
Antonio Cisternino, Walter Cazzola, and Diego Colombo. Metadata-Driven Library Design. In
Proceedings of Library-Centric Software Design Workshop (LCSD’05), San Diego, CA,
USA, October 2005.

Metadata-Driven Library Design

Antonio Cisternino1, Walter Cazzola2, and Diego Colombo3

1 Dipartimento di Informatica, Università di Pisa,
L.go Bruno Pontecorvo 3, I-56127 Pisa, Italy,

cisterni@di.unipi.it
2 Department of Informatics and Communication,

Università degli Studi di Milano,
Via Comelico 39/41, Milano, Italy.

cazzola@dico.unimi.it
3 IMT - Institutions, Markets, Technologies

Lucca Institute for Advanced Studies
Via San Micheletto, 3

55100 Lucca, Italy

Abstract. Library development has greatly benefited by the wide adoption of
virtual machines like Java and Microsoft .NET. Reflection services and first class
dynamic loading have contributed to this trend. Microsoft introduced the notion
of custom annotation, which is a way for the programmer to define custom meta-
data stored along reflection meta-data within the executable file. Recently also
Java has introduced an equivalent notion into the virtual machine. Custom anno-
tations allow the programmer to give hints to libraries about his intention without
having to introduce semantics dependencies within the program; on the other
hand these annotations are read at run-time introducing a certain amount of over-
head. The aim of this paper is to investigate the impact of this new feature on
library design, focusing both on expressivity and performance issues.

1 Introduction

Reflection and dynamic loading are becoming essential elements of modern programs.
Their usefulness is testified, for example, by the JDBC architecture that shows how to
implement a driver based architecture exploiting the Java dynamic loading.

Although reflection can be used to inspect the structure of types, to access fields
and even to invoke methods dynamically, the concept of tagging has been anticipated as
an interesting application. Consider for instance the Java serialization architecture: the
programmer can declare the instances of a serializable class simply by implementing the
Serializable interface, which in fact is an empty interface. Thus two types that differ
only for the implementation of the Serializable interface are indistinguishable from
the execution standpoint. Besides, the serialization of the instances of non-serializable
types will not be allowed by the serialization support. Java serialization taught us that
the meta-data stored with the code can be used for other purposes than mere execution.
Other programs may rely on the reflective abilities of inspecting the compiled types and
act differently depending on what they have found.



Although widely used by Java programs, the idea of providing explicit meta-data
support for annotation has been introduced by Microsoft in the Common Language
Runtime (CLR). The virtual execution environment is part of the CLI standard [Mil03]
[ECM]. More recently also Java introduced annotations as a mean of storing custom
data inside Java classes [Java]. There are also proposals to add extensible reflection to
C++ language [AC02].

Custom annotations have shown to be useful because they provide a channel that
library-users and library-developers may use to communicate. A library may require
that the user puts annotations on top of classes and methods in order to instruct the
library on how to use it.

Unfortunately the availability of this new mechanism increases the number of pos-
sible choices a library developer has for modeling the abstractions to be provided to
the final user of its library. The choice of using custom annotations instead of more
traditional programming abstractions should be subjected to consideration about ex-
pressiveness and performance issues.

The paper is organized as follows: section 2 introduces custom annotations; section
3 is devoted to discuss how annotations have been used so far in real applications;
performance considerations are presented in section 4; section 5 presents conclusions.
As a final remark, throughout the rest of this paper we will also refer custom annotations
as custom attributes and we will use the C# notation inside the examples.

2 Custom Attributes

A custom attribute is a piece of information attached by the programmer to a portion of
a program. In the model implemented both in Java and .NET attributes can be attached
only to those elements accessible through the reflection API, such as assemblies, types
(delegates, value types, and classes), fields, properties, and methods; however there has
been a proposal of extending the annotation model to code blocks in [AC02].

In .NET custom attributes are represented by instances of classes that inherit from
the system class Attribute. Java exposes annotations as instances of an interface.

A custom attribute is defined by specifying a set of values and the type of the at-
tribute; all the values used to create it must be computable at compile time. The follow-
ing is an example of annotations in C#:

[MyAnnotation("par", Property="val")]

public class MyClass {..}

2



The definition of MyAnnotation attribute can be the following:

class MyAnnotationAttribute : Attribute {

MyAnnotationAttribute(string par) {...}

public string Property;

}

Parameters required to instantiate custom annotations are stored inside the binary
file, along with the rest of reflection meta-data, so that they can be retrieved at run-time.
This data is ignored by the execution environment unless explicitly accessed through
the reflection API. For instance, let m be an instance of MethodInfo class (a reflective
descriptor of a method), in C# we can retrieve the custom attributes associated with the
method as follows:

Attribute[] attr = m.GetCustomAttributes();

The crucial idea behind the custom annotation consists of shifting up data about
the code into the executable and to be available at run-time. Custom annotations are
interpreted by programs and are used for program transformation.

A stereotypical example, from Microsoft .NET, of custom attributes usage is the
support for implementing web services by means of custom attributes. WebMethod at-
tribute is used to label methods that should be exposed as web services. A minimal web
service written in C# that computes the sum of two integers is the following:

public class HelloWorldWS {

[WebMethod]

public int add(int i, int j) {return i+j;}

}

Once compiled, the HelloWorldWS class does not provide any web services in-
terface. A different program - actually part of the Internet Information Server - is
responsible for looking up reflection information within assemblies and generating a
SOAP/WSDL interface to the method add over HTTP.

The essence of annotations is that information is stored together with the code so
that some other meta-program will need only the executable file to access the infor-
mation. Although this may seem to be a little change with respect to configuration
files shipped with the executable program, it makes all the difference. With annotations
the programmer can decorate the program, without having to define bindings between
types and custom information. Moreover configuration files are separated from the exe-
cutable, leading to a weaker link between the code and its configuration. In the past we
have dearly paid the separation of the meta-data from the data, as it is still witnessed
by the COM [Rog97] architecture in Windows, where meta-data are stored inside the
disliked system registry.

To better appreciate the effectiveness of custom annotations versus the use of exter-
nal configuration files it is worth to briefly describe the Java Web Service development
pack [Javb], currently based on Java 1.4 (the Java version prior to custom annotations).
With this library the programmer should define several XML configuration files to con-

3



trol the module responsible for generating SOAP/WSDL. For instance the interface of
the Web service is defined with an XML document similar to the following:

<?xml version="1.0" encoding="UTF-8"?>

<configuration

xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">

<service

name="MyHelloService"

targetNamespace="urn:Foo"

typeNamespace="urn:Foo"

packageName="HWS">

<interface name="HWS.HelloWSIF"/>

</service>

</configuration>

Despite its verbosity, to annotate the HWS.HelloWSIF interface as a web service
(i.e., all the methods of the interface should be considered operations of the service) is
the only purpose of the file.

3 Using annotations

Libraries were originally conceived as collections of common-use routines that pro-
grammers can import within their programs. Today libraries have become tangled set of
programming abstractions (usually in the form of classes) modeling some application
domain. To use a library it is required to understand its lingo and how the domain values
and operations fit together.

Often libraries are used as a way to extend the programming language with new
features (this practice originated with C where even the basic I/O was provided in the
form of a library); in a sense they contribute to define a language within the language,
designed for a given application domain.

In this section we discuss possible uses of custom annotations to support the defini-
tion of library interfaces.

3.1 General considerations

Custom attributes allow tagging programming elements; they differ from inheritance in
two ways:

1. annotations are parametric, inheritance no (unless some form of generics is taken
into account, and even then it is possible only if specialization is available);

2. unlike inheritance that imposes a small amount, though not null, of overhead at
run-time, annotations are passive unless explicitly read

Another important aspect of annotations is that they are orthogonal to other rela-
tions; therefore they are suitable for introducing new relations among types of a pro-
gramming language. Attributes are user-defined, thus there is not a predefined set of
them, and a library may introduce as many of them as required.

4



In the area of domain specific languages custom attributes are useful to define the
traits of types [CE00]. Traits are used to configure a generic library so that the amount
of information is enough to specialize it to some particular application. In the context
of generative programming traits are usually processed at compile time, along with
program specialization. At the moment custom annotations are processed at run-time,
introducing possible overheads that could be in principle avoided. We will discuss fur-
ther this issue in the next section.

Custom annotation cannot refer directly objects that will be available at run-time.
This is required because they should be processed at compile time, in a different context
of the compiler.

3.2 Serialization

Serialization is the process of writing a structured object in a serial stream. As we
pointed out in the introduction serialization originated the idea of using interfaces for
tagging classes in Java.

With custom attributes it is possible to go further and control the whole process of
serialization of instances of a given class. Let us consider the following example:

[XmlRoot("NewGroupName"), XmlType("NewTypeName")]

public class Group{

[XmlArrayItem("MemberName")]

public Employee[] Employees;

}

In this case the class Group has been annotated to indicate how its instances should
be serialized. The root element will be named as indicated, the same will happen for
XML type name that will be used within the associated XSD schema. More interesting
is the annotation over the Employees field, which indicates that in the serialized array
only the MemberName fields of Employee instances must be serialized. Thus in the
serialized structure we will only partially serialize the associated employees.

3.3 Indigo and Web Services

We already discussed in the previous section how attributes can be used for defining
Web services. A class defines a Web service, and annotated methods indicate the meth-
ods that should be exposed as operations.

The upcoming library codenamed Indigo [Win] (now dubbed as Windows Com-
munication Framework) for supporting distributed computations based on web services
standards heavily rely upon custom annotations. The library revolves around the notion
of data contract and service contract. As we might guess from the names, the first refer
to the structure of the data as it is seen from outside of the application, the second to the
definition of published operations.

Here is a simple example of data contract:

[DataContract]

public class Person {

5



[DataMember]

public string fullName;

[DataMember]

private int age;

private string mailingAddress;

private string telephoneNumberValue;

[DataMember]

public string TelephoneNumber {

get { return telephoneNumberValue; }

set { telephoneNumberValue = value; }

}

}

The traditional approach to marshalling in frameworks like CORBA [COR], Java
RMI [Gro01], and .NET remoting [MNW02], is to define a type so that its serialized
form coincides with the message to be sent on the network in inter-process communi-
cations; in this way we let the run-time take care for us of the communication.

Using custom attributes Indigo decouples the data structure from its serialized form
required for network communications. This is possible because, as we already said,
custom attributes defines an orthogonal dimension to that of the type system.

In the example above only the members labeled DataMember will be serialized in
communications (even if they are private inside the process!). The same approach is
used for defining data contracts:

[ServiceContract]

public interface IOne {

[OperationContract(IsOneWay=true)]

void A();

}

Service contract provide information about how methods should be exposed to net-
work users of the service. Annotations allow us to provide additional information on
the behavior of the particular operation, in this case the fact that the operation will not
return any value so that the client can close the connection as soon as possible. A similar
approach has been taken by Robotics4.NET [CCEP05], a software library supporting
the development of control software for robotics systems. In this case annotations are
used to define incoming and outcoming messages from a sort of agent, called roblet.
Custom annotations are used by the framework to implement the communication in-
frastructure among the roblets and the control software of the system. The following is
an example of such roblet:

namespace HeartBeat {

public class Beat : RobletMessage {

public long tick = DateTime.Now.Ticks;

}

[OutputMessage(typeof(Beat))]

public class HeartBeatRoblet : Roblet {

public HeartBeatRoblet() : base("HB") {}

6



protected override void Run() { SendState(new Beat()); }

}

}

The SendStatemethod is responsible for taking care of message dispatching, and it
its behavior is controlled by the custom annotations indicating friendship among agents,
input and output message types.

3.4 Relational Interface to Databases

In [AC02] it is discussed how to extend C++ with reflection support by means of tem-
plate meta-programming techniques. The proposed reflection system provides support
for custom meta-data.

In the paper it is discussed how a library for building search engines can benefit
from the declarative power of custom attributes. In this case attributes drive storage
information of the objects:

class DocInfo {

char const* name;

char const* title;

int date;

META(DocInfo,

(FIELD(name, (MaxLength(256), IndexType(Index::primary))),

FIELD(title, MaxLength(2048)), FIELD(date, IndexType(Index::key)))

);

};

In a way similar to C# attributes are objects stored within the meta-class. In this
example we use MaxLength and IndexType attributes to control how the search engine
library must store and index objects on the secondary storage.

3.5 Code Annotations

Assuming custom annotations capable of annotating portions of code as it is done in
[a]C# [CCC05], an extension to the C# language, we can use them for more finer grain
tasks.

Using this kind of annotations it is possible to annotate a code with hints on about
how to produce the concurrent version of it:

public void m() {

[Parallel("Begin of a parallel block")] {

Console.WriteLine("Main thread code");

[Process("First process")]{ /� Computation here �/ }

[Process]{ /� Computation here �/ }

}

Console.WriteLine("Here is sequential");

}

7



In this case we rely on annotations to mark Parallel a block of code. Inside we
define code blocks annotates as Process that can run in parallel.

3.6 Attribute Usage

Microsoft .NET defines a set of “meta-attributes” that can be used as annotation when
defining an attribute class. These annotations are used to possibly constraint the attribute
usage. The following example defines an attribute that can be used only once and only
on classes:

[AttributeUsage(AttributeTargets.Class, AllowMultiple=false)]

class ClassTgtAttribute : Attribute {}

In a sense, the ability of specifying that an attribute can be used only on classes or
methods, if it is inherited or not, provides a means for specifying a sort of a customizable
syntax for custom attributes.

3.7 Designer Environments

Microsoft Visual Studio [Mic] designer is capable of loading arbitrary components dur-
ing the design process of user interfaces. At design time components are configured by
specifying a subset of properties that the component should have at run-time.

Microsoft .NET controls can indicate to the designer which properties can be con-
figured at design time by means of custom attributes. Default values of design-time
properties are also specified through custom attributes.

The designer is able to display a preview of the component while designing an
interface. A custom attribute specifies which class is responsible for generating the
preview of a component. The designer, however, should inherit from a specific class in
order to be eligible for its role.

Java designer also relies on reflection information in order to load components into
the designer. However, in this case a naming convention is used to determine properties
so be shown inside the designer. The naming conventions used by Java are defined by
the Java Beans specifications.

3.8 Final Considerations

In this section we presented several applications of custom attributes. We believe that
many others are possible, making extensible meta-data an important tool in the library-
designer toolbox.

In particular we believe that the declarative aspect of the approach allow library
developers defining interfaces both operational and declarative.

Custom attributes have almost no drawbacks: they allow defining arbitrary relations
among data types, are distributed with executables, and always accessible through the
reflection API. However there is a noticeable exception: there is the risk of a possible
overhead, due to the facet that meta-data interpretation is often performed at run-time.
In the next section we will discuss this aspect of the problem.

8



4 About performance

Performance is always important, and custom attributes should not impose a significant
overhead over a computation in order to be really used.

At a first glance it might be evident that meta-data can be retrieved only at run-time
through reflection. This implies that, if attributes are used to specify traits of a library,
we must postpone computations that could be done at compile time, at run-time.

This is true for the examples shown in the previous section. However it is not true in
general: meta-programs can be run before the so-call “run-time”, though they run after
the compiler. It is the case of several tools that manipulates binaries available for the
various virtual machines.

Nevertheless, when we are interested in using custom attributes directly at run-time,
we must consider that the time spent for reading meta-data is not zero. It is however
possible to drown this overhead into the overall computations costs: for instance, the
Microsoft XML serializer, for instance, dynamically generates a class for each type it
serializes, and annotations are read during this generation process. After this generation
phase serialization takes place without any more accesses to custom meta-data.

5 Conclusions

In this paper we have discussed how custom annotations may affect the design of li-
braries. The main impact of the mechanism is at the level of library interface; however
it also influences the internal design of the library.

Custom annotations provide a mean for library users to declare their intentions, and
for library developers to better adapt to different uses of the library. If used in their
simplest form annotations require to be processed at run-time. The overhead imposed
for accessing them is in general not significant, though it is possible to get rid of it
by executing a meta-program responsible for processing annotations before that the
program is executed.

We believe that custom annotations will play a significant role in the design of
libraries in the next years, and they will be added to other programming systems that
still lacks of this kind of support.

References

[AC02] G. Attardi and A. Cisternino, Self reflection for adaptive programming, Proceedings
of Generative Programming and Component Engineering Conference (GPCE), LNCS
2487 (2002), 50–65.

[CCC05] Walter Cazzola, Antonio Cisternino, and Diego Colombo, Freely Annotating C#, Jour-
nal of Object Technology 4 (2005), no. 10, 31–48.

[CCEP05] A. Cisternino, D. Colombo, G. Ennas, and D. Picciaia, Robotics4.NET: Software body
for controlling robots, IEE Proceedings Software 152:5 (2005), 215–222.

[CE00] K. Czarneki and U.W. Eisenacker, Generative programming - methods, tools and ap-
plications, Addison-Wesley, 2000.

[COR] Corba web site, available at http://www.corba.org/, Accessed: 20/3/2006.

9



[ECM] Ecma 335, common language infrastructure (cli), available at
http://www.ecma.ch/ecma1/STAND/ecma-335.htm, Accessed: 20/3/2006.

[Gro01] W. Grosso, Java rmi, O’Reilly, 2001.
[Java] Java web site, available at http://java.sun.com/, Accessed: 20/3/2006.
[Javb] Java web service development pack web site, available at

http://java.sun.com/webservices/reference/index.html, Accessed: 20/3/2006.
[Mic] Microsoft visual studio web site, available at http://msdn.microsoft.com/vstudio/, Ac-

cessed: 20/3/2006.
[Mil03] J. Miller, Common language infrastructure annotated standard, Addison-Wesley,

2003.
[MNW02] S. McLean, J. Naftel, and K. Williams, Microsoft .net remoting, Microsoft Press,

2002.
[Rog97] D. Rogerson, Inside com, Microsoft Press, 1997.
[Win] Windows sdk web site, available at http://windowssdk.msdn.microsoft.com/library/,

Accessed: 20/3/2006.

10


	1 Introduction
	2 Custom Attributes
	3 Using annotations
	3.1 General considerations
	3.2 Serialization
	3.3 Indigo and Web Services
	3.4 Relational Interface to Databases
	3.5 Code Annotations
	3.6 Attribute Usage
	3.7 Designer Environments
	3.8 Final Considerations

	4 About performance
	5 Conclusions

