating language
variants. In fact, we extended the Neverlang language workbench
to piggyback syntax highlighting and debugging support on lan-
guage components. Moreover, we propose an LPL-driven IDE that
includes a syntax highlighting editor and debugger for arbitrary
LPLs, whose basic IDE services ride piggyback on language features,
i.e., where modular language components include the definition for
syntax highlighting and debugging. To demonstrate its feasibility,
we implemented an LPL-driven IDE, an Eclipse plugin providing a
context-aware syntax highlighting editor and an LPL-driven debug-
ger. To further illustrate its applicability for basic IDE services we
employ two case studies. First, we showcase context-aware syntax
highlighting for the family of Java-based role-oriented program-
ming languages (RPLs) [22]. Second, we demonstrate adding and
employing debugging support for the family of JavaScript-based
languages [23]. In conclusion, piggybacking basic IDE services on
language features enhances the modularity and reuse of basic IDE
services and permits using an LPL-driven IDE.

The paper is structured as follows. In the beginning, Sect. 2
briefly introduces LPLs, the Neverlang language workbench, the
corresponding AiDE LPL configurator, and the notion of IDE ser-
vices. Sect. 3 proposes our approach for piggybacking basic IDE
services on language components of LPLs. Sect. 4 presents our im-
plementation. Sect. 5 outlines the case studies we conducted on
two different LPLs. The paper is concluded by discussing related
approaches in Sect. 6, and summarizing our results in Sect. 7. The
Appendix highlights the artifact provided to reproduce our results.

2 PRELIMINARIES
2.1 Language Product Lines
The development of families of programming and domain-specific
languages has gained popularity among researchers and practi-
tioners, e.g., [16, 25, 28]. Following the ideas of software product
lines (SPLs), a LPL facilitates the process of language development,
which can be customized by selecting individual features. Similar to
SPLs, a language could be designed to specifically suit a certain use
case or application domain. For instance, authors [11, 31, 34] have
shown that the many variants of state machine languages could be
modeled as one single family of programming languages. Nonethe-
less, this is also true for general-purpose programming languages,
from which dialects may be defined for DSL purposes. On one side,
specialized versions of full-fledged programming languages can
be employed in case of security purposes (e.g., Java Card [10]) or
teaching programming [6, 13]. Language extension, on the other
side, can be useful to embed new language features into an existing
programming language, such as type-checked SQL queries [14].

2.2 Neverlang2 in a Nutshell
The Neverlang [4, 8, 32] framework is built around the language
feature concept. Language components, called slices, embodying
the language features are developed as separate units that can be

1 module StateModule {
2 reference syntax {
3 State ^ StateName "=" Expr ;
4 }

6 role(evaluation) {
7 0 .{ newstate($1.state, $2.action); }.
8 }
9 }

11 slice State {
12 concrete syntax from StateModule
13 module StateModule with role evaluation
14 }

16 language HooverLang {
17 slices Program StateDecl EventDecl TransDecl StateLst State
18 StateName EventList Event EventName Expr BExpr TransList
19 Transition Support
20 roles syntax < execution
21 }

Listing 1: Syntax and semantics for the state concept.

compiled and tested independently, enabling developers to share
and reuse the same units across different language implementa-
tions. Here the development base unit is the module (Listing 1). A
module may contain a syntax definition and/or semantic roles. A
role defines actions that should be executed when some syntax is
recognized, as prescribed by the syntax-directed translation tech-
nique [1]. Syntax definitions and semantic roles are tied together
using slices. Let us consider theNeverlang realisation of the State
module for the vacuum cleaner example shown in Listing 1.

Here the module StateModule declares a reference syntax for
the state concept (Lines 2-4) and actions are attached to the nonter-
minals on the right of the production (Line 7). Semantic actions are
attached to nonterminals by referring to their position in the gram-
mar or through a label: numbering starts with 0 from the top left to
the bottom right. Thus, the first State on Line 3 is referred to as 0,
StateName as 1, and Expr as 2. The slice State declares in Line 12
that we will be using this syntax (which is the concrete syntax)
in our language, with those particular semantics (Line 13). Finally,
the language descriptor indicates (Lines 17-19) which slices are to
be composed together to generate the language interpreter. Com-
position in Neverlang is, therefore, twofold: (1) between modules,
which yields slices, and (2) between slices, which yields a language
implementation. The composition result is independent of the or-
der of specified slices. The grammars are merged to generate the
complete language parser. Semantic actions are performed with
respect to the parse tree of the input program; roles are executed in
the order specified in the roles clause of the language descriptor.
Please see [32] for further details.

2.3 AiDE3 in a Nutshell
AiDE [22, 23] is an interactive configuration tool especially tailored
to develop language product lines. It implements the method pre-
sented in [23, 33, 34] to automatically synthesize the feature model
of a given language family out of language components developed
with Neverlang [32]. Through its graphical user interface, depicted
in Fig. 1, the user can explore the feature model, choose features,

2Available at https//neverlang2.di.unimi.it
3Available at https://aide.di.unimi.it.
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Figure 1: AiDE language configurator for the family of RPLs employed in [22].

create a language variant, and test it. Because feature models of
LPLs tend to be large [22], AiDE initially shows the first level of
the tree, however, allowing it to be expanded on demand.
Moreover, while the user configures a language variant (or product),
AiDE tracks all unresolved dependencies—i.e., all open nonterminals
in the current selection—and provides the user with mechanisms,
such as renaming, to bind them to other nonterminals already in
the selection. Thus, users can easily resolve dependencies during
the component selection. Another important feature of AiDE is
its ability to dynamically update the language variant during its
configuration. Whenever a valid configuration, i.e., one without
unresolved dependencies, exists, the user can update the internal
language variant and test it using the integrated command line in-
terface of Neverlang. This, permits users to verify the consistency
and test the behavior of the language variant under construction.
Internally, AiDE updates the language descriptor maintained by
the underlyingNeverlang language development framework. When
the language satisfies the expectations, a stable copy of the devel-
opment environment is prepared and ready to be dispatched to any
JVM compliant workstation. In sum, AiDE is able to guide users
towards the generation of consistent language variants by sup-
porting multiple dependency resolution strategies and continuous
generation of the language’s compiler/interpreter.

2.4 Basic IDE Services
IDEs provide basic IDE services, like syntax highlighting, code com-
pletion, error marking, and debugging support. However, in line
with Erdweg et al. [15], we distinguish between syntactic services
and semantic services. Syntactic services only depend on the lan-
guage’s syntax and are usually generated from its grammar, e.g., a
syntax highlighting editor, an outline view, syntactic completion,
and a pretty printer. In contrast, semantic services need to take the
language’s semantics into account. Yet, only the simplest of them,

e.g., reference resolution and semantic completion, can be auto-
matically generated from a specified language. Yet, more complex
services require additional programming effort, such as refactoring,
quick fixes, and debugging. Granted syntactic services are easier to
integrate into an LPL, we argue that programmers equally require
syntactic and semantic services from their IDE for a given language.
Hence, we focus on syntax highlighting as a syntactic service and
debugging as a complex semantic service.

3 PIGGYBACKING IDE SERVICES ON
LANGUAGE COMPONENTS

Our main goal is to provide feature modularity and reuse for basic
IDE services wrt. the language features they correspond to. To reach
this, we have to reconsider feature modularity for languages. As
Kästner et al. [19] argued, feature modularity relies on locality and
cohesion, as well as on information hiding and encapsulation.

3.1 Integration into Language Product Lines
In case of LPLs, this entails that all information relevant for a lan-
guage feature including the corresponding part of an IDE service
should be part of one language component. This section shows how
partial IDE service specifications relevant for a language feature can
be added to each language component. Moreover, these specifica-
tions can be interpreted inside an LPL-driven IDE to dynamically
provide the embedded syntactic and semantic services. Notably
though, the possible integration of these service specifications into
an LPL greatly depends on the nature of the IDE service.

3.2 Integration of Syntactic Services
Integrating a syntactic service into language components is straight-
forward. First, the service specification is decomposed wrt. to the
syntactic production they contribute to.
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1 module neverlang.statement.TryCatchStatement {
2 reference syntax {
3 Statement ^ TryStatement ;
4 TryStatement ^ "try" Block CatchClause ;
5 TryStatement ^ "try" Block CatchClause Finally ;
6 CatchClause ^ "catch" "(" CatchParameter ")" Block ;
7 Finally ^ "finally" Block ;
8 categories :
9 Keyword = { "try", "catch", "finally" }
10 with style "trycatch.json",
11 Brackets = { "(", ")" } with style "java.json" ;
12 }
13 /* ... */
14 }

Listing 2: Terminal categorization in a language component.

{ "Keyword": { "italic": true, "color": "#7f0000",
"bold": true, "background": "#8F8F8F" } }

Listing 3: Style definition per category (trycatch.json).

Afterwards, the language component is extended to permit adding
a partial specification of a corresponding syntactic service, as well
as an interface to retrieve this specification. Finally, an LPL-driven
IDE will query this interface of selected language components to
provide the desired syntactic IDE service.

In case of syntax highlighting, the language component is ex-
tended with a style specification for each terminal in each produc-
tion (right hand side). Although this approach would be feasible, if
the style specification is compiled into the language components,
the user cannot easily change the highlighting of a specific language
feature. To remedy this, we permit language developers to define a
custom category for each terminal in a language component.
Simply put, a category is a name employed to retrieve a terminal’s
highlighting from a user controlled style file. Conversely, we aug-
mented Neverlang slices to allow for defining categories for sets of
terminals, as outlined in Listing 2 for the TryCatchStatement slice.
In particular, the slice defines the category Keywords for the termi-
nals try, catch, and finally, as well as the category Brackets for
curly braces. Additionally, the with style clause denotes the user
controlled file fromwhere the highlighting style should be retrieved.
Thus, while the IDE uses the default Java highlighting (java.json)
for braces, it employs the style definition in trycatch.json for the
keywords try, catch, and finally, shown in Listing 3. Specifically,
the style definition does not only permit changing the font style, but
also the font color and background color. Note that, with style

enables overriding the default style of a category, such that the
keywords of the try catch statement are highlighted in the context
of this language component. In sum, while slices defines the cat-
egories for terminals, style files define the actual highlighting of
terminals inside the textual editor.

3.3 Integration of Semantic Services
Compared to syntactic services, integrating semantic services into
an LPL is complex, due to the fact that they depend on the lan-
guage’s semantics. Especially, this entails that the language’s se-
mantic actions must be intercepted and/or adapted by the IDE to

1 module neverlang.statement.Throwable {
2 reference syntax {
3 Statement ^ ThrowStatement;
4 ThrowStatement ^ "throw" Expression SemiColonOpt;
5 /*...*/
6 }
7 role (debug) {
8 0 @{ $0.isExecutionStep = true; }.
9 }
10 role (evaluation) {
11 0 @{ /*...*/ }.
12 1 @{ /*...*/ }.
13 }
14 }

Listing 4: Adding debugging to a language component.

extract the required information for semantic services, such as ref-
erence resolution, error marking, and debugging support. Most gen-
erative LPL approaches, i.e., that generate interpreters/compilers
of language variants, do not support the dynamic adaptation of
their semantic actions. Yet, recently Cazzola and Shaqiri introduced
open programming language interpreters for Neverlang-based LPLs,
which enables language developers to adapt languages’ semantic
actions at predefined hooks [7]. As illustrated in Fig. 2, Neverlang
encodes semantic actions, e.g., the evaluation of an expression, as
attributes of nodes of the parse tree, such as E.val ← E1.val *
E2.val, which are computed upon traversing the parse tree. By
contrast, open interpreters allow language developers to attach lan-
guage agents to hooks of syntax nodes (e.g., E) without requiring
to change the language variant’s implementation. Depending on
the hook the attached agents are called before, instead, or after the
node’s evaluation [7].

Conversely, if the LPL is implemented as Neverlang’s open pro-
gramming language interpreter, it becomes possible to add a debug-
ging service by adding a debugging language agent to an LPL. This
can be done independently of the LPL, as long as the encompassed
language components provide a debug role, which is evaluated be-
fore the actual evaluation role. Inside the debug role, the language
developer only needs to add semantic actions to those productions
that represent a computation step. These actions only mark a syntax
node as an execution step for the debugger to distinguish between
executable statements and non-executable language elements. For
instance, the Throwable slice, depicted in Listing 4, for the throw
statement. Here, the debug role only adds a semantic action to the
ThrowStatement (Line 8) adding an attribute isExecutionStep set
to true. During the evaluation the debugging agent checks whether
this attribute is set for the syntax node, to decide when to sus-
pend the debugger. The implementation of the language agents is
outlined in Sect. 4.3.

4 A LANGUAGE PRODUCT LINE-DRIVEN IDE
After integrating basic IDE service specifications into an LPL, an
LPL-driven IDE is needed to enable both researchers and practi-
tioners to utilize them. This section describes a design process for a
language engineer to configure and deploy a Neverlang-based LPL
with included IDE services to an LPL-driven IDE. Moreover, we
outline the implementation of our Eclipse plugin, denoted textsfN-
everlangIDE, that facilitates our LPL-driven IDE featuring a context-
aware syntax highlighting editor, as well as an LPL-driven debugger.
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{E.val ← E1.val * E2.val;}

evaluation

Figure 2: Parse tree with hooks and before agents, from [7].

4.1 Language Configuration and Deployment
To benefit from the LPL-driven IDE, the language components must
have been implemented as Neverlang slices. These slices must in-
clude suitable tags for the feature model generation [23], as well
as style categories and debug roles for syntax highlighting and de-
bugging support (cf. Sect. 3), respectively. As a result, such an LPL
can be loaded into AiDE [23], which, in turn, generates the lan-
guage’s feature model and guides the language engineer to choose
and pick a valid language variant. After selecting a variant, AiDE
generates a corresponding language descriptor. From this descrip-
tor Neverlang compiles a corresponding compiler or interpreter
for the language variant as an executable Java archive (jar). Ad-
ditionally, this executable jar file also contains the style files, the
category accessors, and the executable debug roles. Finally, it can
be deployed to any JVM 1.8 compliant system where Neverlang is
installed. Yet, to benefit from syntax highlighting and debugging
support, an Eclipse (≥4.10.0) instance is required where the Never-
langIDE plugin is installed. Now, only the location of the deployed
jar must be announced to our plugin. After start up, the plugin
loads all announced language variants, and allows users to benefit
from the LPL-driven Neverlang Editor as well as the debugging sup-
port via Neverlang run configurations and an LPL-driven debugger.
Henceforth, we will delve into their implementation.

4.2 LPL-Driven Syntax Highlighting
To implement our LPL-driven text editor we extended Eclipse’s
TextEditor. This editor requires an ITokenScanner to parse a given
resource and decide how to highlight each lexical element. Fortu-
nately, as anyNeverlang language can be parsed using its extensible
lexer [9, 32, cf. Lexter], we simply implemented the adapter to the
ITokenScanner, sketched in Listing 5. In detail, the LexterAdapter
queries for the language descriptor for the file extension of the un-
derlying resource. Using this language descriptor both a Neverlang
lexer and category-aware parser are retrieved. While the former
is mandatory, the latter permits context-aware syntax highlighting.
This becomes evident in the nextToken method, where the next
token is retrieved from both the lexer (Line 31) and the parser

(Line 33). In case the category retrieved for this token is defined,
the parser will be requested to return a contextual style for this
category (Line 38). Because each node in the parse tree is linked to
its defining slice, it can expose its category and style definition. By
contrast, if this style is null or the parser failed, syntax highlight-
ing falls back to a style provided for the whole language, whereas
the tokenId of the lexer is used as category (Line 42). Finally, the

1 public class LexterAdapter implements ITokenScanner {
2 private final LanguageProvider language;
3 private final LexterStream lexer;
4 private final StyledText editor;
5 private final SemanticHighlighterDexter parser;
6 private QualifiedToken lastToken, lastParserToken;
7 private int lastOffset;

9 public LexterAdapter(String lang,StyledText editor){
10 this.editor = editor;
11 this.language = LanguageProvider.getInstance(lang);
12 this.lexer = (LexterStream) lang.getDexter().getLexter();
13 this.parser =
14 new SemanticHighlighterDexter(language.buildLanguage());
15 this.lastToken = null;
16 this.lastOffset = -1;
17 /*.Initialize lexer and parser..*/
18 }
19 @Override
20 public int getTokenLength(){
21 return (lastToken == null ? -1 : lastToken.text.length());
22 }
23 @Override
24 public int getTokenOffset(){
25 return (lastToken == null ? -1 : lastOffset);
26 }
27 @Override
28 public IToken nextToken(){
29 if (lastToken != null)
30 lastOffset += lastToken.text.length();
31 QualifiedToken nextToken = (QualifiedToken) lexer.getNext();
32 lastToken = nextToken;
33 lastParserToken = parser.nextToken();
34 String category = parser.lastTokenCategory();
35 TextAttribute attr = null;
36 /* Retrieve context-dependent style */
37 if (category != null)
38 attr = parser.contextualStyle(category);
39 /* Fallback to default language style */
40 if (attr == null)
41 attr = language.getTokenToAttributeMapper()
42 .get(nextToken.tokenId);
43 return new WrappedToken(nextToken, attr);
44 }
45 @Override
46 public void setRange(IDocument document,int offset,int length){
47 /*...*/
48 }
49 }

Listing 5: Implementation of the highlighter’s TokenScanner.

nextToken returns an Eclipse IToken, which wraps both the Nev-
erlang token and corresponding style. Internally, these tokens are
forwarded to Eclipse’s syntax highlighting TextEditor. For simplic-
ity, we currently do not employ an intelligent damage, repair, and
reconciliation strategy and always parse the whole document upon
changes. Granted, this incurs a huge performance overhead, yet,
suffices as a proof of concept. In sum, our LPL-driven editor does not
only permit the syntax highlighting of the programs written in the
selected language variant, but can also emphasize the provenance
of language features, as will be demonstrated in Sect. 5.1.

4.3 Language Agent-Based Debugging
To provide debugging support for an LPL-driven IDE, we first
needed an LPL-driven debugger. Consequently, we implemented
a prototypical, external debugger for Neverlang-based languages
that can communicate with an external tool both synchronously
and asynchronously.
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1 public class DebugAgent extends Agent {
2 public enum State {
3 INIT, SUSPENDED, RUNNING, STEPPING, DISCONNECTED
4 }

6 private State state=State.INIT;
7 private BreakpointManager breakpoints=new BreakpointManager();
8 private DebugMessageSender debugSender=new DebugMessageSender();
9 private NodeInfo stepOverNode;

11 public DebugAgent(OpenNeverlang interpreter) {
12 super(interpreter); debugSender.send("started");
13 }
14 @Override
15 public void notifyEvent(ExecutionEvent executionEvent) {
16 switch (executionEvent) {
17 case FILE_LOADED:
18 interpreter.registerAgent(this, new AnyPattern(), null,
19 HookType.BEFORE_AND_AFTER); break;
20 case EXECUTION_FINISHED:
21 this.terminate(); break;
22 }
23 }
24 /*...*/
25 private boolean suspendAt(NodeInfo node) {
26 return node.isExecutionStep()
27 && (state == State.SUSPENDED || state == State.STEPPING
28 || breakpoints.hasAssociatedBreakpoint(node));
29 }
30 private void sendStopEvent(NodeInfo node) {/*...*/}
31 @Override
32 public void before(IPatternMatch iPatternMatch) {
33 NodeInfo node=interpreter.getCurrentNode();
34 handleAsyncCommands();
35 if (suspendAt(node)) {
36 sendStopEvent(node);
37 state=State.SUSPENDED;
38 handleSyncCommands(node);
39 }
40 }
41 @Override
42 public void after(IPatternMatch iPatternMatch) {
43 if (interpreter.getCurrentNode().equals(stepOverNode)) {
44 setState(DebugAgent.State.STEPPING);
45 stepOverNode = null;
46 }
47 }
48 @Override
49 public void interpreterChanged() {}
50 }

Listing 6: Excerpt of the debugging agent implementation.

This debugger supports the basic operations for setting up break-
points, suspending an execution, stepping into or stepping over a
suspended execution, as well as retrieving all variables (including
values) of the current execution step. In its core the debugger adapts
a provided Neverlang language variant by adding a DebugAgent,
outlined in Listing 6. This agent is added to each node of the parse
tree of the program to debug (Line 18) hooking itself before and
after a node’s evaluation (Line 19). Consequently, the agent has
access to all values of a visited node in previous runs, such as the
isExecutionStep property set in the debug role.

The DebugAgent’s behavior is determined by its internal state
ranging from the initial state INIT via the RUNNING state through
to STEPPING and SUSPENDED to finally DISCONNECTED. The before

hook method first handles all asynchronous requests (Line 33) and
afterwards determines whether the debugger should be suspendAt
the current node (Line 34). As defined in Lines 25–29, the debugger
only stops at execution steps, i.e., nodes where isExecutionStep

has been set to true. Besides that, a running debugger is suspended
if it reaches a user defined breakpoint, i.e., a node whose line num-
ber in the source code equals to the line number of a breakpoint.
Otherwise, the debugger stops if it is either STEPPING or SUSPENDED.
In case of STEPPING, the debugger will step into the next execution
step found in the parse tree, e.g., the body of a for loop, the body
of a called method or just the next statement. In contrast, stepping
over requires to evaluate a complete subtree before suspending
the debugger again. To achieve this, the debugger memorizes the
stepOverNode for which a step over was issued, and resumes the
debugger until this node is reached again in the after hook method
(Lines 42–47). This ensures that the full subtree has been evaluated,
before the debugger is set back into STEPPING state. Nonetheless,
the language engineer can customize the debugger’s behavior. In
case of the try statement, the step over could either completely
skip both the try and catch block by marking the TryStatement
node as execution step or continue successively in the try and
catch Block by marking each as execution step. As a result, the
granularity and stepping behavior of the debugger is customizable
by the language engineer through language components.

The LPL-driven debugger is a separate process that can commu-
nicate via TCP with any IDE providing a simple command interface
and JSON-based data exchange. This simplified the integration
of our debugger into Eclipse, as UI actions are delegeted to the
debugger, which returns serialized VariableInfo and ValueInfo

objects for each variable, object, and object member in the scope
of the current execution step to be shown in the Variables view.
The VariableInfo interface describes a variable with its name,
its type, and its value, i.e., a ValueInfo object. The ValueInfo in-
terface, in turn, represents a value by means of its runtime type
and its string representation. The LPL-driven debugger will trig-
gered for Neverlang-based language variants, just like any Java
program, by creating a run configuration for a program, selecting
the corresponding language variant, and starting the debugger via
the Run➥Debug menu entry. The LPL-driven editor permits to
toggle breakpoints and shows the debugger’s current position.

5 DEMONSTRATION CASE STUDIES
Admittedly, one could indicate the suitability of an LPL-driven IDE
with toy examples, yet we belief that the benefits of piggyback-
ing IDE services on LPLs shine when dealing with realistic LPLs.
Consequently, we demonstrate the suitability of our LPL-driven
syntax highlighting editor by augmenting the family of Java-based
role-oriented programming languages (RPLs) [22] with style cate-
gories and style definitions for each language extension. Likewise,
the suitability of our LPL-driven debugger is illustrated by adding
debugging support to the family of JavaScript-based languages [23].

5.1 Family of Role-Oriented Programming
Languages

The family of role-based modeling and programming languages was
already identified in [25, 29]. A closer examination of RPLs in [22]
revealed that most of them were extensions to Java. Accordingly,
five of them were implemented as a Neverlang-based LPL [22],
whereas each was implemented as an extension to a Neverlang-
based Java parser, denoted Neverlang.Java.
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Figure 3: Generated feature model of role-based program-
ming languages, from [22].

Feature Model and Language Decomposition. The resulting
family of RPLs follows a bottom-up LPL approach [22], which en-
tails that the feature model, partially shown in Fig. 3, was generated
by AiDE. The resulting feature model is rather big consisting of 73
features and 29 abstract features [22]. For brevity, several abstract
features, e.g., Modifier, Method, and Statement, have been collapsed
and all cross-tree constraints were omitted.

Thus, the resulting feature model only emphasizes language fea-
tures of RPLs and not the underlying Java LPL.4 Regardless, AiDE
could still be employed to select valid language variants [22]. How-
ever, these language variants were hard to use, because different
RPLs introduced different syntax with the same intentional seman-
tics. Let us consider the various keywords to declare roles, e.g.,
role, definerole, participants, class. While a context-agnostic
syntax highlighter could be defined, the user would still loose track
of which language feature belongs to which language extension.

Syntax Highlighting for Individual Language Features. To
approach this issue, syntax highlighting editors of state-of-the-art
workbenches would not suffice. By contrast, our context-aware syn-
tax highlighting editor for LPLs provides provenance for language
features by highlighting related language features in the same style.
In case of the family of RPLs, we added categories to all Neverlang
slices in the LPL and included six style files within the LPL. One file
defines the style forNeverlang.Java and the others define individual
styles for each of the five role-oriented language extensions, such
that each language feature provided by an extension uses a dis-
tinguishing syntax highlighting. Specifically, Rava keywords have

4The full feature model for RPLs is available at http://neverlang.di.unimi.it/
aide/rplj_fm.pdf.

Table 1: Specifying syntax highlighting for Java and five lan-
guage extensions, from [22].

Language Slices Classes LoC Highlighting

Java 189 2 6843 (323) 208 (30)
Common 6 3 184 (850) 4
Rava 5 0 213 17 (12)
powerJava 7 0 243 14 (15)
OT/J 16 0 715 43 (15)
Rumer 31 5 1238 (146) 75 (16)
Relations 20 1 756 (33) 32 (16)

a lime background, powerJava violet, ObjectTeams/Java orange,
Rumer cyan, and Relations blue. As shown in Table 1, piggybacking
syntax highlighting on the family of RPLs required only 393 addi-
tional lines of code (LoC) and 74 lines in JSON style files (numbers in
brackets). Naturally, we defined the nine categories of terminals ac-
cording to the typical lexical tokenization of Java, i.e., Identifier,
Type, Operator, Brackets, Keyword, String, Number, Boolean, and
Character. However, most of the role-oriented extensions only
override the styling of keywords, brackets, and operators, with
the exception of Rumer that introduces the new type Extent. In
sum, the manual implementation for adding syntax highlighting
to the existing LPL for RPLs was limited and could technically be
completely replaced by a code generator.

Context-aware Syntax Highlighting Editor. To test the LPL
for RPLs, we generated multiple language variants ranging from
the five RPL languages to a feature complete variant. The latter,
allows for combining the various role declarations in one combined
language. This language variant is used to showcase the contextual
awareness of our syntax highlighting editor. After announcing
this language variant to the NeverlangIDE plugin, we can open an
example.rolejava file in Eclipse with the Neverlang Editor.
In fact, right clicking on the file in Eclipse and selecting the Open
With... ▸ Other context menu item, opens a dialog where our
Neverlang Editor can be selected. Fig. 4 depicts a screenshot of the
editor showing the content of the example.rolejava file. This file
contains a role-based banking application implemented using role
definitions (language features) provided by the different extensions.
In contrast to typical syntax highlighting, for the first time, users
are able to track the provenance of employed language features
by means of a simple color coding. This helps to notice errors that
would be otherwise missed. For instance, it becomes evident that
a Rava role call (@INVOKEROLE) is used within a powerJava role
(Lines 27–33). Thus, while users get insight into the provenance of
employed language features, they are still able to customize their
highlighting by modifying the style files.

5.2 Family of JavaScript-based Languages
The family of JavaScript-based languages, denoted Neverlang.JS,
was initially designed as a real world case study for Neverlang [32],
yet it has proven its worth for gradually teaching JavaScript [6]. In
detail, students were provided with specialized JavaScript variants,
whereas each variant focuses on teaching another language feature,
e.g., loops, recursion, exception handling, object orientation [6].

http://neverlang.di.unimi.it/aide/rplj_fm.pdf
http://neverlang.di.unimi.it/aide/rplj_fm.pdf
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Figure 4: Contextual highlighting of role-oriented exten-
sions to Neverlang.Java.

Although our experience showed the viability of this approach,
we concede that our students struggled to find errors in their im-
plementation, especially, in case of runtime errors. What our stu-
dents missed most, was debugging support for the various language
variants to easily set breakpoints and step through their running
program. Conversely, this case study finally introduces debugging
support to Neverlang.JS and all its variants. Moreover, the editing,
the executing, and the debugging of JavaScript language variants
is integrated into the Eclipse IDE.

Feature Model and Language Decomposition. Neverlang.JS
is a fully decomposed version of JavaScript, whereas each module

and slice corresponds to a specific language feature. Its imple-
mentation amounts to 3043 LoC and 228 production rules [32].
Each valid language variant is a functional JavaScript interpreter.
In particular, the feature complete Neverlang.JS variant conforms
to the ECMAScript 3 Language Specification (ECMA-262) and cov-
ers about 70% of the corresponding language specification [32].
Notably though, the remaining 30% amount to implementing built-
in libraries, which is merely a technicality and is not required to
showcase the debugging support.

Besides that, theNeverlang.JS LPL was one of the first LPLs to be
configured by AiDE. Resulting from JavaScript’s complexity, AiDE
generated a very large feature model with a maximum depth of 6
as well as 19 abstract features and 73 language features [23].
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Figure 5: Generated feature model of Neverlang.JS,
from [23].

Due to space restrictions, Fig. 5 shows a reduced feature model,
where the abstract features primary, numbers, boolean, NoIn ex-
pressions, and bitwise have been collapsed.5 In addition, the feature
model captures that constructors are mandatory for objects and
for-each loops depend on NoIn expressions, which define the in

expression only inside for-each loops. However, while the Never-
lang.JS LPL produces an interpreter for each member of the family
of JavaScript-based languages [6], these interpreters lack direct
debugging support.

Adding Debugging to Neverlang.JS. As outlined in Sect. 3.3
and Sect. 4.3, adding debugging support to an existing LPL includes
two major steps: (1) marking execution steps and (2) exposing
variables and their values in the current execution context. To
improve usability, we kept debugging on the level of statements
rather than expressions. In fact, most debuggers operate on this
granularity, as stepping through expressions would be tedious.

Consequently, in the first step, we extended all Neverlang slices
that represent statements with a debug role with a corresponding
action setting isExecutionStep to true. As depicted in Table 2,
this includes statements, such as if, switch, for, for-each, as well
as function calls, interrupts and conditional expressions, with the
exception of the general Block and Loop statement. Besides marking
execution steps for the debugging agent, the second step entails
writing two classes implementing the VariableInfo and ValueInfo
interface to expose variables and their values, respectively.
5A full version is available at http://neverlang.di.unimi.it/aide/njs_graph.png.

http://neverlang.di.unimi.it/aide/njs_graph.png
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Table 2: Introducing debugging to the JavaScript-based lan-
guage family, from [23].

Features Slices LoC Debugging
Core
Language core 11 277 10
Expressions
Arithmetic 3 128 -
Boolean 3 92 -
Relational 2 137 -
Conditional 1 32 7
Bitwise 5 216 -
Typing 2 65 -
Function call 2 113 12
Construct call 1 56 -
Types 43
String 1 21 -
Number 1 24 -
Boolean 1 23 -
RegExp 1 23 -
Object 4 189 30
Array 3 131 -
Function (definition) 2 100 -
This resolution 1 17 -
Statements
Block Statement 1 32 -
If Statement 1 45 8
Switch Statement 1 102 5
(Loop Statements) 1 19 -
While Statement 1 50 8
For loop 1 57 7
For-each loop 1 113 13
(NoIn expressions integration) 11 305 16
Interrupts (break,continue,...) 3 74 15
Exception handling 2 122 5
Variables
Variable assignment 5 226 11
Variable resolution 1 24 -
Symbol Table 0 230 8

In Neverlang.JS these classes are implemented as JSVariableInfo
and JSValueInfo and amount to 43 LoC (cf. Types). Note, these
VariableInfos must be programmatically added to Neverlang’s
VariableInfoManager during the program’s interpretation, e.g.,
whenever a variable is declared. Only then, the DebugAgent can
access the variables visible in the current execution context, and
finally expose them to Eclipse’s Variables view. Consequently,
this has been done for the language features assignments, function
calls, and objects leading to an additional 53 LoC. Although, the
first step can be automated by annotating production rules, the
second step requires manual work to expose the interpreters in-
ternal data structures, such as, variables, objects, and arrays. In
sum, the implementation overhead to add debugging support to the
Neverlang.JS LPL only amounts to 198 LoC, which is surprisingly
small considering the benefit it provides to its users.

Figure 6: Debugging a variant of Javascript in Eclipse.

Debugging JavaScript-based Language Variants. By employ-
ing AiDE we have created and tested multiple specializations of
JavaScript as well as a feature complete variant. Yet, the latter will be
used henceforth to demonstrate our debugger. Just like a language
variant with piggybacked syntax highlighting, a language variant
with piggybacked debugging support must only be announced to
the NeverlangIDE plugin. Then once Eclipse has started, users can
create, open, and edit JavaScript files (*.js). For simplicity, we cre-
ated a mandelbrot.js file, which encompasses a simple JavaScript
program that computes theMandelbrot set, inspired by [5, Listing 7].
Now, we can execute this program by creating a new Neverlang
debug configuration via the Run➥Debug Configuration...menu
item; selecting neverlang.js.JSLang from the set of announced
language variants and the executable mandelbrot.js; and finally
clicking on the Debug button. This will trigger the LPL-driven de-
bugger by providing it with the language variant as well as the
mandelbrot.js. Afterwards, Eclipse sets up a TCP connection to
the debugger, which permits to directly interact with the debug-
ger through Eclipse’s debug interface. One such run is shown in
Fig. 6, where a breakpoint was set in Line 22 via the context menu
entry ToggleBreakpoint. This, in turn, suspended the debugger in
Line 22, where a user clicked the step over button twice, such that
the current location of the program is in Line 24. From this location,
a user can either step into the implementation of the mandelIter
or step over its execution such that the debugger reaches Line 25.
In addition to the editor, the Debug view indicates both the cur-
rent state of the debugger and the current location in the source
code. Besides that, the Variables view (below) lists all variables in
the scope of the current location and their corresponding values,
whenever the debugger has been suspended or performed a step.
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Finally, once the debugging is completed the debugger can be ei-
ther terminated or resumed until it reaches another breakpoint. In
conclusion, it is not just feasible to develop a Neverlang-based LPL
with piggybacked debugging support, but the latter also provides
similar usability as the standard Java debugger.

5.3 Discussion
In summary, the two presented demonstration studies provided
evidence for the feasibility of piggybacking both syntactic and se-
mantic IDE services on language components. Granted, one might
argue that syntax highlighting is the simplest syntactic service,
yet, our context-aware syntax highlighting editor exceeds editors
generated by state-of-the-art language workbenches, especially
as it can provide provenance of language features. Moreover, our
demonstration study indicated that the implementation overhead
for piggybacking syntax highlighting on Neverlang slices is negligi-
ble. Finally, as Neverlang’s slices are typically tied to a reference
syntax, other syntactic IDE services could be piggybacked in a sim-
ilar way. That is, a minimal service specification could be added to
slices, which is then retrieved and drives the behavior of a generic
Eclipse-based View/Editor. Although no one will argue that debug-
ging is a simple semantic IDE service, a similar argument can be
drawn for other semantic IDE services. In fact, due to Neverlang’s
support for open programming language interpreters [7], other lan-
guage agents could be attached to the interpreter, which can expose
internal information required for a specific semantic IDE service.
This information can then be used by an extended editor to provide
the desired semantic IDE service. In conclusion, most of the effort
will be put into providing an LPL-driven IDE service for a particu-
lar platform, e.g., Eclipse, whereas the implementation overhead
for a language engineer will be limited to marking special syntac-
tical elements or exposing semantic information via predefined
interfaces.

6 RELATEDWORK
Nowadays, the development of DSLs is a hot topic and a lot of
research efforts are spent in this direction. Several language work-
benches have been developed, such as Spoofax [38], MPS [35],
MontiCore [21] and Melange [12]. All of these approaches provide
a way to generate the IDE support for the DSL under development.
In all these cases, the IDE support is tied to the developed DSL but
its support is general and it does not exploit specific characteristics
of the DSL. The IDE is automatically generated from templates ne-
glecting the DSLs feature modularity, such that IDE services cannot
be specified within DSL and reused from time to time as in this
proposal. MontiCore [2, 3] and Melange [27] support, the devel-
opment of LPLs but their approaches only support basic syntax
highlighting and code completion.

Besides that, EMFText [18] must also be highlighted, as another
EMF-based tool [30] (like Xtext) that supports modular language
implementation and explicitly supports the IDE generation for the
developed languages. Even if EMFText does not explicitly con-
sider variability in the IDE development, it has several commonal-
ities with our LPL-driven IDE starting from the use of attributed

grammars for sharing information between languages and IDE im-
plementation but also because of a specific DSL dedicated to the
description of the IDE.

Looking at the current literature in software variability, some
efforts have been made towards the description of families of graph-
ical (modeling) editors, yet not for IDEs. Several tools of this kind
appeared over the years, e.g., EuGENia [20], Graphiti [36] and Sir-
ius [37]. EuGENia and Sirius are model-based, while Graphiti relies
on Java code. Both EuGENia and Graphiti are based on code gen-
eration, whereas Sirius is dynamically interpreted. In general, all
these approaches lack direct support for variability provided by
SPL methodologies. Thus, variability must be hard coded leading
to hard to maintain and hard to extend product lines.

In this respect, our latest contribution, FRaMED [24] properly
supports variability in the development of graphical editors but not
IDE. It focuses on the visualization/modeling of the program rather
than providing support for its debugging or other typical needs of
code-based development. FRaMED follows a top-down approach
to the LPL construction whereas our LPLs follow a bottom-up
approach; therefore the editor is generated through model compo-
sition instead of language component composition.

7 CONCLUSION
In this paper, we presented the idea of piggybacking portions of
IDE services to the corresponding language component, enabling
de facto the possibility of dealing with language variability together
with IDE variability. Evidently, a language and its IDE are deeply
interconnected and keeping their development separated violates
feature modularity limiting the support an IDE could provide.

Conversely, our contributions are manifold. We introduced the
concept of IDE services and how these can be piggybacked on lan-
guage components. We explored the various kinds—syntactic and
semantic services—of support an IDE provides and explained how
these can be bound to the developed language variant through a LPL.
Although the concept is generally applicable to all syntax-directed
language workbenches, we have extended the Neverlang language
workbench and applied it to families of real languages such as
JavaScript and the Java-based role-oriented languages. The demon-
stration cases showed the feasibility of our approach, in general, as
well as nice side-effects of context-aware syntax highlighting, such
as tracing the provenance of language features.

Arguably, this work presented a proof-of-concept—even if it can
work on real cases—so there is still space for improvement. In the
future, we will integrate more syntactic and semantic IDE services,
e.g., error marking, and semantic auto-completion. Moreover, we
intend to permit dynamically reconfiguring the language variant
within the IDE, such that both debugging and syntax-highlighting
are dynamically adapted. Furthermore, we consider to support the
language server protocol and widen the support for IDEs beyond
Eclipse. Finally, we hope that other syntax-directed language devel-
opment tools apply our idea.
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A ARTIFACT
In addition to this publication, we provide an artifact to reproduce
our results. In particular, we published a virtual machine packed
with the ready to use syntax highlighting editor with debugging
support, denoted NeverlangIDE. In detail, it is an Eclipse plugin
that includes a syntax highlighting editor and debugger for two
language product lines (LPL) with piggybacked basic IDE services,
i.e., where modular language features include the definition for
syntax highlighting and debugging.

A.1 Installation and First Step
We provide our LPL-driven IDE as a virtual machine (VM), because
it is supposed to work in 10 years from now. It was prepared for the
virtualization environment VirtualBox and is installed, as follows:

— Download and install VirtualBox from their website.6

— Download the NeverlangIDE image (˜1.3GB).7

— Open your VirtualBox and use File➥ Import Appliance
to select and import the downloaded file.

— Start the added NeverlangIDE virtual machine.
After the virtual machine is launched, double click on the Never-
langIDE icon on the desktop to start Eclipse with the NeverlangIDE
plugin. You can use it to inspect the already opened JavaScript
and RoleJava (*.rolejava) files or debug the Mandelbrot script
(mandelbrot.js). Because the configuration and generation of a
language variant is too complicated to be explained in one page, we
opted to provide you with two products of such LPLs showcasing
syntax highlighting and debugging, respectively. Henceforth, we
focus on these two usage scenarios.

A.2 Debugging the JavaScript LPL
Once you have opened the editor mandelbrot.js, you can inspect
the script computing the Mandelbrot set. It already contains break-
points at Line 22 and 60, however, you can add and remove break-
points by right-clicking on the line number and selecting Toggle
Breakpoint. Currently, the Debug view and the Variables view are
empty, they will be populated automatically during debugging.

(1) Click on the Debug icon (alternatively, use Run➥Debug)
to start debugging.

(2) After a short while the Debug view is populated, with among
others a “Neverlang Debug Target”. Click on the triangles to
unfold the “Neverlang Thread” and finally “src/mandelbrot.js,
line 60”.

(3) Click on “src/mandelbrot.js, line 60” to update the editor and
populate the Variables view. Note, that otherwise Step-
Into and Step-Over will not affect the editor and the
view!

(4) Use the Step-Into icon until you jumped into the mandelbrot
function (Line 20).

(5) Use Step-Over or Step-Into as you like to proceed with the
stepwise execution.

(6) Continue the execution by clicking on the Resume icon, which
halts the execution again on Line 22.

6
https://www.virtualbox.org/

7
https://adapt-lab.di.unimi.it/NeverlangIDE.ova

8
https://neverlang2.di.unimi.it

(7) To complete the execution simple right-click on breakpoints
(Line 22) and click on Toggle Breakpoint. Afterwards, click
on Resume to complete the execution. (Alternatively, you can
always click on Terminate to kill the current debug session.)

A complete execution will emit the computed mandelbrot set as
array and the required time on the Console view. A complete run
inside the debugger will take a long time.

A.3 Context-Aware Syntax Highlightin
To illustrate the context-aware syntax highlighting, five files of the
family of Java-based role-oriented programming languages have
been included; four of these are already open when Eclipse starts.
The file example.rolejava showcases context-aware syntax high-
lighting in action—i.e., it shows some language features from differ-
ent languages (selected through the LPL) living together with their
original syntax highlighting. Whereas the remaining *.rolejava

files feature each different role-based programming language, e.g.,
Rava, PowerJava, ObjectTeams, from which the language features
are selected. Because the NeverlangIDE is running inside a
VM and utilizes dynamic class loading, opening an editor
takes a long time.

As a usage scenario, we suggest you try copying role or team
definitions from the various role-based programming languages
into the combined example.rolejava file.

(1) Open the example.rolejava editor and browse through the
source code. Note that some keywords, e.g., class, are high-
lighted differently depending on their position.

(2) Open the rava.rolejava editor (be patient). Select the role
definition Checking (Lines 19–28) and copy it into Line 7
of the example.rolejava file. As a result, highlighting is
retained, i.e., the keywords of Rava are highlighted in green.

(3) Open the powerjava.rolejava editor (be patient). Select
the role definition CA at Line 8 and copy it into Line 18
of the example.rolejava file. Note that this definition can
only occur as innerclass, hence including it outside of the
Transaction team, would result in a syntax error (in turn,
disabling context-aware syntax highlighting).

(4) Open the other editors by clicking on »1 and selecting
the corresponding file. Try copying other roles, teams or
methods to the example.rolejava and explore the effects.

Be aware that once the program contains a syntax error, the
context-aware syntax highlighting falls back to the default
highlighting of Java. In that case use Undo to revert the file
to the original state.

If you accidentally close one of the files, they can be opened
through the Project Explorer. Just, open then "RoleJava" project
and go to the "src" folder. It contains all *.rolejava files, which
can be opened by double clicking on them (be patient).

A.4 More Information
Inside the virtual machine the folder Artefact/Languages/ con-
tains the two LPLs, there you can inspect the implementation,
whereas the Neverlang files are gathered in the nlg-src/ folder
and auxiliary Java classes in the src/ folder. More information on
Neverlang, its development and its use can be found on its website.8

https://www.virtualbox.org/
https://adapt-lab.di.unimi.it/NeverlangIDE.ova
https://www.virtualbox.org/
https://adapt-lab.di.unimi.it/NeverlangIDE.ova
https://neverlang2.di.unimi.it
http://neverlang.di.unimi.it/
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