Reflection and M eta-level Architectures:
State of the Art and Future Trends

Walter Cazzold, Shigeru Chibg and Thomas Ledodix

1 DISCO - Department of Informatics, Systems, and Communication,
University of Milano - Bicocca, Milano, Italy
cazzola@disco.unimib.it
2 Institute of Information Science and Electronics,
University of Tsukuba, Tsukuba, Japan
chiba@is.tsukuba.ac. jp
3 Deépartement Informatiqué&cole des Mines de Nantes, Nantes, France
Thomas.Ledoux@emn. fr

Abstract Previous workshops on reflection both in ECOOP and in OOPSLA
have pointed out the growing interest and importance of Reflection and Metalevel
Architectures in the fields of programming languages and systems (ECOOP’98,
OOPSLA98), software engineering (OOPSLA'99) and middleware (Middleware
2000).

Following these workshops but also the conference Reflection’99 held in Saint-
Malo (France), this workshop has provided an opportunity for researchers with
a broad range of interests in meta-level architectures and reflective techniques to
discuss recent developments in this field. It has also provided a good test-bed for
preparing them to submit their works to Reflection’01.

The workshop main goal is to encourage people to present works in progress.
These works could cover all the spectrum from theory to practice. To ensure
creativity, originality, and audience interests, participants have been selected by
the workshop organizers on the basis of 5-page position paper. We hope that the
workshop will help them to mature their idea and improve the quality of their
future publications based on the presented work.

Workshop Objectives

Over the last 15 years, Reflection and Metalevel Architectures have attracted the atten-
tion of researchers throughout computer science.

Reflective and meta-level techniques have now matured to the point where they are
being used to address real-world problems in such areas as: programming languages,
operating systems, databases, software engineering, distributed computing, middleware
expert systems and web-computing. For example, reflective features such as separation
of concerns and flexibility provide a “plug and play” environment for enabling the run-
time modification of policies in middleware.

The main goal of this workshop is to address the issues arising in the definition and
construction of reflective systems and to demonstrate their practical applications. To
enable lively and productive discussions, participants had to present a brief introduction
to their work in this area.

J. Malenfant, S. Moisan, A. Moreira (Eds.): ECOOP 2000 Workshops, LNCS 1964,[pd. 1-15, 2000.
(© Springer-Verlag Berlin Heidelberg 2000



2 Walter Cazzola, Shigeru Chiba, and Thomas Ledoux

Objective of this workshop is to favor a working dialogue between participants in
order to improve their current work and to prepare the third international conference on
Reflection and Metalevel Architectures (Reflection’01).

Workshop Topics and Structure

Presentations have been accepted on topics including, but not limited to, the following:

— Reflective features of object-oriented languages (C++, Java, Smalltalk, and so on)

— Practical experience with reflective programming

— Reflective system architecture (operating systems, middleware, embedded, mobile
computing, and so on)

— Reflective implementation of non-functional requirements (real-time, fault-tolerance
and security issues)

— Implementation techniques (open compilers, specializers, analysis, and so on)

— Reflective software engineering (adaptive software components, MOP, AOP, meta-
models, and so on)

The workshop has been organized in four sessions. Each session is characterized by
a dominant topic which describes the presented papers and the related discussions. The
four dominant topics aresoftware engineeringmeta-level architecturemiddleware
and program translation. During each session, half time has been devoted to papers
presentation, and the rest of the time has been devoted to debate about the on-going
works in the area, about the role of reflection and its trend relatively to the dominant
topic of the session. The discussion related to each session has been brilliantly lead
respectively by Gilad Bracha, Pierre Cointe, Takuo Watanabe, and Satoshi Matsuoka.

The workshop has been very lively, the debates very stimulating, and the high num-
ber of registered attendee from several countries (see appefdix A) testifies the growing
interest in reflection and its potentiality and applications.

Important References

To an occasional reader who would like to learn more about reflection and related topics,
we suggest to read the basic papers on the topic:

— Brian C. Smith. Reflection and Semantics in Lisp Pimceedings of ACM Sympo-
sium on Principles of Programming Languagpages 23-35, 1984.

— Pattie Maes. Concepts and Experiments in Computational Reflectiéiroteed-
ings of the 2nd OOPSLA’'8pages 147-156, October 1987.

and to consult the following books on the topic:

— Gregor Kiczales, Jim des Reies, and Daniel G. Bobrowhe Art of the Metaob-
ject Protocol MIT Press, Cambridge, Massachusetts, 1991.

— Chris Zimmerman, editorAdvances in Object-Oriented Metalevel Architectures
and Reflection. CRC Press, Inc., Boca Raton, Florida 33431, 1996.



Reflection and Meta-level Architectures: State of the Art and Future Trends 3

— Pierre Cointe, editor, Proceedings of the 2nd International Conference on Meta-
Level Architectures and Reflection (Reflection’99), Springer Verlag - LNCS 1616,
Saint-Malo, France, July 1999.

— Walter Cazzola, Robert J. Stroud, and Francesco Tisato, edReftection and
Software Engineerind NCS 1826. Springer, Heidelberg, Germany, June 2000.

Besides, to keep up to date with the reflection area evolution we can consult the pro-
ceedings of the late workshops and conferences on reflection, and the following pages:

— Reflection links:
http://computer.org/channels/ds/middleware/RMreflection.htm,

and
— Reflective midddleware links:

http://computer.org/channels/ds/middleware/RM.htm

which collect a lot of useful links related to reflection (in a general sense), and applied
to middlewares.

Beyond to present statistical information about the workshop and general informa-
tion about the current state of art of the research in the reflection area, this report gathers
together the opinions of the session chairs relatively to the session they lead, and the
opinions of the workshop organizers about the overall workshop and the results the
workshop achieved with respect to the initial objectives.

1 Workshop Overview: Session by Session

Session on Software Engineering:
Summary by Gilad Bracha (Session Chair, Sun Java Software)

Two talks were given in this session:

[7] Using Reflective Features to Support Mobile Us®emnia Marangozova and Fabi-
enne Boye(INRIA, France)

Vania Marangozova gave the talk.

Towards a Reflective Component Based Middleware ArchiteciNilos Parla-
vantzas, Geoff Coulson, Mike Clarke, and Gordon Blgiancaster University,
United Kingdom)

Nikos Parlavantzas gave the talk.

[7] described a application that used an extension of Java with the ability to dynam-
ically adapt objects behavior. Both Jacques Malenfant and | commented that the paper
did not (but absolutely should) refer to the concept of delegation, which was clearly
related to the language extension used.



4 Walter Cazzola, Shigeru Chiba, and Thomas Ledoux

[9] Described a middleware architecture based on OpenCOM, a COM extension.
The middleware so constructed supports reflection and is itself constructed out of com-
ponents.

Inthe discussion, | (Gilad Bracha) played devil's advocate. | challenged everyone to
argue for the pragmatic value of the more advanced uses of reflection that researchers
have proposed in recent years. Is there, for example, a “killer application” for their
approach. After all, the basic reflective techniques of querying an object for its class
and methods, fields etcetera have been used for at least 20 years. So has the capacity
to reflectively modify a program by changing methods, object schemas etcetera. These
capabilities are showing up in industry now and have clear value. Are more exotic uses
simply past the point of diminishing returns?

For example, how valuable is the ability to trap calls to specific objects (in languages
that do not naturally support this)? And if this is valuable, is reflection the correct way
to support it? In languages that support delegation one can easily do this dynamically.

Various participants responded with comments on the value of malleability in gen-
eral. In particular, Bbio Costa argued that the more “exotic uses” are those related to
behavioural reflection, i.e., the ability to do reflection (inspection and intercession) into
the underlying mechanisms used to carry out method calls, message handling, and so
on. Such mechanisms normally refer to the non-functional properties associated with
the method execution. By allowing the manipulation of non-functional properties us-
ing a reflective meta-interface, we achieve a degree of separation of concerns which is
highly desirable.

There are, however, alternative ways of achieving this same goal, such as AOP, but
reflection gives the ability to handle these issues in a dynamic way (especially, if they
are not known a priori).

My response was that while this is true, we must be able to show massive (order-of-
magnitude) benefits in order to displace an established (or well marketed) technology.
We have repeatedly seen that being twice as good is not nearly good enough. If leading
edge work requires a significantly different model than current practice, it can only have
an impact if benefits are overwhelmingly compelling.

The discussion of this matter was interleaved with a related point, which | also
posited rather provocatively. Are people stretching the definition of reflection too broad-
ly?

Some of the examples given in the papers seemed to be just good object-oriented
engineering, and had little to do with reflection as | saw it. For example, is delega-
tion inherently a reflective mechanism? | would say no, but it is not clear if there is
universal agreement. After alll[7] is a paper on using reflection that presents a Java lan-
guage extension closely related to delegation. If so, we can take this further and ask:
are higher-order functions inherently reflective? If they are, so is any object oriented
program.



Reflection and Meta-level Architectures: State of the Art and Future Trends 5

As another simple example, the fact that a machine can report on its status is indeed
reflective, but is nothing new. In particular, while the machine is reflective, the program
that reports on, say, the status of the hardware is not reflective at all.

Many in the audience felt that my view of reflection was too narrow, and that reflec-
tion should be thought of as an a pattern, a way to structure a software system in order
to achieve dynamic adaptability and separation of concerns. Good object-oriented en-
gineering is a means to build a reflective system, but this does not make it less reflective.

One hopes that the controversy helped sharpen the arguments in favor of reflection,
and might contribute to a widely agreed upon definition of reflection.

Session on Meta-level Architecture:
Summary by Pierre Cointe (Session Chair, Ecole des Mines de Nantes)

Four talks has been given in this session. Most of them (the first three) addressed the
issue of introducing reflective facilities in Java in order to deal with mobility and/or
security.

[12] A Reflective Framework for Reliable Mobile Agent Systems.
Takuo Watanabe, Amano Noriki and Kenji ShindAIST, Ishikawa, Japan)

Takuo Watanabe gave the talk.

[10] Iguana/J: Towards a Dynamic and Efficient Reflective Architecturédua.
Barry Redmond and Vinny Cah{lTrinity College, Dublin, Ireland)

Barry Redmond gave the talk.

[11] Security and Meta Programming ffava. Julien Vays@re (INRIA-CNRS-I3S,
Nice, France)

[1] Reflective Actors for Mobile Agents Programminggan-Paul Arcangeli, Laeti-
tia Bray, Annie Marcoux, Christine Maurel and &geric Migeon(Universig Paul
Sabatier, Toulouse, France)

Frédéric Migeon gave the talk.

[12] described the implementation oflava experimental framework to model mo-
bile agents (and in the spirit of Lead++ providing dynamic adaptability). Reflection and
AOP are used to separate non-functional features from the rest of the application. Mo-
bility is considered as an aspect and every object has its own meta-object. One purely
syntactical question was about the difference between a reflective framework (as used
in the title of the paper) and a MOP.

[10] described the current work of implementing Iguanalava. A first imple-
mentation of Iguana has been donedvt and this current research explores issues in
implementing Iguana for an interpreted language. The runtime intercession mechanism
will be realized by providing a native code library which extends the virtual machine.



6 Walter Cazzola, Shigeru Chiba, and Thomas Ledoux

[11] discussed the match betweéava security architecture and Java meta-pro-
gramming facilities. First, Vayssie provided a very interesting survey abdava
MOPs including OpenJava, Dalang/Kava, JavaAssist, MetaXa, Guarana and ProAc-
tive (but not Iguana!). This survey was based on the compile/load/run-time separations.
Then Vayssre discussed how to protetava security policies from reflection and,
how to uselava MOPs to implement new security policies.

[1] discussed how to use actors (according to Heitha definition) to program
mobile agents and to provide a good paradigm to deal with mobility. Reflective archi-
tecture has also been introduced to separate functional aspects from operational ones.

Due to the number of talks and the to lack of time, there were only few questions.
Most of them were about looking for dgva) killer architecture dealing with security
and mobility.

Session on Middleware: Session Chair Takuo Watanabe JAI ST, Japan.
Summary by Walter Cazzola and Shigeru Chiba

A lot of position papers has been submitted related to this topic, but only three signifi-
cant papers has been selected for presentation:

[3] Reflective Implementation of non-functional Properties with the JavaPod Compo-
nent PlatformEric Bruneton, and Michel Rivei(lNRIA, France)

Eric Bruneton gave the talk.

This work is focused on the separation and composition of functional and nonfunc-
tional properties in a distributed framework. Issues left open from this talk are related
to the role of reflection in their work, properties composition is achieved through a
complex form of delegation.

[4] The Role of Meta-Information Management in Reflective MiddlewBédio Costa,
and Gordon S. Blai{Lancaster University, United Kingdom)

Fabio Costa gave the talk.

He presented the use of reflection for exposing various aspects of middleware con-
figuration. Their architecture is based on a multi-model reflection framework originally
developed by Okamura et al for the AL-1/D language. They identified four meta-models
in their ORB system and designed reflective interface for those models. They also dis-
cussed the integration of their reflective features with the meta-object facility, which is
part of the CORBA standard.

Using Reflection for Composable Message Semanteskus Hof (Johannes Ke-
pler University Linz, Austria)

Hof in his work has described how render remote invocations first class citizens,
going a step further towards full polymorphism: the invocation of the same method can
have different semantics on two objects of the same class.



Reflection and Meta-level Architectures: State of the Art and Future Trends 7

During the discussion time, questions and comments from the floor were focused
on whether reflection is the unique approach to the applications presented by the speak-
ers. Some radical comments were that the technique used by JavaPod is not reflection
but delegation and that the architecture used by Hof’s system is traditional message
filtering. These comments are not really true because their systems providenstane
information, which is not available at the base level. However, the speakers’ responses
did not seem strong enough to convince people, especially from the outside of the re-
flection community, of the usefulness of reflection in the middleware domain.

Session on Program Transfor mation:
Summary by Satoshi Matsuoka (Session Chair, Tokyo | nstitute of Technology)

There were three papers in the session, all relevant to user-induced program transfor-
mation, or in a more ‘reflective’ terminology “compile-time reflection”.

[2] Declarative Meta-Programming for a Language Extensibility Mechanisiman
Brichau(Vrije Universiteit Brussel, Belgium).

This paper basically proposes to utilize declarative programming techniques for pro-
gram transformatiolcompile-time reflection. More specifically, prolog-like predicates

are utilized to program the program transformation over a parse tree in a declarative
manner. Although the idea of using declarative programming for program transforma-
tion is not new, its application to compile-time reflection, in particular to provide easy-
to-use and possibly composable transformation, sheds some technical interest. Here are
some of the technical points of interest for the péaék:

— Pro: Declarative specification of program transformers instead of procedural com-
pile-time MOP is good.

— Question: Difference with traditional proldggic meta-programming? Other com-
pile-time reflective systems that also facilitate parse-tree transformation? Are the
abstractions too low level? What about conflicting transformations? How about
some traditional analysis? Do you want a different metalanguage or the same, since
when this system is applied @+ or Java it is really not ‘reflective’ in a true sense,
since one will be using different languages.

[8] Jasper: Type Safe Compile-Time Reflection Language Extensions and MOP Based
Templates fodava. Dmitry NizhegorodoyOracle Corporation, USA)

Jasper is essentially an attempt to introduce the sophistication of modern Lisp-style
macros intaJava, in a reflective manner (so that macros can be programmiayaas

well.) It has had some history of real industrial application at Oracle, and as such it has
an extensive layered architecture, which also distinguishes itself from preldvas
compile-time reflective systems such@penJava. It also introduces type-safe tem-
plate mechanism intdava, with the ability to control the expansion in a sophisticated
manner. Here are some of the technical points of interest for the |pelRer



8 Walter Cazzola, Shigeru Chiba, and Thomas Ledoux

— Pros: Layered architecture providing different levels of meta-programming abstrac-
tions, well organized. Good ideas from Lisp Macros

— Question: User experience—what layer would users like to use the most? Relation-
ship with othetJava reflective systems? What about the macro processing speed?

On the Lightweight and Selective Introduction of Reflective Capabilities in Appli-
cations.Reémi Douence, and Marioilolt (Ecole des Mines de Nantes, France)

Rémi Douence gave the talk.

The final paper does not really focus on allowing user-defined program transforma-
tions, but rather on introducing reflective ‘hooks’ into existifaya code for computa-
tional reflection via program transformation. While this can be done rather straightfor-
wardly and potentially useful, there are some potential technical problems as described
below:

— Pro: Selective reification is lightweight.

— Question: Difference between previous systems, that have performed “selective
reification” in the past, such as ABCL/2, and in particular Okamura & Ishikawa’s
AL-1 and AL-1/D? Is this not too straightforward, potentially introducing over-
head? Will this destroy the basic class abstraction & encapsulation (e.g. field ac-
cess) such that we lose separate compilation, etc.?

In the discussions period, one of the main issues was in line with what had been
raised in Gil Bracha's session—what kind of real-life impact each system will have,
in terms of their advantages over existing solutions|anprevious reflective systems.
In this respect Jasper holds advantages over the other two systems, since it is already
applied to a real product and the others are still quite experimental. As such many
guestions focused on how Jasper is being used in a real setting, and it was presented
that Jasper templates and macros are used heavily as is with trad@ioriamplates
or Lisp macros. Thus, the utility question was answered in a very positive fashion,
but as to what style of compile-time meta-programming would be considered ideal or
advantageous remained an open question.

2 Réflection Trends: The Organizers Opinion

Summary by Shigeru Chiba (University of Tsukuba)

In this summary, | would like to describe some issues that | thought were interesting
during the workshop.

Middleware

Reflection is an active research issue in the middleware field. This workshop received a
number of paper submissions from this field.



Reflection and Meta-level Architectures: State of the Art and Future Trends 9

During this workshop, | was wondering what reflection means in the middleware
field. In the language field, reflection means the ability to query an object for its class,
methods, fields, and so on (introspection), and to modify a program by changing meth-
ods and class definitions (program transformation). This ability, which allows us to ac-
cess non 1st-class language constructs (Jacques Malenfant reminded us of this classic
definition. Although many participants did not seem to like this definition, | think this
is the clearest definition at least in the language field), has clear value even in industry.

One of the issues confusing me was differences between reflective middleware and
modular middleware. Here, modularity means that middleware components can be re-
placed on demand and connected to other components for extension. Is reflection a
technique for building modular middleware? | think the answer should be yes but | do
not think that the middleware papers in this workshop presented a reflective technique
for implementing modular middleware. Rather, they seemed to use “reflection” just as
an alias of the word “modularity.” Many techniques presented in those papers were
categorized into traditional delegation and filter.

| thought that the classic definition in the language field could be also useful in
the middleware field. If we find non 1st-class data that we want to access at runtime,
we could develop something other than delegation and filter in the middleware field.
Remember that even transparent method interception, which is a typical reflective tech-
nique, reifies non 1st-class data such as parameter types (marshadibig) Jo'sta’s
presentation’[4] gave us another hint. He mentioned the use of reflection for managing
type repository, which is a non 1st-class data structure. Version management based on
interface types might be a good application of reflection in the middleware field.

According to Jacques Malenfant's comment, reflection is usefulufreaxpecteex-
tension is needed in future. Is surveying the history of middleware helpful for reflection
research?

Security

Julien Vaysste's presentation “Security and Meta Programming in J&va” [11] was
good survey. He rose two distinct issues: (1) how we protect systems from reflective
computation, and (2) how reflection can be used for protecting systems. The former
issue is relatively classic and well known but the latter issue is still open.

As for the former issue, he mentioned that existing reflective Java systems, such as
OpenJava, Kava, and MetaXa, can potentially cause security problems. | agree to this
argument since, in principle, reflection is a technique for accessing protected internal
data structures. However, | do not think that those security problems arepesdilgms
in practice since the reflective capability is provided for only secure programs, such as
a configuration program written by the users. Malicious programs cannot use the reflec-
tive capability. Reflective computation can cause a security problem only if malicious
programs break the protection mechanism and use the reflective capability. We should
rather discuss how to prevent malicious programs from using the reflective capability.

For protecting systems from security flaws caused by programmers’ mistakes, load-
time reflection is a reasonable trade-off point in Java. It is more adaptable than compile-
time reflection since it is executed later. On the other hand, it is more secure than run-
time reflection using a customized JVM since it can exploit a bytecode verifier. Even if



10 Walter Cazzola, Shigeru Chiba, and Thomas Ledoux

the result of reflective computation is an invalid program, the bytecode verifier denies
loading it into the virtual machine. However, some applications need runtime reflection.
They need program transformation not at the bytecode level but at the assembly level
and thus they need the reflective capability to customize the virtual machine at runtime.
The best reflective architecture depends on applications.

The latter issue raised by Julien Vays® was more interesting. Although he did
not talk much about this issue, | think that using reflection for protection mechanisms
can be significant applications of reflection. Security seems an orthogonal aspect of
program against application logic. Reflection would be a good tool for describing a
complex security policy.

Existing applications in the security field are not recognized as killer applications
of reflection. For example, as Julien Vayss pointed out, a metaobject intercepting
method invocations is known as a good platform for implementing an access control list
(ACL) but that is not a killer application. Why? Probably, the reason is that it does not
solve any problem. Although it seems good from the viewpoint of software architecture,
it does not provide a faster ACL implementation than traditional ones or make it easier
for the users to write a security policy. It does not verify that the security policy includes
no security hole. Furthermore, I'm not sure that it is a good architecture even from the
implementation viewpoint.

Program Translation

Dmitry Nizhegorodov was a contributor from industry. His presentation “Jasper: Type-
Safe MOP-Based Language Extensions and Reflective Template Processing inlJava” [8]
was about a reflective programming tdalsper which he is using for developing real
products.

Reflective (i.e. programmable) program translators such as Jasper are obviously
useful in practice. However, | was wondering that it is really feasible to use such a
language-extension tool (without commercial supports) for software development by
a large number of engineers. A program written in an extended language is difficult
to read for team members who do not know the extensions. Like the excessive use of
macros, the excessive use of language extensions is a negative factor of team collabo-
ration.

In the discussion, | asked him this question. His answer was clear; he used Jasper for
writing his code but he never shared the source code of Jasper with his team members.
He said that he shared only the code produced by Jasper with his team members. Since
the final stage of Jasper is a pretty printer, his team members can see only a formatted
program written in the regular Java language.

Although Jasper is an extended Java compiler, his way of using Jasper reminds me
of Emacs commands, which automate typical processes of text editing and assist us
to write a program. The commands are used only during writing a program and the
resulting program does not include any commands as the output of Jasper does not
include any syntax extensions. The commands can be personalized; team members do
not have to use the same set of Emacs commands. Syntax extensions by Jasper are
similar to Emacs commands. Sharing complex syntax extensions among team members
is not realistic if the team size is big, but personally using those extensions should



Reflection and Meta-level Architectures: State of the Art and Future Trends 11

be acceptable. | thought that Jasper showed one of the ways of promoting the use of
reflective program translators in industry.

Summary by Walter Cazzola (University of Milano Bicocca)

In this summary, | would like to try weighing up what has been emerged from the
workshop debates and focusing our attention on what | consider will be the future trends
for research in object-oriented reflection.

Software Engineering

Reflection, thanks to its features, suchseparation of concerng@ndtransparencyis
commonly recognized as a valuable instrument for developing, extending, and main-
taining software.

Structuring software in mostly independent layers which will be successively com-
bined together with little coding efforts, encourages developers to either develop dif-
ferent aspects of the application in different moments or entrust the development of a
specific aspect to a different team. Such an approach improves:

— software reuse, — because to combine and to adapt existing modulé hith
new applications, it is simpler than using modularity,

— software stability, — the development of critical software’s aspects may be en-
trusted to specialized teams or easily retrieved from well-known and tested library,
and

— software maintenance, — each aspect of the system is realized by a close (i.e.,
without, or with very little, dependencies with other subsystems) subsystem, whose
code is more compact than the code of the whole system.

Thanks to transparency it is also possible to reuse black box components.

Thus, reflection, if well applied, helps to overcome typical problems related to soft-
ware component integration, which hinder the spreading of software reuse. A lot of
work has already been done to define reflective languages and reflective tools for cod-
ing reflective systems. Unfortunately, very little has been done to define, or to extend,
a methodology analogous to UML which helps in integrating reflective concepts since
the software development early stages.

| think that reflection’s future trends involve to shift up its concepts from the lin-
guistic level to a methodological level, as it has already happened for object-oriented
technology. To testify such a need there is the growing interest from people coming
from software engineering field in reflection which has lead to some attempts (e.g.,
Suzuki and Yamamoto, Extending UML for Modeling Reflective Software Compo-
nents<UML’ 99>) of modeling reflection in UML.

Functional and Nonfunctional Requirements

A typical open issue, related to consider reflection as a methodology and not simply
as a development tool, is represented by the meanitfignetionaland nonfunctional
features



12 Walter Cazzola, Shigeru Chiba, and Thomas Ledoux

A basic criterion used to layerize an application consists in determining which fea-
tures are not functional to the application requirements. Unfortunately a universal def-
inition or a recognized taxonomy about what is or is not a functional feature doesn't
exist. A formal definition of functional or nonfunctional feature would help in estab-
lishing what can be realized in the meta-level and would encourage to build libraries of
meta-level entities up.

Some interesting ideas have been proposed by the Bruneton, and Riveill's Work [3].
But they only consider how to implement nonfunctional features, without giving an
algorithm to determine what is or not is (or they consider to be) functional to the appli-
cation.

In my personal opinion the border between functional and nonfunctional features
cannot be defined, because it depends on the application, i.e., what we consider non-
functional for an application, can be considered functional to another. One idea to face
this problem could be to outline a group of properties describing the concept of func-
tional feature, and through such properties, to determine whether a feature is or is not
functional, application by application.

At the workshop, few works considered these issues, and proposed some solutions.
In his work, Emiliano Tramontana, who unfortunately shouldn’t attend the workshop,
has considered software’s evolution and maintenance through reflective techniques.

Summary by Thomas L edoux (Ecole des Mines de Nantes)

Reflection: How and Why?

How? According to Gilad Bracha and Shigeru Chiba, a few papers submitted to the
workshop had little to do with reflection. Rather than using purely reflective techniques,
they used mechanisms such as delegation or message filtering. Then, they provided
good modularity but they did not deal with 1st class constructs.

However, | want to be positive because some presentations gave a good idea of what
is a reflective system (s€€l[4]10,12]). For example, the Iguana/J architecture is a promis-
ing approach [10]. It deals with selective reification of behavior, run-time reflection and
run-time efficiency.

Now, theJava language and/or the middleware domain are a common denominator
between several works in the reflection area. We can bet that technical and architectural
issues will progress in the next years.

Why? During the workshop, a recurrent question was “what is the killer application of
reflection?”. Gilad Bracha challenged everyone to argue for the pragmatic value of the
most advanced uses of reflection that researchers have proposed in recent years. What
are the real interests of reflection?

First, for SUN (cf.Java Reflection API) and lots of peopl&trospectionhas now
clear value. Any interesting system has to query information on itself.

Then, flexibity andadaptabilityare other benefits provided by reflection. Recent
work and workshop presentations (se&1[7,9]) showed these advantages in the middle-
ware domain. Why should middleware be reflective? Because reflection makes system



Reflection and Meta-level Architectures: State of the Art and Future Trends 13

more adaptable to its environment and better able to cope with change. In a middle-
ware context, the need to cope with change particularly arises when middleware based
applications are deployed in dynamic environments such as multimedia, group com-
munication, real-time and mobile computing environments (cf. the recent workshop on
Reflective Middleware).

Finally, reflection allowsseparation of concernshich is highly desirable to build
open systems (cf. summary by Walter Cazzola). Integrating definitions of functional
and non-functional properties via reflective concepts at the design level is a new and
an interesting issue. An example of need of separation of concerns is the industrial
components model EJB. An EJB container deals with code weaving of functional and
non-functional properties. Thus, the needs of separation of concerns are crucial and
reflection, if well applied, helps to structure a software system.

In short, reflection has many good features. According to Gilad Bracha, reflective
community has to prove the usefulness of reflection by demonstrating it as the best way
to reduce time-to-market.

Composition of Concerns

One remaining main open issue is the composition of concerns. Distinguishing different
abstraction levels, reflection helps separation of concerns. Some presentations empha-
sized the separation of functional and non-functional properties((s€le [3,6,12]). Such an
approach improves reusability and provides a “plug and play” environment for enabling
adaptability.

However, separation is a good idea if we can compose the separated concerns to-
gether!

In compile-time reflection, the composition of functional and non-functional prop-
erties is materialized by transformation rules and is based on a kind of join points (like-
wise in the AOP approach). In run-time reflection, this composition is materialized,
in general, by trap calls. So, the composition between functional and non-functional
properties owns a clear semantic.

However, the composition of several non-functional properties has to be studied
more in deep. How to combine different non-functional properties in a clean way by
keeping the original semantic of each property? The order of composition can have
a serious impact on the result. For example, the composition of the concern “encod-
ing” with the concern “tracing” supposes a special order. Interferences between non-
functional properties lead to unexpected (meta)-behavior and discredit the advantages
provided by the separation of concerns.

This problem was not mentioned at the workshop. At the design I&Vel, [6] suggests
a composition model with the Strategy and Decorator design patterns. At the imple-
mentation level,[[3] proposes a minimal composition model which should be clarified
in the future. Researchers in the reflection area should be inspired by work on other
fields such as mixin-based inheritance or AOP.



14 Walter Cazzola, Shigeru Chiba, and Thomas Ledoux

3 Final Remarks

This workshop main goal was to encourage people to present works in progress in the

area of reflection and meta-level architectures. The workshop was lively and the debates

were very stimulating. We hope that the workshop has helped researchers to mature

their idea and we encourage the accepted papers to be submitted to the conference
Reflection’01 http://www.openjit.org/reflection2001).

Acknowledgements. We wish to thank Gilad Bracha, Pierre Cointe, Satoshi Matsuoka,
and Takuo Watanabe both for their interest in the workshop, and for their help during
the workshop and in writing part of this report. We wish also to thank all researchers
which participated to the workshop.

A Workshop Attendee

Lastname Firstname|Company & Country e-mail

Amano Noriki JAIST, Japan n-amano@jaist.ac.jp

Arcier Borice ESSI/INRIA, France arcier@essi.fr

Blay Mireille ESSI, France blay@essi.fr

Bracha Gilad Sun Microsystems, USA gilad.bracha@eng.sun.com
Brichau Johan Vrije Universiteit Brussel (VUB), Belgiurfjohan.brichau@vub.ac.be
Briot Jean-PierrfLaboratoire d'Informatique P6, France |jean-pierre.briot@Iip6.fr
Bruneton Eric INRIA - Projet Sirac, France eric.bruneton@inrialpes.fr
Cazzola Walter University of Milano Bicocca, Italy cazzola@disi.unige.it
Charra Olivier INRIA - Projet Sirac, France olivier.charra@inrialpes.fr
Chiba Shigeru |University of Tsukuba, Japan chiba@is.tsukuba.ac.jp
Chignoli Robert I13S - CNRS - UNSA, France chignoli@i3s.unice.fr

Clark Tony University of Bradford, United Kingdom [a.n.clark@scm.brad.ac.uk
Cointe Pierre Ecole des Mines de Nantes, France cointe@emn.fr

Costa Moreirg Fabio Lancaster University, United Kingdom |fmc@comp.lancs.ac.uk
Crescenzo |Pierre I3S - CNRS - UNSA, France pierre.crescenzo@unice.fr
Douence Rémi Ecole des Mines de Nantes, France douence@emn.fr
Ducournau |Roland LIRMM-Université Montpellier Il, Francg ducour@lirmm.fr

Forax Rémi Universig de Marne la Vallee, France |forax@univ-miv.fr

Hof Markus  |University of Linz, Austria hof@ssw.uni-linz.ac.at
Istenes Zoltan E6tvds University Budapest, Hungary |istenes@inf.elte.hu

Lacite Guillaume |Laboratoire d’'Informatique P6, France |guillaume.lacote@poleia.lip6.fr
Ledoux Thomas |Ecole des Mines de Nantes, France thomas.ledoux@emn.fr
Malanfant Jacques |Universié de Bretagne Sud, France jacques.malenfant@univ-ubs.fr
Marangozova|Vania INRIA - Projet Sirac, France vania.marangozova@imag.fr

Maruyama  |Fuyuhiko |Tokyo Institute of Technology, Japan |fuyuhiko.maruyama@is.titech.ac}jp
Matsuoka Satoshi | Tokyo Institute of Technology, Japan |matsu@is.titech.ac.jp

Michiels Isabel Vrije Universiteit Brussel (VUB), Belgiurfisabel.michiels@vub.ac.be
Migeon Frédéric  |IRIT - UPS, France frederic.migeon@irit.fr

Moisan Sabine INRIA Sophia-Antipolis, France sabine.moisan@sophia.inria.fr
Nacsa-Szab” |Rozilia  |E6tvds University Budapest, Hungary |nacsa@inf.elte.hu
Nizhegorodov|Dmitry Oracle Corp, USA dnizhego@us.oracle.com
Ogawa Hirotaka |Tokyo Institute of Technology, Japan |ogawa@is.titech.ac.jp
Parlavantzas |Nikos Lancaster University, United Kingdom |n.parlavantzas@lancaster.ac.uk
Peschanski |Frédéric |Laboratoire d’Informatique P6, France |frederic.peschanski@poleia.lip6.fr
Pic Marc CEA, France marc.pic@cea.fr

Redmond Barry Trinity College Dublin, Ireland barry.redmond@cs.tcd.ie
Rozenfarb Dan University of Buenos Aires, Argentina [drozenfa@dc.uba.ar

Sohda Yukihiko |Tokyo Institute of Technology, Japan |sohda@is.titech.ac.jp

Stoops Luk Vrije Universiteit Brussel (VUB), Belgiurfistoops@vub.ac.be

Tajes MartinezLourdes |University of Oviedo, Spain tajes@correo.uniovi.es

Tourwé Tom Vrije Universiteit Brussel (VUB), Belgiuritom.tourwe@vub.ac.be
Vayssgre Julien INRIA Sophia-Antipolis, France julien.vayssiere@sophia.inria.fr
Watanabe Takuo JAIST, Japan takuo@acm.org

Welch lan University of Newcastle upon Tyne, UK |i.s.welch@ncl.ac.uk

Wileden Jack University of Massachusetts, USA jack@cs.umass.edu




Reflection and Meta-level Architectures: State of the Art and Future Trends 15

References

1. Jean-Paul Arcangeli, Laetitia Bray, Annie Marcoux, Christine Maurel, aadAc’ Migeon.
Reflective Actors for Mobile Agents Programming. In Walter Cazzola, Shigeru Chiba, and
Thomas Ledoux, editor@n-Line Proceedings of ECOOP’2000 Workshop on Reflection and
Metalevel Architectureslune 2000. Available &tttp://www.disi.unige.it/RMA2000.

2. Johan Brichau. Declarative Meta-Programming for a Language Extensibility Mechanism.
In Walter Cazzola, Shigeru Chiba, and Thomas Ledoux, edi@nslLine Proceedings of
ECOOP’2000 Workshop on Reflection and Metalevel Architectdrese 2000. Available at
http://www.disi.unige.it/RMA2000.

3. Eric Bruneton and Michel Riveill. Reflective Implementation of non-functional Properties
with the JavaPod Component Platform. In Walter Cazzola, Shigeru Chiba, and Thomas
Ledoux, editorsOn-Line Proceedings of ECOOP’2000 Workshop on Reflection and Met-
alevel ArchitecturesJune 2000. Available afttp://www.disi.unige.it/RMA2000.

4. Fabio Costa and Gordon S. Blair. The Role of Meta-Information Management in Reflective
Middleware. In Walter Cazzola, Shigeru Chiba, and Thomas Ledoux, eddorgjne Pro-
ceedings of ECOOP’2000 Workshop on Reflection and Metalevel Architeciures 2000.
Available athttp://www.disi.unige.it/RMA2000.

5. Rémi Douence and Mariousiolt. On the Lightweight and Selective Introduction of Reflec-
tive Capabilities in Applications. In Walter Cazzola, Shigeru Chiba, and Thomas Ledoux,
editors,On-Line Proceedings of ECOOP’2000 Workshop on Reflection and Metalevel Archi-
tectures June 2000. Available atttp://www.disi.unige.it/RMA2000.

6. Markus A. Hof. Using Reflection for Composable Message Semantics. In Wal-
ter Cazzola, Shigeru Chiba, and Thomas Ledoux, edit@ws;Line Proceedings of
ECOOP’2000 Workshop on Reflection and Metalevel Architectu@se 2000. Available
athttp://www.disi.unige.it/RMA2000.

7. Vania Marangozova and Fabienne Boyer. Using Reflective Features to Support Mobile Users.
In Walter Cazzola, Shigeru Chiba, and Thomas Ledoux, edi@nsl.ine Proceedings of
ECOOP’2000 Workshop on Reflection and Metalevel Architectdrese 2000. Available at
http://www.disi.unige.it/RMA2000.

8. Dmitry Nizhegorodov. Jasper: Type Safe Compile-Time Reflection Language Extensions
and MOP Based Templates for Java. In Walter Cazzola, Shigeru Chiba, and Thomas Ledoux,
editors,On-Line Proceedings of ECOOP’2000 Workshop on Reflection and Metalevel Archi-
tectures June 2000. Available atttp://www.disi.unige.it/RMA2000.

9. Nikos Parlavantzas, Geoff Coulson, Mike Clarke, and Gordon Blair. Towards a Reflective
Component Based Middleware Architecture. In Walter Cazzola, Shigeru Chiba, and Thomas
Ledoux, editorsOn-Line Proceedings of ECOOP’2000 Workshop on Reflection and Met-
alevel ArchitecturesJune 2000. Available afttp://www.disi.unige.it/RMA2000.

10. Barry Redmond and Vinny Cahill. Iguana/J: Towards a Dynamic and Efficient Reflective Ar-
chitecture for Java. In Walter Cazzola, Shigeru Chiba, and Thomas Ledoux, eQiteksne
Proceedings of ECOOP’2000 Workshop on Reflection and Metalevel Architeciumes
2000. Available ahttp://www.disi.unige.it/RMA2000.

11. Julien Vayssife.  Security and Meta Programming in Java. In Walter Cazzola,
Shigeru Chiba, and Thomas Ledoux, edito@®n-Line Proceedings of ECOOP’2000
Workshop on Reflection and Metalevel Architecturdsine 2000. Available at
http://www.disi.unige.it/RMA2000.

12. Takuo Watanabe, Amano Noriki, and Kenji Shinbori. A Reflective Framework for Reliable
Mobile Agent Systems. In Walter Cazzola, Shigeru Chiba, and Thomas Ledoux, editors,
On-Line Proceedings of ECOOP’2000 Workshop on Reflection and Metalevel Architectures
June 2000. Available aittp://www.disi.unige.it/RMA2000.



	Reflection and Meta-level Architectures: State of the Art and Future Trends
	Workshop Objectives
	Workshop Topics and Structure
	Important References

	Workshop Overview: Session by Session
	Session on Software Engineering: Summary by Gilad Bracha (Session Chair, Sun Java Software)
	Session on Meta-level Architecture: Summary by Pierre Cointe (Session Chair, `Ecole des Mines de Nantes)
	Session on Middleware: Session Chair Takuo Watanabe JAIST, Japan.Summary by Walter Cazzola and Shigeru Chiba
	Session on Program Transformation: Summary by Satoshi Matsuoka (Session Chair, Tokyo Institute of Technology)

	Reflection Trends: The Organizers' Opinion
	Summary by Shigeru Chiba (University of Tsukuba)
	Middleware
	Security
	Program Translation

	Summary by Walter Cazzola (University of Milano Bicocca)
	Software Engineering
	Functional and Nonfunctional Requirements

	Summary by Thomas Ledoux (´Ecole desMines de Nantes)
	Reflection: How and Why?
	Composition of Concerns


	Final Remarks
	Acknowledgements.
	Workshop Attendee
	References


