
The Language Mutation Problem:
Leveraging Language Product Lines for Mutation Testing of Interpreters

Walter Cazzolaa,∗, Luca Favallia

aUniversità degli Studi di Milano, Computer Science Department, Milan, Italy

Abstract

Compilers translate programs from a high level of abstraction into a low level representation that can be understood and executed by
the computer; interpreters directly execute instructions from source code to convey their semantics. Undoubtedly, the correctness of
both compilers and interpreters is fundamental to reliably execute the semantics of any software developed by means of high-level
languages. Testing is one of the most important methods to detect errors in any software, including compilers and interpreters.
Among testing methods, mutation testing is an empirically effective technique often used to evaluate and improve the quality of
test suites. However, mutation testing imposes severe demands in computing resources due to the large number of mutants that
need to be generated, compiled and executed. In this work, we introduce a mutation approach for programming languages that
mitigates this problem by leveraging the properties of language product lines, language workbenches and separate compilations. In
this approach, the base language is taken as a black-box and mutated by means of mutation operators performed at language feature
level to create a family of mutants of the base language. Each variant of the mutant family is created at runtime, without any access
to the source code and without performing any additional compilation. We report results from a preliminary case study in which
mutants of an ECMAScript interpreter are tested against the Sputnik conformance test suite for the ECMA-262 specification. The
experimental data indicates that this approach can be used to create generally non-trivial mutants.

Keywords: Language Product Lines, Mutation Testing, Language Testing
2000 MSC: 68N15, 68N20, 68M15

1. Introduction

Research Context. Mutation testing is a fault-based test-
ing technique widely used in research for evaluating the quality
of test suites. A mutation testing approach proceeds in three
phases. First, it creates several modified version of a program,
called mutants. Second, it runs the test suite against each mu-
tant. A mutant is killed if the test suite detects a fault introduced
by this mutant, otherwise it is said to have survived. Finally,
the test suite is given a mutation score as the ratio of killed
mutants over the total number of mutants. The actual mutants
are created by means of mutation operators—i.e., rules that are
applied to a program to modify its behavior, for instance by
changing an operator with another syntactically valid one or by
deleting entire statements [1].

Problem Statement. Despite its effectiveness, mutation
testing is still struggling to become practical due to a few rea-
sons: 1. the cost of executing a large amount of mutants against
a test suite is substantial; 2. the mutation operators must replace
program tokens with valid alternatives and the mutated program
has to be recompiled every time; 3. a mutation testing approach
must deal with the human oracle problem and the equivalent

⋆This work was partly supported by the MUR project “T-LADIES” (PRIN
2020TL3X8X).
∗Corresponding author.

mutant problem [2]. All these problems still hold when the sys-
tem under test (SUT) is the implementation of a programming
language interpreter or compiler1. One might even argue that
testing interpreters is especially significant: the quality of an
interpreter affects the correctness of any software developed by
its means [3]. While problem 3 draws the most attention in
research [4, 5, 6, 7], in this work we want to focus on prob-
lem 2 to avoid the cost or recompiling a language implementa-
tion for every new mutant. Usually, this is done by applying the
mutation operators over an intermediate representation such as
LLVM or Java bytecode [8]. However, these approaches only
partially solve problem 2 because while they save the recom-
pilation time, the intermediate representation must still be in-
spected to substitute tokens with valid alternatives. Moreover,
handling intermediate representations—e.g., through bytecode
manipulation libraries—is usually harder that handling source
code.

Contribution. To cope with these issues we leverage lan-
guage workbenches and properties that are specific to language
implementations. Following the contribution from Leduc et
al. [9] on the language extension problem, we specify and tackle
the language mutation problem: a language implementation to-
gether with its mutants can be seen as a language product line
whose products are a family of language mutants of the same

1Please note that this work focuses on interpreters rather than compilers.

Preprint submitted to The Journal of Systems & Software September 30, 2022

base language. The mutation operators performed over the lan-
guage implementation produce modular language extensions—
i.e., features of the language product line. According to this
characterization, the mutation approach must respect the prop-
erties of mutability in both dimensions, no modification or du-
plication, separate compilation and independent mutability. In
this approach, the base language is compiled once and then
taken as a black-box to which the mutation operators are ap-
plied at runtime. The result is a family of language mutants of
the same base language. Therefore, the general contributions
of this work are the characterization of the language mutation
problem and the definition of a meta-model for its resolution.

Evaluation Case Study. We use the Neverlang [10] lan-
guage workbench to define six mutation operators that can be
applied at language feature level. We dub them sourceless mu-
tation operators because they leverage previous work on Never-
lang to adapt the parser [11] and the semantics [12] of the lan-
guage implementation without using any source code nor any
intermediate representation. Neither the code of the base lan-
guage nor the code of the mutated language feature are needed.
Instead, given a base language, any sourceless mutation opera-
tor relies on the introspection and intercession capabilities pro-
vided by the Neverlang reflection API [13] to mutate either the
language syntax, semantics or both. Each mutant is syntacti-
cally close to the base (correct) language implementation ac-
cording to the competent programmer hypothesis [14]. Then,
we report the results of a preliminary evaluation case study in
which a family of mutants of an ECMAScript interpreter written
in Neverlang are tested against the Sputnik conformance test
suite for the ECMA-262 specification. This evaluation has two
non-general contributions: a concrete example of the applica-
bility of the general resolution meta-model and the assessment
of six language mutation operators for Neverlang.

Structure. The remainder of this paper is structured as
follows. Sect. 2 presents the terminology. Sect. 3 provides an
overview of our approach. Sect. 5 showcases the evaluation
case study. Finally in Sect. 6 and Sect. 7 we give an overview
of the related works and draw our conclusions.

2. Background

This section introduces the fundamentals and terminology
required to understand the contribution that will be presented
in Sect. 3. It first discusses the concepts of mutation testing
and language product lines. Then it provides a brief overview
of the language extension problem and of the language feature
concept on which our solution is based.

2.1. Mutation Testing

Mutation testing is a fault-based testing technique that can
be used to measure the adequacy of a test suite in terms of a
mutation adequacy score. The origin of mutation testing can be
traced back to 1971 in a student report by Lipton [15] and other
works from DeMillo et al. [14] and Hamlet [16] in the following
years. The effectiveness of mutation testing depends on its ca-
pability of finding real faults [17]. Since simulating all possible

faults is unfeasible, mutation testing only focuses on reasonable
faults—i.e., those that are caused by variants of a program that
are syntactically close to the correct program. This assumption
is called the competent programmer hypothesis [14] because
we assume that any competent programmer would merely de-
liver small faults, which can be corrected by a few syntactical
changes. Given a set of mutation operators F = { f1, . . . , fn} and
a program p, the traditional mutation testing process [1] gener-
ates a set of supposedly faulty programs P = { f1(p), . . . , fn(p)}
called mutants. Next, a test set T is supplied to the system. If
the result of running mutant fi(p) is different from the result of
running p for any test case in T , then the mutant fi(p) is said to
be killed; otherwise, it is said to have survived. The mutation
adequacy score (or mutation score) is the ratio of the number
of killed mutants over the total number of mutants. The goal
of the mutation testing is to improve T until the mutation score
is 1.

2.2. Language Product Lines
Product lines are a staple in industrial production. Follow-

ing the same ideas, software product line (SPL) engineering in-
troduces the concepts of software variants and software fami-
lies. A software family is a collection of related but different
software variants that differ by the set of features they provide.
SPLs are usually modeled in terms of their features following
formalisms such as the feature model (FM), a concept firstly
introduced as part of the FODA method [18]. For this reason
the development of SPLs is often referred to as feature-oriented
programming. With the support of dedicated tools and envi-
ronments such as FeatureIDE [19, 20, 21], software engineers
can cope with all the aspects of the development of a software
family: domain analysis, domain implementation, requirement
analysis, and product derivation. The idea of applying SPL con-
cepts to the creation of families of language variants has gained
popularity among researchers and practitioners [22, 23, 24],
thus introducing language product lines (LPLs) [25, 26, 27].

2.3. Language Workbenches
The LPL approach may prove useful to the creation of vari-

ants of a domain-specific language [28, 29, 30] and dialects
of a general-purpose programming language [31]. LPL engi-
neering benefits from the creation of sectional compilers that
support the development of language features separately, in-
cluding their syntax, their semantics and meta-data for reusable
IDE specifications. Most recent language workbenches [32]
embrace this philosophy to improve reusability and maintain-
ability of language assets. The term language workbench was
firstly introduced by Fowler [33] to describe tools suited to the
language-oriented programming paradigm [34], in which com-
plex software systems are built around a set of domain-specific
languages to properly express domain problems and their so-
lutions. While the original definition focused on projectional
editing [33], research on language workbenches is currently fo-
cusing on their promise of supporting the efficient definition,
reuse and composition of languages and their IDEs. Current
language workbenches evolved according to many different de-
sign philosophies, but they all share the same goal: to facilitate

2

the development of languages and the reuse of software artifacts
through better abstractions.

Following the feature-oriented programming paradigm dis-
cussed in Sect. 2.2, a reusable piece of a language specification
is called language feature. A language feature is formed by a
syntactic asset and a semantic asset and represents a language
construct together with its behavior. A language feature can
omit the semantic asset or the syntactic asset; these corner cases
represent a language construct without semantics and semantics
that are not associated to any syntax respectively. For instance,
comments can be implemented as a language feature in which
the semantic asset is omitted. Languages and their features can
be composed to form new language variants according to five
forms of language composition: language extension, language
restriction, language unification, self-extension, and extension
composition [35]. The goal of a language workbench is to sup-
port all five forms of language composition through dedicated
abstractions.

2.4. The Language Extension Problem

To properly drive our research and to better express its con-
straints and challenges, we specified the problem introduced in
Sect. 1 as an instance of the language extension problem (LEP).
LEP was introduced by Leduc et al. [9] as a paraphrase of the
classic expression problem coined by P. Wadler [36]. The goal
of the LEP is to define a family of languages in which a new
language can be added by adding new syntax or new semantics;
the new semantics can be added over a new syntax or over an
existing one [9]. According to the characterization provided by
the authors, the LEP is subject to five different constraints that
any candidate solution to the LEP should adhere to:
Extensibility in both dimensions. It should be possible to ex-

tend the syntax and adapt existing semantics accordingly.
Furthermore, it should be possible to introduce new se-
mantics on top of the existing syntax.

Strong static-type safety. All semantics should be defined for
all syntax.

No modification or duplication. Existing language specifica-
tions and implementations should neither be modified nor
duplicated.

Separate compilation. Compiling a new language should not
encompass re-compiling the original syntax or semantics.

Independent extensibility. It should be possible to combine
and use jointly language extensions independently devel-
oped.

Complying to all five constraints is extremely challenging and
relaxing one or more of the constraints may be beneficial de-
pending on the given context [9] to favor interesting design
choices.

3. The Language Mutation Problem

In this section, we introduce our approach towards the sup-
port of mutation testing for programming language implemen-
tations using LPLs. This section contains the following contri-
butions:

1. a specification of the problem stated in Sect. 1, dubbed lan-
guage mutation problem, as a derivation of the LEP and

2. a meta-model for the resolution of the language mutation
problem based on language workbenches.

The meta-model will later be applied in Sect. 4 and Sect. 5
to prove its applicability using the Neverlang language work-
bench. The following subsections will outline our contribu-
tions, as well as the consequences, applicability and limitations
of the resolution meta-model.

3.1. Problem Overview

The problem of language mutation can be seen as an in-
stance of the language extension problem (LEP) which we will
dub as language mutation problem (LMP). The LEP lifts the
expression problem to the context of language engineering to
provide a framework for reasoning on language extension and
to compare different language extension approaches. Similarly,
this contribution lifts the LEP to the context of mutation testing
of language implementations to hopefully provide a framework
for reasoning on language mutation, its challenges and for the
comparison of different language mutation approaches.

According to the characterization of the LEP discussed in
Sect. 2.4, the LMP concerns:

The extension of a family of mutants of a base language
through changes to the syntax and/or the semantics of
one of its members via the application of mutation op-
erators.

By extension, the constraints defined for the LEP are expressed
in the LMP context as:
Mutability in both dimensions. It should be possible to mu-

tate both the syntax and the semantics. It should be pos-
sible to mutate the semantics according to a new syntax.
It should be possible to mutate the semantics of a un-
mutated syntax.

No modification or duplication. Existing language specifica-
tions and implementations should neither be modified nor
duplicated. Mutation operators are functions that pro-
duce mutated language features without changing nor du-
plicating the code of the original language feature.

Separate compilation. Creating a new mutant should not en-
compass re-compiling the syntax or semantics of the base
language.

Independent mutability. It should be possible to use indepen-
dent mutated language features jointly. Mutated language
features are independent when they are the result of the
application of a mutation operator (either same or differ-
ent) over two different language features.

In the context of the LMP, it is worthwhile to relax the strong
static-type safety constraint of the LEP: a mutation approach
for object-oriented systems needs to be able to make changes
to types and data structure declarations [37, 38]. The test suite
for a language interpreter should be able to detect any error in
the type system or if the semantics for any syntax are missing.

3

Therefore, introducing errors in the type system when gener-
ating mutants may be beneficial when the goal is to assess the
mutation adequacy of a test suite.

To summarize, a language workbench can solve the LMP—
i.e., it can reach its goal—by satisfying each of the four con-
straints we introduced in this section: mutability in both dimen-
sions, no modification or duplication, separate compilation and
independent mutability.

3.2. Resolution Meta-model

In this section we introduce a meta-model for the resolution
of the LMP by tackling each of the four constraints presented
in Sect. 3.1. We discuss the actors of the software architecture,
how these actors interact and the properties they should have to
solve the LMP.

Running example. To better drive the discussion, let us
introduce a simple language

L = (f1, f2, f3, f4)

comprised of four language features: number (integer and float-
ing point values), variable declaration, addition and (bounded)
loop. Below, the Extended Backus-Naur Form (EBNF) gram-
mar of this language with start symbol <program>.

<program> ::= <statement>+
<statement> ::= <assignment>

| <loop>
<assignment> ::= identifier "=" <addition>
<addition> ::= <term> "+" <addition>

| <term>
<term> ::= <number>

| identifier
<number> ::= digit+ ["." digit+]
<loop> ::= "for" <addition> "{" <program> "}"

Listing 1 shows a program written using this language: the
value of variable x is initially set to 5 and it is then decremented
by 1 by iterating the for loop x times. Notice that the language
does not support subtraction expressions. Several variants of
L can be obtained by performing language extension and lan-
guage restriction over the base language to obtain a family of
language variants of L. Two examples are an extended variant
with the subtraction language feature

<addition> ::= <term> "+" <addition>
| <term> "-" <addition>
| <term>

and a restricted variant without loops

<statement> ::= <assignment>

Notice that Listing 1 is still a valid program for the former vari-
ant, but it is not for the latter.

1 x = 5

2 y = 0

3 for x {

4 x = y

5 y = y + 1

6 }

Listing 1: Exemplary program written in language L.

Architecture. The LMP resolution meta-model is schema-
tized in Fig. 1, which depicts both the software architecture and
the mutation testing process by highlighting the interactions
among the involved actors. The software architecture is split
into three layers: the language implementation, the language
workbench and the mutation testing framework.

First, let us focus on the language implementation (blue
box in Fig. 1) because its modular structure drives the inter-
action among the three layers. Taking on the previous running
example, L is implemented in a modular way and it is com-
prised of four language features. The modular approach used
to implement L is schematized in Fig. 2. Each language fea-
ture is made of a syntax and three semantic phases—each being
a traversal of the program’s abstract syntax tree (AST): initial-
ization, type checking and evaluation. The initialization se-
mantic phase reads the terminal tokens to establish their types
and their values. The type checking phase uses these pieces
of information to check the validity of the program with re-
gards to its types and performs any conversion. For instance,
and addition between an integer and a float value promotes the
integer to float. Finally, the evaluation phase runs each state-
ment in the script. Each color—i.e., each element along the
Semantics axis—represents one of the aforementioned evalu-
ation phases. Each element along the Syntax axis represents a
syntactic asset—i.e., addition, number, loop and variable dec-
laration; each syntactic asset can contain more than one gram-
mar production, as represented by the rectangles in Fig. 2. The
intersection between the two dimensions represents a language
feature, comprised of a syntactic asset and its semantics. Im-
plementing the language interpreter according to this abstrac-
tion will be useful to solve the LMP. In fact, Fig. 2 also shows
exemplary mutation operators that can be performed over the
language, as we will discuss later in this section. Finally, Fig. 1
shows that L is implemented as an open language interpreter [13]
so that its structure can be reasoned about and modified to affect
its behavior. In the context of mutation testing, an open imple-
mentation can be leveraged to change the language behavior by
switching language features of the base language with mutated
language features without encompassing re-compilation of the
source code. In other words, an open language interpreter is
compliant to the separate compilation constraint of the LMP.

The remaining two layers of the resolution meta-model are
more straightforward. The language workbench (light green
box in Fig. 1) is an abstraction over the language implemen-
tation that provides primitives to interact with any language
developed by its means. This includes a compiler that trans-
lates the language source code into an executable language in-
terpreter, a runtime environment (not shown in Fig. 1) and a re-

4

Language Workbench

Reflection API

Language Implementation

Mutation Testing Framework

So
ur

ce
no

lo
ng

er
ne

ed
ed

Source Code
input

Compiler

output

Open Language Interpreter

getFeatures(L)

Introspection Intercession

replace(L, fi, f
′
i)

Get Features

f1, . . . , fn

Select Feature

L = (f1, . . . , fn)

fi
input

Apply Mutation

mj
mj
mjMutation Operators

input

f ′
i = mj(fi)

L′L′L′ Language Mutants

Run Test Suite Mutation Score

❶

❷

❷

❸

❸

❹

❺

❻
❻

❼ ❽

Figure 1: Language mutation problem resolution meta-model, including the process, its actors and their interaction.

Syntax

Se
ma

nti
cs

addition

number
loop

variable declaration

evaluation

type checking

initialization

Figure 2: Syntactic and semantic dimensions of a feature-oriented language
implementation. Three different mutation operators are performed over the lan-
guage implementation and highlighted with different patterns, depending on the
dimensions they affect: over the semantic dimension case (white stars), over the
syntactic dimension (white stripes) and over both (black stripes).

flection API (dark green box in Fig. 1) capable of gaining access
to hidden aspects of the implementation. To perform language
mutation, the reflection API must support two reflection mecha-
nisms: introspection—i.e., the ability to reason about otherwise
implicit aspects of the implementation—and intercession—i.e.,
the ability to act upon otherwise implicit aspects of the imple-
mentation [39].

Finally, the mutation testing framework (red in Fig. 1) is
the most external layer and has no initial knowledge of the base
language (the SUT); the mutation testing framework interacts
with the language workbench’s reflection API to gain knowl-
edge of the SUT and to perform mutation operations. The mu-
tation testing framework also handles the execution of the test
suite.

Process. Let L = (f1, f2, f3, f4) be our running example
language and T the test suite for the verification of L. Now, we
will overview how the three layers interact to evaluate the mu-
tation score of T according to the meta-model shown in Fig. 1.

First, the source code of the interpreter for L is given as
an input to the language workbench compiler (Fig. 1-❶). The
workbench compiler outputs an executable open language in-
terpreter that will be the SUT, as well as the bottom layer of
the meta-model. As shown by the red dashed line in Fig. 1,
the source code is no longer needed throughout the rest of the
process: this is fundamental for the meta-model to be able to
achieve better scalability by avoiding recompilation.

Next, the mutation testing framework starts the feature se-
lection process: at first the mutation testing framework has no
knowledge of the language implementation, other than an iden-
tifier2 provided by the user. To do so, the mutation testing

2The identifier for a language implementation can be, for instance, the class
name when working in Java.

5

framework interacts with the language workbench layer’s re-
flection API to perform an introspection over the language im-
plementation (Fig 1-❷). The request is forwarded to the lan-
guage implementation which returns a collection of all the lan-
guage features (Fig. 1-❸). In our example, the introspection
mechanism will return (f1, f2, f3, f4)—i.e., the four features L
is comprised of: addition, number, loop and variable declara-
tion respectively. Steps ❶ through ❸ are performed only once
throughout the whole process regardless the number of gener-
ated mutants.

Next, the mutation testing framework selects one feature
fi among (f1, f2, f3, f4) as the subject of the mutation (Fig. 1-
❹). The selection can be performed at random or by means
of heuristics. For example, let us assume that fi = f3—i.e.,
the loop feature—was selected in this step. The mutation test-
ing framework contains several mutation operators (m1, . . . ,mn)
and chooses one mutation operator m j to apply over fi to ob-
tain a mutated feature f ′i (Fig.1-❺). For example, let us take
f ′3 = m j(f3) where f ′3 is the loop feature deprived of its seman-
tics. The properties of the mutation operators will be discussed
in detail later in this section. The mutation operation can be
performed directly through intercession over fi or by generating
and compiling the new mutated feature separately. This step is
critical and must be handled in a way that does not violate nei-
ther the no modification or duplication nor the separate com-
pilation constraints. The mutation testing framework uses the
intercession capabilities of the language workbench’s reflection
API to generate a new mutated language L′ in which fi was sub-
stituted by f ′i (Fig. 1-❻). In our example, L′ = (f1, f2, f ′3 , f4) is
an interpreter that accepts the same programs L does, but in
which loops have no semantics. For instance, running Listing 1
on the interpreter for L′ raises no parsing error, but yields a final
value of x = 5 instead of x = 4, since the body of the loop is
never executed. If T is mutation adequate, L′ will be killed
when executed against T . As an alternative to intercession,
step ❻ can leverage loose coupling between mutated features
and the base language using the black-box aggregation tech-
nique [40]. Regardless of the chosen method, steps ❹ through
❻ are performed several times: once for each language mutant.

Finally, the mutation testing framework runs T against all
the language mutants generated in the preceding steps (Fig. 1-
❼) and outputs the mutation score of T (Fig. 1-❽).

Mutation Operators. To be compliant to the mutability
in both dimensions constraint it must be possible to mutate the
syntax and the semantics separately. This allows to properly
express the variability of the mutants. Fig. 2 shows a modu-
larization approach compliant to this constraint and its inter-
action with mutation operators. As discussed earlier, the lan-
guage implementation shown in Fig. 2 was decomposed over
the two dimensions of syntax and semantics; in this case, the
implementation is comprised of four syntactic constructs and
three semantic phases. To solve the LMP, the mutation testing
framework must provide at least three categories of mutation
operators:
• along the syntactic dimension;
• along the semantic dimension;

• along both dimensions.
A language mutation operation is a function that takes a lan-

guage feature as input and returns a new language feature as
output. The output is obtained by mutating the original feature
along one of the dimensions or both, depending on the category
of the mutation operator. Fig. 2 shows three different mutation
operators that were performed over three different dimensions
of the base language. A mutation operator over the semantic di-
mension (white stars) mutated all the semantics of the variable
declaration syntax. For instance a mutant may change the type
of the variable before it is assigned or increment its value. A
mutation operator over the syntactic dimension (white stripes)
mutated the initialization semantic phase for all four syntactic
constructs. An example would be changing the grammar so that
<addition> and <assignment> are merged into the same non-
terminal. This would affect the behavior of all features, for in-
stance by allowing nested assignments (x = y = 5) and assign-
ments inside loop bounds (for x = 5 {...}), both of which
are not accepted by the base language L. A mutation operator
over both dimensions (black stripes) mutated the type check-
ing and evaluation semantic phases of the addition and num-
ber syntaxes—for instance a mutation operator may change the
type of numeric literals from integer to float and vice versa or
even increment their value whenever they are used in an addi-
tion.

The meta-model does not require a specific number of mu-
tation operators, as long as there is at least one for each of the
three categories. For instance, as we will discuss in Sect. 4,
we used six mutation operators in our application of the meta-
model.

The mutation operators should be designed to be compliant
to the independent mutability constraint: performing a mutation
operation must not prevent the application of further mutations
to produce high-order mutants. Moreover, it should be possible
to perform two mutation operations over two language features.
Then, it should be possible to apply the two mutated language
features over the base language either jointly or independently.
The language workbench must also provide API to generate,
compile and load additional mutated language features on de-
mand. Alternatively, the language workbench must provide API
to mutate the already loaded language implementation without
generating additional source code.

Summary. The actors involved in the meta-model must
address all four constraints of the LMP:
• the mutability in both dimensions constraint is addressed

by a modular implementation of the language interpreter
and by a mutation testing framework that provides mu-
tation operators capable of targeting the syntactic and se-
mantic dimensions of such an implementation separately;
• the no modification or duplication constraint is addressed

by the language workbench that does not change the source
code directly and that instead performs mutation opera-
tions at runtime through introspection and intercession
over an open language implementation;
• the separate compilation constraint is addressed by the

language workbench, that generates mutated language fea-

6

tures at runtime to compile them separately;
• the independent mutability constraint is addressed by the

mutation testing framework that defines the mutation op-
erators ad applies them one at a time and separately over
the base language.

3.3. Consequences and Limitations

In this section, we discuss any implications that the LMP
resolution meta-model has over the design of interpreters and
on the test suite execution. We will also discuss the applicabil-
ity and limitations of the meta-model with regards to the capa-
bilities of the language workbench.

Families of language mutants. According to the goal of
the LMP, by modeling the mutation testing approach according
to the meta-model discussed in this section, a base language im-
plementation is used to define a family of language mutants. In
the context of language workbenches, a language mutant fam-
ily can be modeled as a LPL which variability is expressed in
terms of its features. Such a LPL contains two types of features:
• the base features of the SUT (such as f1, . . . , fn in Fig. 1);
• all the results of performing a mutation operation over a

base feature (such as f i′ = m j(fi) in Fig. 1).
The products of the LPL are the base language and its mutants.
If the number of members of the language family is finite then
we say the language family is closed [9]. Otherwise, the lan-
guage family is open [9]. Given a LPL with n features, the
number of members of the family is at most 2n. Therefore, if
n is finite then the language family is closed. In other words,
if the number of possible mutated features is finite, then the
family of first-order language mutants3 is closed, otherwise it
is open. Families of high-order language mutants4 are always
open. In the following sections, we focus on closed first-order
language mutant families.

Syntactic mutation operators. Performing mutation op-
erations over the syntactic dimension usually changes the lan-
guage grammar. Changing the grammar of a language may ren-
der some test cases obsolete or the grammar itself may even
become ambiguous. While this is generally against the goal we
discussed in Sect. 1, it may still be beneficial to generate some
language mutants that can potentially cause parsing errors. If
running a test suite over a language mutant raises a parsing er-
ror, then it means that there exists at least one test case that can
capture the inconsistency in the language grammar and there-
fore the mutant is killed. Otherwise, no parsing error is risen
and the test suite may not be mutation adequate. For example,
a mutation operation may change a keyword—such as repeat
instead of for in our running example language L. Similarly,
renaming a nonterminal in the grammar may render the <loop>
nonterminal unreachable. In both cases, if the for keyword was
never used in any case of the test suite, then the test suite is not
capable of killing the mutant.

3A first-order language mutant is obtained can be obtained by performing a
single mutation operation over a base language feature.

4A high-order language mutant is obtained by performing any number of
mutation operations in succession.

Another possible effect of changing the grammar is increas-
ing the family of programs that the language accepts. We dis-
cussed such an example in Sect. 3.2: a syntax like x = y = 5 is
not accepted by L, but it is accepted by a mutant of L in which
<addition> and <assignment> are merged into the same non-
terminal. A mutation adequate test suite for L should be able to
detect this inconsistency by killing the mutant.

The separate compilation constraint. Leduc et al. [9]
relaxed the separate compilation constraint in the context of the
LEP in favor of non-functional properties such as performance
and readability. Instead, the separate compilation constraint
cannot be relaxed in the context of the LMP: in that case, all
the mutants should be generated and compiled in advance to
avoid the cost of recompilation. This is not feasible for any
open mutant family. Depending on the size of variability space,
this may not be feasible for closed mutant families too.

Applicability and Limitations. While the LMP can be
solved by instances of the meta-model proposed in Sect. 3.2,
this approach has some limitations that should be considered.
First, the language workbench capabilities required by this ap-
proach are very strict. To the best of our knowledge, only the
Neverlang language workbench supports both separate compi-
lation of language artifacts and runtime adaptation with the in-
tercession API. Therefore, while the meta-model is general, its
applicability may be limited unless a considerable implemen-
tation effort is made to extend the capabilities of the used lan-
guage workbench. Otherwise, a different solution to the LMP
that is compliant to the language workbench’s capabilities must
be found.

Another limitation of the resolution meta-model is its gener-
ality: the mutation testing framework has no initial knowledge
of the language implementation and it cannot make any general
assumptions, neither on its syntax nor on its semantics. The
only requirement is for the language to be implemented in a
modular fashion. Instead, all the knowledge of the language is
gained at runtime through introspection. Therefore, the muta-
tion operators may be hard to design in a way that is relevant to
any SUT and they will usually not be able to target specific parts
of the language. A solution to this issue would require switch-
ing to an hybrid approach in which such information is provided
by the language implementation itself by either declaring sensi-
ble parts of the implementation or even the mutation operators
directly. Then, the mutation testing framework would access
and use this knowledge through reflection. Such an hybrid ap-
proach will be part of a future work.

Similarly, the meta-model leverages the modularity of the
language implementation to generate the language mutants. While
the concept in itself is general, the modularization approach dif-
fers wildly depending on the language workbench, therefore it
is impossible to define a set of mutation operators that is valid
for all language workbenches. Instead, the meta-model is lim-
ited to the definition of the three categories of mutation opera-
tors discussed earlier—syntactic, semantic and both—since the
concepts of syntax and semantics are shared by all language
workbenches. The instantiation of these categories into actual
mutation operators will depend on the application scenario and
on the language workbench of choice.

7

Approach Type Benefits Limitations Compatibility

LMP meta-model Mutant execution Avoids recompilation cost Specific to language interpreters and
requires paradigm shift –

Greedy algorithms [41, 42] Test suite reduction Improves recurring test suite execution All mutants must be generated,
compiled and linked ✓

Test prioritization [43, 44] Test suite reduction Improves recurring test suite execution All mutants must be generated,
compiled and linked ✓

Compiler integration [45] Mutant execution Nice trade-off between source code
and bytecode

All mutants must be generated at the
same time ✗

Sufficient operators [46, 47, 48] Mutant execution Prevents the generation of redundant
and equivalent mutants

Sufficient operators must be defined
for each language on a case-by-case
basis

✓

Predictive mutation testing [49] Mutant execution Predicts mutation testing results
without executing mutants

The effectiveness depends on the
quality and the size of the training set ✓

Second order mutants [50] Mutant execution Number of mutants is almost halved All mutants must be generated at the
same time ✓

Evolutionary algorithms [51] Mutant execution Generation of effective and hard to kill
mutants

The entire test suite must be executed
against all the mutants ✓

Weak mutation testing [52] Mutant execution Much less test suite execution is
required

Less effective than strong mutation
testing and not viable for critical
applications

✓

Table 1: Comparison among mutation testing approaches. For each approach, the table summarizes its benefits and limitations, as well as its capability to be used
jointly with the LMP resolution meta-model.

3.4. Comparison with the State-of-the-Art

Mutation testing is intuitively expensive because it requires
to run many tests against many mutants. Thus, we can distin-
guish between two types of approaches that try to reduce the
mutation testing cost: approaches that save on the cost of run-
ning the test suite and the (more common) approaches that save
on the cost of generating or executing mutants. Our meta-model
falls under the second category. In this section, we discuss sev-
eral approaches from each of the two categories and compare
them with our LMP resolution meta-model. This comparison is
summarized in Table 1.

Saving on test suite execution. For each mutant that can-
not be killed, the entire test suite is executed. For each mutant
that can be killed, several tests are potentially executed before
running one that actually kills the mutant. Minimizing a test
suite has been shown to be NP-hard [53], although there are
approaches that try to save on test suite execution with greedy
algorithms [41, 42] and test prioritization techniques [43, 44].
Compared to the LMP resolution meta-model, these techniques
have the drawback that performing a test selection still requires
generating, compiling, and linking all the mutants to execute
them against the reduced test suite. However, they are benefi-
cial in the long run, since the reduced test suite can be used to
perform recurring builds.

Saving on mutant execution. Approaches that try to re-
duce the cost of generating, compiling and executing several
mutants are more numerous and diverse.

Compiler integrated mutation testing frameworks such as
Major [45] directly modify the program’s abstract syntax tree
to avoid modification of the source code or of an intermedi-
ate representation and to allow for specific optimizations. This

trade-off gives access to more semantic information while pre-
venting the mutation of desugared code. However, since the
mutation is integrated in the compiler, all of the mutants have
to be generated at once to avoid the cost of recompilation.

Several contributions investigate selective mutation using
sufficient mutation operators [46, 47, 48] to avoid the gener-
ation of redundant mutants and equivalent mutants. Equivalent
and subsumed mutants can also be prevented using refinement
relations over the model of two different mutants [54, 55]. This
prevents wasting resources and skewing the mutant adequacy
score. In fact, research has shown that—even for a random se-
lection of the mutants—a 100 percent mutation adequacy for
10 percent of the mutants is nearly adequate for a full mutation
analysis [56]. This can be improved upon using sufficient op-
erators. However, the suitability of mutation operators might
depend on the programming language [56] and therefore a new
set of sufficient operators must be defined for each language.

Predictive mutation testing [49] reduces the effectiveness
but improves the efficiency of mutation testing by not executing
the mutants at all. Instead, it uses machine learning techniques
to predict the mutation adequacy score: the first versions of a
program and its mutants are used as a training set, then the clas-
sification model is used to predict whether any new mutant is
killed or survived based on the same feature used to train the
model. The main limitation to this approach is its dependency
to the training set: a bigger training set can improve the effec-
tiveness of this approach but it might reduce its efficiency. Con-
versely, a smaller training set may cause excessive effectiveness
loss.

Following a different approach [50], two sets of first-order
mutants can be combined to produce a set of second-order mu-

8

tants to reduce the number of equivalent mutants, which is usu-
ally relatively high for first-order mutants. Although the appli-
cation of mutation operators is not necessarily commutative, the
same approach can be used to almost halve the number of mu-
tants in a set depending on the algorithm. However, this tech-
nique requires that all of the first-order mutants are generated
in advance and also the execution of an additional algorithm to
produce the second-order mutants.

Evolutionary mutation testing [51] is a technique based on
genetic algorithms that measures the usefulness of a mutant ac-
cording to a fitness function (the execution matrix) to produce
less but more effective mutants. The algorithm favors equiv-
alent and difficult to kill mutants and penalizes set of mutants
that are killed by the same tests. The problem with this ap-
proach is that the entire test suite must be executed on all of the
mutants on each generation to measure the fitness function even
if a mutant has already been killed.

Weak mutation testing [52] is a well-known technique to
reduce the cost of mutation testing. Using weak mutation test-
ing, much less program execution is required, since the result
can be determined prior to the test completing its execution; in-
stead, a mutant can be killed as soon as it causes an internal
state that differs from the internal state of the base program.
This technique is usually considered to be less effective than
the traditional strong mutation testing (hence the term “weak”),
although empirical evidence shows that it can be used as an ef-
fective alternative of non-critical applications [57]. Moreover,
it requires additional infrastructure to be able to inspect the ex-
ecution state at any time.

Compatibility with the LMP. Despite their differences,
each of the approaches presented in this section work at differ-
ent levels of abstractions and can often be used jointly. Some
works, such as [50], already discussed the compatibility be-
tween their approach and other techniques in literature. In fact,
the LMP resolution meta-model is compatible with most of the
presented approaches: using them in conjunction would allow
to leverage the strengths of both techniques to further improve
on the cost reduction. Since the meta-model does not manipu-
late the test suite, it is compatible with any test suite reduction
technique: the main limitation of the latter is that all mutants
must be generated and compiled even for recurring execution
of the test suite. This limitation could be avoided combining
test reduction techniques with the meta-model. Any application
of the LMP resolution meta-model would benefit by the defini-
tion of sufficient operators to be used in the process depending
on the language workbench. Predictive mutation testing has
no requirements over the underlying architecture and could be
used to predict the execution results of mutants generated using
the LMP resolution meta-model. However, it should be noted
that the latter requires a shift in the programming paradigm and
therefore the predictive mutation testing technique may not be
applicable due to lack of a suitable training set. All the algo-
rithms used to generate second-order mutants discussed in [50]
can be used over mutants generated by our meta-model; a com-
bination of the two approaches would even be more beneficial
since it prevents the necessity of generating all the mutants in
advance. Evolutionary algorithms could be combined with the

LMP resolution meta-model to produce hard to kill mutants;
moreover, Domínguez-Jiménez et al.’s work [51] also uses a
fitness function based on a matrix that is very similar to the one
we used in this work (Sect. 5). Finally, weak mutation testing
can be combined with the LMP resolution meta-model thanks
to the language workbenches capabilities of automatically gen-
erating a debugger for any mutant [58]. The debugger can then
be used to inspect the internal execution state: if it differs from
that of the base language then the test suite execution is termi-
nated. According to our comparison and as reported in Table 1,
the only approach that is not compatible with the LMP resolu-
tion meta-model is the integration of mutation operators inside
the compiler, because in the meta-model the compiler is exe-
cuted only once at the beginning of the process, whereas mu-
tants are generated later at runtime. However, it should be noted
that the meta-model is based on the capabilities of the language
workbenches, that can be used to create language interpreters
and compilers with integrated mutation support.

4. Language Mutation in Practice

In this section, we show the application of the conceptual
meta-model proposed in Sect. 3.2 to a concrete use case. This
section is not meant to restrict the applicability of the meta-
model to a specific technological framework and it should in-
stead be used as a complement to our contribution. This section
also includes an introduction to Neverlang and its language
workbench capabilities: this background information can be
used as a reference for the evaluation case study presented in
Sect. 5. There exist several language workbenches with a differ-
ent approach to modularization. Instantiating the meta-model to
each existing language workbench is beyond the scope of this
work, however the end of this section provides some hints on
how to generalize the application of the meta-model to other
language workbenches.

4.1. The Neverlang Language Workbench

In this section, we introduce the basic concepts of the Nev-
erlang language workbench and its syntax.

Overview. Neverlang [59, 60, 61] is a language work-
bench for the development of programming languages compil-
ers, interpreters and their ecosystem in a modular way. Never-
lang embraces the feature-oriented programming paradigm and
LPL engineering since the entire development cycle is based on
the language feature concept [62]. Language features are im-
plemented in compilation units called slices. Slices implement
language features by performing composition between several
units called modules. The composition mechanism is syntax-
driven: the language grammar is used for selecting insertion
points where semantic actions are plugged in. The semantics
are implemented through inherited and synthesized attributes
using the syntax directed translation technique [63].

Neverlang Syntax. Listing 2 showcases the basics of Nev-
erlang’s syntax through the implementation of the Backup lan-
guage feature of the LogLang LPL. LogLang [24] is a simple
DSL that describes tasks for a log rotating tool similar to the

9

1 module Backup {

2 reference syntax {

3 provides { Cmd: statement; }

4 requires { String; }

5 Backup ^ "backup" String String;

6 Cmd ^ Backup;

7 categories : Keyword = { "backup" };

8 in-buckets : $1 ^ { Files }, $2 ^ { Files };

9 out-buckets : $1 _ { Files }, $2 _ { Files };

10 }

11 role(execution) {

12 0 .{

13 String src = $1.string, dest = $2.string;

14 $$FileOp.backup(src, dest);

15 }.

16 }

17 }

18 slice BackupSlice {

19 concrete syntax from Backup

20 module Backup with role execution

21 module BackupPermCheck with role permissions

22 }

24 language LogLang {

25 slices BackupSlice RemoveSlice RenameSlice

26 MergeSlice Task Main LogLangTypes

27 endemic slices FileOpEndemic PermEndemic

28 roles syntax < terminal-evaluation

29 < permissions

30 : execution

31 }

Listing 2: Syntax and semantics for the backup task.

Unix logrotate utility with a modular Neverlang implementa-
tion. The Backup module declares a reference syntax for the
backup task (lines 2-10). The reference syntax of a module also
piggybacks [58] meta-data for the deployment of basic IDE ser-
vices, such as syntax highlighting (the categories on line 7) and
code-completion (the input and output buckets on lines 8-9).
Semantic actions (lines 12-15) are attached to nonterminals of
the productions using the syntax-driven mechanism. Nontermi-
nals are numbered according to their position in the reference
syntax: numbering starts with 0 and grows from the top left
to the bottom right.5 Thus, the Backup nonterminal on line 5
is referred to as $0 and the two String nonterminals on the
right-hand side of the production as $1 and $2, respectively.
Then, the head of the second production (Cmd) will be $3 and
the righ-hand nonterminal (Backup) will be $4. Grammar at-
tributes are accessed by name using a dot notation (as done in
line 13) over the nonterminals which are indexed as discussed
above. The slice compilation unit embodies the language fea-
ture concept and drives the composition between syntactic and
semantic assets while adapting possibly incompatible assets. In
this example, the BackupSlice (lines 18-22) declares that it will
promote the reference syntax from the Backup module to con-
crete syntax for our language (line 19) and combine it with the
semantics actions from two separate roles of two different mod-
ules (lines 20-21). Finally, the language descriptor (lines 24-

5Neverlang also provides a labeling mechanism for productions, so that
nonterminals are referred via an offset from such a label, e.g., $BKP[1] is the
first nonterminal from the right-hand side of the BKP production.

31) indicates which slices should be composed to generate the
language interpreter (lines 25-26). Therefore, composition in
Neverlang is twofold: 1) between modules, which yields slices,
and 2) between slices, which yields a language implementation.
Composition is also supported through bundles (not shown in
Listing 2) that behave just as languages but they can be embed-
ded in other languages. As a result of the composition mecha-
nism, the grammar fragments from each concrete syntax of ev-
ery slice are merged to generate the complete language parser.
Any gaps in the grammar can be filled by using the rename

mechanism: any nonterminal can be renamed; in this case the
goal is to match a nonterminal provided by another production
in the grammar. Semantic actions are executed with regards to
the program’s abstract syntax tree and roles are executed ac-
cording to the roles clause (line 28) of the language descrip-
tor. In the example, permission is executed after parsing and
terminal-evaluation. The language clause can also declare
endemic slices—i.e., semantic assets with no syntax that are
shared across multiple compilation phases (line 27). Please
see [10] for a complete overview of Neverlang.

4.2. Neverlang Workbench Capabilities

In this section, we discuss how the modularization approach
chosen by Neverlang is compliant to the no modification or
duplication, separate compilation and independent mutability
constraints of the LMP due to its composition mechanism and
workbench capabilities.

Overview. The output of the mutation testing process pre-
sented in Sect. 3.2 is a LPL of language mutants. Neverlang
supports LPL engineering thanks to AiDE [26, 62]. AiDE is
a variability management tool tailored for the development of
LPLs. It extracts information provided by Neverlang modules
(lines 3-4 of Listing 2) to determine the language features and
their dependencies and synthesizes the corresponding FM for a
given language family [10] in a bottom-up fashion using the al-
gorithm introduced in [25] and refined in [64]. In the context of
the LMP, mutated language features are handled by the AiDE al-
gorithm to produce the FM of language mutant family, whereas
the AiDE composer generates variants of the language mutant
family. Moreover, AiDE tracks all unresolved dependencies and
guides the language deployer [62] throughout the configuration
mechanism. AiDE is currently integrated with FeatureIDE6 and
the Gradle build tool7 to ease the generation of Java artifacts
and the deployment of a language variant implementation.

While the LPL capabilities are useful to support the gener-
ation and deployment of language families, they do not directly
address any of the constraints of the LMP. Instead, in the fol-
lowing paragraphs we discuss each constraint and their relation
to the workbench capabilities of Neverlang. The mutability in
both dimensions constraint is closely related to the chosen mu-
tation operators and will be discussed in the following section.

6https://featureide.github.io/
7https://gradle.org/

10

https://featureide.github.io/
https://gradle.org/

No modification or duplication. Neverlang slices pro-
vide mechanisms to adapt existing and initially incompatible
language assets to drive their composition into a language fea-
ture without modifying the original code. For instance, the
reference syntax of a module can be adapted to an incom-
patible semantic asset using the mapping keyword [10] which
remaps the nonterminal references in a semantic action to a
different nonterminal. Similarly, slices can attach and detach
semantic roles from a language feature using the with role

keyword, as shown on line 21 of Listing 2. In both cases, the
semantics of a language feature are adapted to a different con-
text without accessing any of the original code and using glue
code only—that of the slice compilation unit. Neverlang lan-
guages can adapt language features too: the rename mechanism
discussed in Sect. 4.1 adapts incompatible grammar fragments
by renaming nonterminals in their productions. These compo-
sition mechanisms were intended to improve the reusability of
language artifacts in contexts that differ from what they were
originally designed for, however they can be leveraged to mu-
tate the syntax and the semantics of a base language without
modifying the original code and thus they address the no modi-
fication or duplication constraint of the LMP.

Separate compilation. The Neverlang compiler translates
Neverlang modules and other language artifacts into Java code
that can then be compiled by the stock Java compiler. How-
ever, given a Neverlang module, its reference syntax and each
semantic action declared in the module is translated into a dif-
ferent Java class [10] and has no references to the other ele-
ments in the same module or in other modules. This approach
allows for Neverlang modules to be compiled only once and
then to be referenced by the glue code in slices and languages.
Whenever a new language feature or a new language are gen-
erated, only the binaries of the composed syntax and semantics
are needed, so no recompilation of modules or existing slices
is encompassed. According to the no modification or duplica-
tion constraint, each mutated feature is implemented as a new
slice and therefore creating a new mutant does not encompass
re-compiling the syntax nor the semantics of the base language.

Independent mutability. Each Neverlang slice is an in-
dependent artifact that embodies a language feature. As it was
shown in Listing 2, lines 24-31, the language construct handles
the composition among all the language features to generate
a language implementation. Instead, each slice is unaware of
which languages it will be used in. Therefore, using two inde-
pendently mutated features jointly can be achieved by creating
a new language unit in which the two base features are substi-
tuted by the two mutated features. Notice that the evaluation in
Sect. 5 focuses on first-order mutants and therefore there will be
no instances in which two mutated features will be used jointly
in the same language mutant.

4.3. Mutation Operators
In this section, we instantiate each of the three mutation

operator categories discussed in Sect. 2.3. The mutation oper-
ators are designed to satisfy the mutability in both dimensions
constraint by performing mutations either over the syntactic di-
mension, the semantic dimension or both.

Operator class Neverlang unit Category

Rename Language Syntax
Attribute Mapping Slice Semantics
Mapping Slice Semantics
Duplicate Role Slice Semantics
Remove Role Slice Semantics
Remove Slice Language Syntax+Semantics

Table 2: Mutation operators in Neverlang. For each operator we report the
compilation unit that is leveraged to perform the mutation without access to
source code and which of the three categories it pertains to.

Overview. As discussed in Sect. 3.2, the mutation opera-
tors are functions over language features. In Neverlang the fo-
cus will be on slices: the mutation operators in this section per-
form at slice level without modifying the composed modules.
Other language workbenches have different composition mech-
anisms and will require different mutation operators. We exem-
plify six mutation operators, each belonging to one of the three
categories introduced before: along the dimensions of syntax,
semantics or both. All mutation operators can be applied in-
dependently at runtime, without any duplication nor additional
compilation thanks to the language workbench capabilities dis-
cussed in Sect. 4.2.

For each mutation operator, we exemplify a mutation oper-
ation: while the source code is never modified or even accessed,
each example shows the change that the operation would make
if the mutation was performed at source-level. The goal is
to show that these mutation operators adhere to the compe-
tent programmer hypothesis: each fault always affects only one
line of code with small mistakes that a competent programmer
could reasonably make. We highlight in green any portion of
code that would be added and in red any portion of code that
would be removed. For each mutation operator we indicate
between parenthesis its pertaining category: syntactic dimen-
sion (syntax), semantic dimension (semantics) or both (syn-
tax+semantics). Moreover, we show that the family of first-
order mutants generated by a mutation operator is always closed
by providing an upper bound to the number of possible opera-
tions that can be performed with a single mutation operator.
The same operators are summarized in Table 2.

Rename (syntax). This mutation operator takes a nonter-
minal of the language grammar and renames it into any other
nonterminal of the same grammar. A mutant generated by a mu-
tation operation of this type can cause several different changes
to the grammar, such as changing the priority among opera-
tors or their associativity, as well as the type of recursion or the
type of tokens accepted by a grammar fragment. A grammar
can even become ambiguous, which effects were discussed in
Sect. 3.3. For instance, in a standard term-factor grammar [63]
renaming the <factor> nonterminal into the <term> nontermi-
nal causes addition and multiplication to have the same priority.

To generate a mutation operation for the Rename operator
in a base language with n nonterminals, it means to choose a
source nonterminal among the n available, then to choose a tar-
get nonterminal among the n− 1 remaining ones. Therefore the

11

upper bound in the number of possible first-order mutants of
this type is n(n − 1).

A Rename mutation operation would be implemented by
using only glue code in Neverlang as follows. In the example,
the grammar of the Expressions language was mutated on line
4 by adding a rename: all occurrences of the Factor nonterminal
were renamed to Term. The rest of the language implementa-
tion is unchanged.

1 language Expressions {

2 slices Addition Multiplication

3 roles syntax < evaluation

4 rename { Factor _ Term; }

5 }

Attribute Mapping (semantics). This mutation operator takes
an attribute of the attribute grammar and maps it to a different
attribute in the context of a fragment of the semantics. This can
cause several faulty mutants in which the invalid state is caused
because a required attribute is missing or replaced by a differ-
ent one. For instance, mapping the value attribute to the name

attribute in a fragment dedicated to the evaluation of variables
may cause the syntax-directed evaluation to forward the name
of the variable instead of its value, and eventually to hinder type
inference.

To generate a mutation operation for the Attribute Mapping
operator in a base language, it means to choose an element of
the EBNF grammar and then a pair of non-equal attributes of
the attribute grammar. The elements of the EBNF grammar are
the list of all terminal and nonterminal symbols appearing in all
the productions of the grammar. If the EBNF grammar element
must be chosen among m elements and the pair of attributes
among n elements, the upper bound in the number of possible
first-order mutants of this type is mn(n − 1).

The attribute mapping would be implemented by using only
glue code in Neverlang as follows. In the example, the Vari-
ables slice is obtained by composing the VarSyntax syntactic
asset and the evaluation role of the VarSemantics semantic as-
set, however the latter was mutated by remapping the value at-
tribute for the nonterminal in position $1 to name by adding the
mapping on line 4.

1 slice Variables {

2 concrete syntax from VarSyntax

3 module VarSemantics with role evaluation

4 mapping attributes { $1.value ⇒ name }

5 }

Mapping (semantics). This mutation operator makes a frag-
ment of the semantics reference a different nonterminal. This
can cause all kinds of unpredictable behaviors, such as swap-
ping a dividend with a divisor in the context of a division.

To generate a mutation operation for the Mapping opera-
tor in a base language with n slices, it means to choose one of
the n slices and then to perform a permutation of the nonter-
minals present in its grammar fragment. Therefore, the upper
bound in the number of possible first-order mutants of this type

is
∑n

i=1(mi !), where mi is the number of nonterminals present in
the grammar fragment of the i-th slice.

Mapping would be implemented by using only glue code
in Neverlang as follows. In the example, the Division slice is
obtained by composing the DivSyntax syntactic asset and the
evaluation role of the DivSemantics semantic asset, however
the latter was mutated by performing a permutation over the
references to the nonterminals in the grammar. In this case, the
nonterminal in position $1 was replaced with the nonterminal
in position $2 and vice-versa by adding the mapping on line 4.

1 slice Division {

2 concrete syntax from DivSyntax

3 module DivSemantics with role evaluation

4 mapping { 1 ⇒ 2, 2 ⇒ 1 }

5 }

Duplicate Role (semantics). This mutation operator takes
a language feature and duplicates (part of) its semantics—which
are called roles in Neverlang—so that they are executed twice.
Since in attribute grammars the semantics are stateful and de-
pend on the abstract syntax tree visit order [63], this mutant
may cause unpredictable behaviors. For instance, freeing the
same pointer twice in C is a reasonable mistake, but one that
can cause crashes and heap corruption.

To generate a mutation operation for the Duplicate Role op-
erator in a base language with n slices, it means to choose one
of the n slices and then to choose which of its roles must be du-
plicated. Therefore, the upper bound in the number of possible
first-order mutants of this type is

∑n
i=1 ri, where ri is the number

of roles present in the i-th slice.
Role duplication would be implemented using only glue

code in Neverlang as follows. In the example, the Free slice is
obtained by composing the FreeSyntax syntactic asset with the
type-checking and compile roles of the FreeSemantics seman-
tic asset, however the compile role was duplicated, as shown on
line 4.

1 slice Free {

2 concrete syntax from FreeSyntax

3 module FreeSemantics with role

4 type-checking compile compile

5 }

Remove Role (semantics). This mutation operator takes a
language feature and removes (part of) its semantics. Removing
a role can cause some of the grammar attributes not to be prop-
erly inherited or synthesized or missing entire code fragments.
Taking on the same example as before, not freeing a memory
fragment allocated on the heap is a very common mistake.

To generate a mutation operation for the Remove Role op-
erator in a base language with n slices, it means to choose one
of the n slices and then to choose which of its roles must be
removed. Therefore, the upper bound in the number of possible
first-order mutants of this type is

∑n
i=1 ri, where n is the number

of slices in the language and ri is the number of roles present in
the i-th slice.

12

Role removal would be implemented by using only glue
code in Neverlang as follows. In the example, the Free slice
is obtained by composing the FreeSyntax syntactic asset with
the type-checking role of the FreeSemantics semantic asset.
Instead, the compile role was removed, as shown by the red
box on line 4.

1 slice Free {

2 concrete syntax from FreeSyntax

3 module FreeSemantics with role

4 type-checking compile

5 }

Remove Slice (syntax+semantics). This mutation opera-
tor removes both the syntax and the semantics of a language
feature from the base language. This should usually result in
a parsing error for every source program that contains that lan-
guage feature. A fault of this type may seem more prominent
then any of the others we introduced so far. It should never
remain unnoticed and the competent programmer should never
make such a mistake in the first place. However, this is not al-
ways the case in real-world situations and some faults can be
very subtle. Small mistakes in the grammar definition of the
language are enough to render entire portions of the grammar
unreachable. Moreover, failing to properly test more obscure
language features and less used operators—such as the shift op-
erators in Java—is not uncommon: if the test suite is not varied
enough then the removed slice might never be tested and the
corresponding mutant might not be killed.

To generate a mutation operation for the Remove Slice op-
erator in a base language with n slices, it means to choose one
of the n slices to be removed. Therefore, the upper bound in the
number of possible first-order mutants of this type is n.

Slice removal would be implemented by using only glue
code in Neverlang as follows. In the example, the base Expres-
sions language is made of four language features. However, the
language was mutated by removing the RightShift slice from
the language as shown on line 5.

1 language Expressions {

2 slices

3 Addition

4 Multiplication

5 RightShift

6 LeftShift

7 roles syntax < evaluation

8 }

Operators in other workbenches. Each language work-
bench has a different approach to modularization and differ-
ent workbench capabilities. Therefore, the mutation operators
discussed in this section cannot be used by different language
workbenches as they are, since some of the concepts are not
shared among workbenches. However, the general meta-model
should be applicable as long as the workbench supports the
separate compilation of its artifacts. In fact, the only differ-
ence among two instances of the meta-model applied over two
language workbenches should be the chosen mutation oper-
ators whereas the same mutation operator categories should

always be applicable: despite their differences, all language
workbenches have their definition of syntactic and semantic ar-
tifacts that can be the target of a mutation operation. Therefore,
each language workbench should leverage its own peculiarities
to implement the meta-model presented in Sect. 3.2 and to sat-
isfy the four constraints of the LMP presented in Sect. 3.1. This
can be achieved by defining different mutation operators that
target syntactic artifacts, semantic artifacts or both. Table 3
hints at some well-known language workbenches and the arti-
facts that could be targetted by the mutation operators. This list
is not meant to be exhaustive and other language workbenches
could provide a different solution to the LMP.

5. Evaluation Case Study

Overview. In this section, we assess the Neverlang im-
plementation of the meta-model outlined in Sect. 3.2 and de-
tailed in Sect. 4. The SUT will be a family of mutants of a Nev-
erlang implementation of the ECMAScript interpreter obtained
by applying the mutation operators introduced in Sect. 4.3 on
the language features of the base language. First, we frame the
scope of this evaluation by introducing the research questions
that we are trying to answer, then we review how the experi-
ment was setup and report the results. Finally, we answer the
research questions, discuss any threats to the validity of this
evaluation and overview the lessons we learned in this work.
This section contains the following contributions:
1. it shows the applicability of the approach in a concrete sce-

nario and
2. it assesses a set of mutation operators that are compliant to

the LMP resolution meta-model and that can be used to eval-
uate the mutation adequacy of the test suites for Neverlang-
based language interpreters.
Research Questions. This evaluation is validated by an-

swering the following research questions:
RQ1. Which Neverlang sourceless mutation operators produce

variants of the language mutant family that are reason-
ably hard to discover and kill?

RQ2. Are mutation operators producing different language mu-
tant variants? Can we obtain similar results by reducing
the number of classes?

To answer RQ1 we will determine if the mutation operators ap-
plied at language feature level are viable: if killing a mutant is
trivial, then the corresponding mutation operator might not be
significant for the quality assessment of a test suite in a real sce-
nario. The triviality will be measured in terms of the mutation
score of the test suite and in terms of the probability with which
each test is capable of killing different variants of the mutant
family. To answer RQ2 we will determine how varied the mu-
tation operators are—i.e., if different mutation operations pro-
duce different faulty language variants and therefore they are
killed by different tests. Given the set of tests that killed each
variant of the family, the similarity between two variants can
be measured in terms of the Jaccard similarity between the two
sets. A similar assumption was made by Shin et al. when they
introduced the distinguishing mutation adequacy criterion [70]

13

Language workbench Syntax Semantics Syntax+Semantics

Spoofax [65] SDF3 grammar specification Rules and strategies Strategies pattern matching
MPS [66] Editor Behavior Concept extension + overriding
Melange [67] Ecore metamodel Kermeta aspects Renaming + aspect extension
MontiCore [68] Syntax tree node extension Attribute injection Associations
Rascal [69] Abstract data type adapters Function wrappers Pattern-based dispatch mechanism

Table 3: Possible targets of a mutation operator class in several language workbenches.

based on the idea that mutants can be distinguished from each
other by the set of tests that kills them.

5.1. Setup
Hardware setup. All experiments were run on a 64 bits

Arch Linux machine with an Intel Core i7-1065G7 3.9GHz pro-
cessor and a 16 GB RAM. Please note that the hardware setup
does not effect this evaluation. However, re-compiling the EC-
MAScript interpreter with Neverlang takes about 7 seconds on
average on this machine. Thus, avoiding to re-compile all the
mutants by applying the mutation operators at runtime saves
about 7 seconds on each run, for a total of about 2 hours across
all 1000 mutants. Different hardware may yield different gains.

Software setup. All the experiments were run using a cus-
tom mutation testing framework based on Neverlang 2.2.0 that
handles the generation and application of the sourceless muta-
tion operators over the base ECMAScript implementation. The
experiment execution was automated using scripts written in
GNU bash 5.1.16 and Python 3.10.2.

Data Setup. The base language implementation on which
the mutations are performed is a Neverlang implementation of
the ECMAScript interpreter [31]—which we did not modify in
any way. The data for the evaluation were obtained from the
Sputnik ECMA-262 specification conformance test suite8 used
for testing the conformance of the V8 JavaScript engine used
in Google Chrome. The test suite contains 5538 tests. Since
the Neverlang implementation of ECMAScript does not pro-
vide any JavaScript standard library function, we filtered out
all tests that were not compliant with the base language, for a
total of 2137 remaining tests.

Experimental Setup. For this evaluation, we generated
a family of 1000 different first-order language mutants of EC-
MAScript by applying a random instance of one of the six mu-
tation operator classes over the base language implementation.
The mutants were generated in 30 batches, each with a different
random seed. For each mutant, we ran the 2137 selected tests
from the Sputnik test suite and stored the result. We also kept
track of the class of each mutant using additional meta-data9

. Finally, we loaded the results into a 2137 × 1000 matrix, in
which position (i, j) was set to 1 if the i-th test killed the j-th
mutant and 0 otherwise. All the results reported in Sect. 5.2 are
obtained by analyzing this matrix.

8https://code.google.com/archive/p/sputniktests/
9The dataset containing all the results is available at https://doi.org/10.

5281/zenodo.7024829.

5.2. Results
Let us introduce a notation abuse we will use throughout

this section for brevity and better readability: whenever we use
the term mutant class, we actually refer to the class of first-
order mutants generated by the corresponding mutation opera-
tors. For instance, the Remove Slice mutant class is the class
of first-order language mutants that were obtained performing
a Remove Slice mutation operation over the base ECMAScript
implementation. Notice that when we state that two mutants are
similar or redundant, we mean that they are likely to be killed
by the same tests unless stated otherwise.

RQ1. A good mutation operator class should produce mu-
tants that find a trade-off in the number of tests capable of
killing it. If the number of tests that kill the mutant is too high,
then the mutant could be trivial and therefore worthless to eval-
uate a test suite. Conversely, if no test can kill the mutant then
maybe the mutant did not introduce any fault at all, as we intro-
duced in Sect. 1 with the mutant equivalent problem. Testing
the mutation operators introduced in Sect. 4.3 against the Sput-
nik conformance test suite, we expect the test suite to be able to
kill all generated mutants.

Fig. 3 summarizes the results of the evaluation. The first
row depicts the number of survived mutants with respect to the
number of tests in the test suite. The second row depicts the mu-
tation adequacy score of the test suite with respect to the num-
ber of tests in the test suite. The left column shows the results
divided by mutant class, whereas the right column contains the
overall results. We expect the well-known Sputnik test suite to
be mutation adequate. In general, a test suite is considered to be
mutation adequate if the mutation score is 1; this requirement
is relaxed when stubborn mutants are present [71]. The results
meets our expectations and the test suite scores a mutation ad-
equacy score of 1 when considering all the mutants and all the
tests of the test suite. However, in this study we are not inter-
ested in the evaluation of the test suite, which we assume to be
reliable. Instead, we evaluate the mutation operators: the mu-
tation score is used as an indicator of how much instances of a
mutant class are hard to kill. The higher the mutation score, the
easier the instances of a class are to kill; a lower mutation score
is desirable because it means that the mutant is harder to kill.
Therefore, Fig. 3 also shows the effect that reducing test suite
size10 has over the number of survived mutants and the corre-
sponding mutation score. All classes show similar results: the

10For each test suite size on the x axis, the corresponding y value was calcu-
lated over 30 random runs.

14

https://code.google.com/archive/p/sputniktests/
https://doi.org/10.5281/zenodo.7024829
https://doi.org/10.5281/zenodo.7024829

0

50

100

150

Su
rv

iv
ed

 m
ut

an
ts

Rename
Duplicate Role
Attribute Mapping
Mapping
Remove Role
Remove Slice

0

200

400

600

800

1000

Su
rv

iv
ed

 m
ut

an
ts

Overall

0 500 1000 1500 2000
Test suite size

0.0

0.2

0.4

0.6

0.8

1.0

M
ut

at
io

n
Sc

or
e

Rename
Duplicate Role
Attribute Mapping
Mapping
Remove Role
Remove Slice

0 500 1000 1500 2000
Test suite size

0.0

0.2

0.4

0.6

0.8

1.0

M
ut

at
io

n
Sc

or
e

750 700300

Overall

Figure 3: Number of survived mutants and mutation score for each of the considered mutation operators.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

Remove Slice

Mapping

Remove Role

Duplicate Role

Attribute Mapping

Rename

Overall
0.00

0.09

0.25

0.46

0.72

1.00

Figure 4: Probability with which each selected test kills a mutant of each class.

0.0 0.2 0.4 0.6 0.8 1.0

Overall

Rename

Attribute Mapping

Duplicate Role

Remove Role

Mapping

Remove Slice

Figure 5: Box plot representing the locality, spread and skewness of the results for each of the six Neverlang sourceless language mutation operators.

15

Attribute Mapping

Mapping

Rename

Duplicate Role

Remove Role

Remove Slice

Attribute Mapping

Mapping

Rename

Duplicate Role

Remove Role

Remove Slice

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Average Jaccard similarity coefficient for all mutation operator
classes.

test suite is capable of consistently killing most of the mutants
and to achieve a mutation score of 1 when the number of tests is
greater then 750—as shown by the black dashed line in Fig. 3.
The only exception is the Remove Slice class, that can be killed
consistently by a smaller test suite—with less than 300 tests,
as shown by the red dashed line in Fig. 3. When considering
all classes, most mutants are killed by a test suite of more than
700 tests overall and the mutation score is consistently 1 at over
1500 tests.

Fig. 4 and Fig. 5 focus on different aspects of this evalua-
tion. Fig. 4 highlights the average probability with which each
individual test was capable of discovering and killing a mutant
of each class. The brighter the color, the higher the probabil-
ity. There are tests that scored a very high probability on all
mutant classes, as shown by the clear vertical stripes in Fig. 4;
these tests fall under DeMillo et al.’s definition of coupling ef-
fect: «test data that distinguishes all programs differing from a
correct one by only simple errors is so sensitive that it also im-
plicitly distinguishes more complex errors» [14]. Fig. 4 visu-
ally confirms the results from Fig. 3: the Remove Slice mutants
are the easiest to kill and Rename are the hardest to kill, with
the other classes ranging in between. In Fig. 5, each box does
not only represent the median probability of killing a mutant of
each class, but also the locality, spread and skewness of the re-
sults. Again, Remove Slice has the highest median (0.44) and
Rename has the lowest one (0.00). The outliers for each class
match with the tests with high killing probability from Fig. 4.
Otherwise, an higher median probability is always matched to
higher quartile coefficient of dispersion for all classes. We do
not report all these results in a table to improve readability by
avoiding redundancy: all these pieces of information were di-
rectly obtained from Fig. 5 and add very little to this evaluation.
Please refer to the companion dataset9 for the results of all tests.

RQ2. Recall that each column of the 2137 × 1000 matrix
we introduced in Sect. 5.1 is a binary array. In this context, each
mutant can be seen as a set M whose indicator function is the
corresponding column of the matrix:

1M(t) =

1 if t killed M
0 otherwise.

By extension, given the test set T :

M = {t ∈ T | t killed M} .

Now, given the sets for two mutants M1 and M2 defined as
above, the Jaccard similarity coefficient (also known as Jaccard
index) between the two sets is calculated as:

J(M1,M2) =
|M1 ∩ M2|

|M1 ∪ M2|
.

We cannot tabulate the results due to space constraints so please
refer to the companion dataset9 to replicate the results. Instead,
Fig. 6 graphically shows the Jaccard similarity coefficient be-
tween each pair of mutants, divided by mutation operator class.
The brighter the color, the higher the coefficient and therefore
the corresponding mutants obtained similar results—i.e., they
were killed by a similar set of tests. Notice that of course
the matrix is symmetric and all the values on the diagonal are
equal to 1 by construction. Fig. 6 reports the mutation operator
classes on the two axes. The Remove Slice and Remove Role
are the classes that show the lowest similarity coefficient, both
within the class and with instances of other classes. The other
classes have higher similarity with each other, but overall Fig. 6
shows that the similarity between mutants of different classes
is usually low despite the presence of some clusters. Instead,
Fig. 7 isolates each of the six classes by highlighting in large de-
tail the sub-matrices along the diagonal of Fig. 6 with the same
color scale. Each sub-matrix represents the similarity between
mutants of the same class. In this case the results show that the
similarity coefficient within the Rename and Mapping classes
is high and that the different mutation operator instances from
these classes might be redundant with each other since they are
killed by the same tests.

5.3. Discussion
RQ1. A viable mutation testing approach must produce

mutants that can be tested without being killed: if killing a mu-
tant is too easy, then that mutant is not useful to improve the
quality of the test suite and artificially skews the mutation score
towards 1. Fig. 4 shows that each test can kill most variants
of the mutant family with a probability below 10%—with the
exception of those from the Remove Slice class. The mutation
operators could be refined in a future work to produce variants
with subtler faults, but this would require a different approach in
which some initial knowledge over the base language is avail-
able, a requirement that is not general enough to be able to solve
the LMP. The current approach already shows that non-trivial
mutants can be created using this general meta-model, without
compiling source code, without an intermediate representation

16

Attribute Mapping Mapping

Rename Duplicate Role

Remove Role Remove Slice

Figure 7: Average Jaccard similarity coefficient for each mutation operator class.

17

and without initial knowledge over the SUT. Based on our eval-
uation and according to Fig. 3, consistently killing a language
mutant requires a test suite of about 700 or more tests. The box
below shows a concise answer to RQ1.

Which Neverlang sourceless mutation operators produce vari-
ants of the language mutant family that are reasonably hard to
discover and kill?
Rename, Duplicate Role, Attribute Mapping, Mapping
and Remove Role mutation operators produce mutants that are
reasonably hard to discover and kill. Most Remove Slice mutants
can be easily killed and should be refined or substituted with different
operators.

RQ2. The Attribute Mapping, Duplicate Role, Remove Role
and Remove Slice mutation operators produce mutants that are
discovered by set of tests with very low similarity. The similar-
ity within the Rename and Mapping mutant classes is very high
according to Fig. 7. Therefore two different mutation opera-
tor instances of the same class are very likely to be redundant
and hard to distinguish [70]. However, the similarity between
a Rename mutant and mutants of any other class is low. The
same goes for the Mapping class. To summarize, the classes
of mutation operators we introduced in this work do not form
a partition: mutants whose similarity with other mutants of the
same class is low, usually also have low similarity with mutants
in other classes and vice versa. The box below shows a concise
answer to RQ2.

Are mutation operator classes from different categories produc-
ing different mutants? Can we obtain similar results by reducing
the number of classes?
The similarity between different classes is low as shown in Fig. 6:
different classes are usually killed by different tests, Therefore we
cannot obtain similar results by reducing the number of classes. How-
ever, the similarity within each class could be reduced considerably,
as shown in Fig. 7.

5.4. Threats to Validity

In this section, we discuss any internal and external threats
that could affect the validity of this evaluation. Following [72],
the internal validity is «the degree to which conclusions can
be drawn about the causal effect of the treatments on the out-
comes», whereas the external validity is «the degree to which
the results of the research can be generalized to the population
under study and other research setting».

Internal Validity. To evaluate the mutation testing approach,
we had to develop a custom mutation testing framework for
Neverlang: this may affect the results of the evaluation. To
stem this validity issue, our framework does not introduce any
additional API and it is only used to automate the generation
of random mutants. This is done with the Random class from
the standard Java library. We also kept track of all the seeds
we used in each batch of experiments to ensure they could be
replicated. The seeds themselves were chosen randomly using
the $RANDOM bash function. To avoid any further internal valid-
ity issues we used a pre-existing ECMAScript implementation
that we did not modify in any way and the well-known Sputnik

test suite. We did not inspect the source code of the test suite;
instead the selection was performed automatically by filtering
any tests that were not compliant with the base language. In
Fig. 3, the selection of a subset of the test suite was also per-
formed at random: we performed 30 random runs for each test
suite size and measured the average adequacy score. Selecting
only test suite subsets may have reduced the coverage of the
test suite, however, this work does not want to evaluate the test
suite but rather test the applicability of the approach. We think
that the evaluation of a very complete and mutation adequate
test suite would yield way less information with regards to used
mutation operator classes. Rather, evaluating an incomplete test
suite by means of the mutation score is more representative of
a real-world application of mutation testing in which the evalu-
ated test suite is the result of an ongoing development process.

External Validity. In this work, we implemented a muta-
tion testing approach based on Neverlang and using a specific
set of mutation operator classes. Then, we evaluated this spe-
cific implementation. The evaluation we performed may there-
fore not be applicable to other research settings. To stem this
threat to validity we specified the LMP without reliance to any
Neverlang-specific concepts. Instead the LMP is an instance of
the LEP, which was a pre-established general problem defined
by a third party. Moreover, all four constraints of the LMP are
general: they use concepts that are applicable to all program-
ming language implementations, such as syntax and seman-
tics, source code and compilation. Despite not being general
to all programming language implementations, the goal of the
LMP is general to all LPL approaches since it only relies on
the concept of language family. Similarly, we outlined a resolu-
tion meta-model (Sect. 3.2) that is based on the same concepts
and not limited to Neverlang. The only limitation is that the
mutation operators are Neverlang-specific and cannot be used
in other language workbenches due to their differences in the
modularization approach. Nonetheless the implementation pre-
sented in Sect. 4 and the evaluation of Sect. 5 prove the ap-
plicability of the meta-model to a real language workbench and
show the mutation testing process of a real language implemen-
tation in such a workbench. We also detailed our evaluation
process so that it can replicated for the evaluation of different
mutation operators in other language workbenches. Finally, we
addressed the general applicability in Table 3, which reports the
concepts from other language workbenches that could be used
as a target for the mutation operators. Yet, the main threat to
the external applicability of our contribution is that, to the best
of our knowledge, no other language workbench fully supports
separate compilation and runtime adaptability. Similarly, not
all language workbenches support LPLs explicitly, which is a
primary concern when considering that the goal of the LMP is
to create a LPL of language mutants. Therefore, most language
workbenches may not be able to satisfy the separate compila-
tion and independent mutability constraints to solve the LMP.
However, the importance of these aspects was already discussed
by Leduc et al. [9] in a context more general than mutation test-
ing. Therefore, any language workbench that wants to solve the
LEP must already satisfy these constraints regardless they also
want to solve the LMP or not. Moreover, we advised alternative

18

solutions, such as generating the entire family of mutants in ad-
vance, a solution that is applicable—although not advised—to
closed mutant families.

5.5. Learned Lessons

By performing this evaluation, we learned that using a lan-
guage workbench that is fully compliant with the LEP eases the
implementation of a mutation approach that solves the LMP.
In the context of Neverlang, we could implement six different
mutation operator classes using pre-existing API and then gen-
erate 1000 random mutants to create a LPL of language mu-
tants. The evaluation shows that non-trivial mutation operators
can be defined and assessed without changes to the original lan-
guage workbench, by leveraging existing composition mecha-
nisms between language features. This duality between lan-
guage features and language mutation is made apparent by the
definition of the LMP as a derivation of the LEP: language ex-
tension and language mutation are similar problems that can be
tackled in a similar way. In this study, we learned that design-
ers should be concerned with the LMP during the early stages of
development to better drive the development of language work-
benches. Due to the relation between LMP and LEP, the same
tools that are used to perform language mutation can also be
used to accommodate the composition between language fea-
tures and therefore to produce standard LPLs. This should in
turn improve the reusability of existing language features due to
flexible composition mechanisms—i.e., through well-designed
custom mutations over the original feature. In fact, the main
limitation of the application of the resolution meta-model to
Neverlang and of the overall evaluation is the problem of gran-
ularity: most mutation testing approaches from literature work
at fine granularity (statement level). Instead, Neverlang com-
position mechanisms work at a coarse granularity: that of lan-
guage feature. Foreseeing the LMP during the design of Never-
lang would have allowed for the definition of more fine-grained
mutation operators. With this work, we learned that language
workbenches should strive to achieve the best of both worlds:
both the LMP and the LEP should be solved using composition
mechanisms that work at feature level but that allow to tweak
the semantics at a fine granularity level. Otherwise, it may be
still beneficial to combine this approach with traditional mu-
tation testing: our approach can be used first to save on the re-
compilation time. Then, once the test suite is mutation adequate
against sourceless mutation operators, fine-grained traditional
mutation operators can be used to introduce subtler faults.

6. Related Work

Overview. This work deals with several different domains,
including adaptive languages, compiler testing and mutation
testing. In this section, we briefly discuss these topics. We
do not discuss the topic of language workbenches because—to
the best of our knowledge—there are no other contributions that
leverage language workbenches to perform the mutation testing
of language implementations.

Adaptable Languages. Cazzola et al. [12] used micro-
languages to evolve an interpreter at runtime through a micro-
dynamic adaptations (µDA) domain-specific language. µDA adap-
tations are similar to the mutation operators introduced in this
work. Kollár and Forgáč [73] presented an adaptive approach
to both program and language modification to support dynamic
evolution. More recently, Jouneaux et al. [74] proposed the
concepts of self-adaptable languages and the L-MODA concep-
tual reference framework that abstract the design, execution and
feedback loop of self-adaptable systems. Yet, to the best of our
knowledge adaptable languages were never used to avoid the
cost of recompilation in any mutation testing approaches.

Mutation Testing. There are several works that try to re-
duce the mutation testing cost, some of which we detailed in
Sect. 3.4. Literature also proposed mutation approaches that
perform at low levels of abstraction. In these approaches mu-
tations are usually applied at compiler intermediate representa-
tion level. The goal is usually to provide multi-language tools,
as opposed to source level (language-specific) mutation approaches.
The LLVM [75] framework is usually the target of the mutation.
Some examples are SRCIROR [76], Mull [77] and the contribu-
tions from Sousa and Sen [78] and from Papadakis et al. [79].
Similarly, JAVALANCHE [80] and PIT [81] manipulate Java
bytecode directly to avoid the cost of recompilation. Mutation
testing in the context of SPLs often relies on model-based muta-
tion operators [82, 83] rather than using the composer to create
mutated products as in our approach. To the best of our knowl-
edge, none of these approaches perform the mutation operators
directly at runtime. However, all the techniques reviewed in this
paragraph are orthogonal to ours and could be used in conjunc-
tion to achieve the best of both worlds. Such an approach using
both sourceless mutation operators and traditional mutation op-
erators will be part of a future work.

Language Testing. Chen et al. [84] recently performed a
survey of the field of compiler testing. According to their classi-
fication, our approach falls under the non-semantics-preserving
mutation approaches category. The authors identified five dif-
ferent approaches in this category. Nagai et al. [85], tested
the validity of C compilers using randomly generated programs
under the assumption that longer expressions are more likely
to induce undefined behavior. Chen et al. [86] used Markov
Chain Monte Carlo sampling to select mutations with higher
chance of triggering compiler bugs. Holler et al. [87] replace
random nonterminals in test cases with expansions of the same
nonterminals according to the language grammar. Garoche et
al. [88] take a complete test suite as input and mutate it to pro-
duce more failure-inducing programs. Groce et al. [89] propose
a similar approach, but with the added goal of achieving some
desired property of the mutated test suite, such as reducing its
size while keeping the same coverage. It should be noted that
these approaches perform mutations over the test suite rather
than on the language implementation and are therefore suited
to different use cases, such as generating a test suite, improv-
ing coverage and detecting more faults. Instead, our approach
modifies the language implementation directly and is therefore
more suited to test suite quality assessment. Moreover, none of
these contributions involves language product lines to the best

19

of our knowledge. Please refer to the aforementioned survey
for a full overview on the topic of language testing approaches,
including those from different categories.

7. Conclusions

Testing the implementation of a programming language in-
terpreter is of critical importance because its quality affects the
quality of all software developed my means of that language.
A popular technique used to evaluate the quality of test suites
in research is mutation testing. However, mutation testing in
the context of language implementations lacks the proper focus
and it is usually dedicated to the generation of test suites, rather
than to their evaluation. In this work we specified this problem
as a derivation of the Language Extension Problem [9], dubbed
Language Mutation Problem. Then, we proposed a solution
based on language product lines and language workbenches
that satisfies four different constraints of the Language Muta-
tion Problem, using Neverlang as a running example. Finally,
we performed an evaluation to demonstrate the applicability of
the approach. The results show that a set of non-trivial mutation
operators can be defined using existing technologies, although
with limitations related to the used language workbench. This
aspect could be improved upon by extending Neverlang with
more fine-grained composition mechanisms in a future work.
This should reduce the redundancy and the triviality of some
of the mutation operators. Future works will also include an
hybrid (non-general) approach in which some knowledge over
the base language is known in advance to target more sensible
parts of the grammar or changing its semantics. Moreover, we
will investigate whether the same approach translates well to
the mutation testing of a software developed by means of the
programming language, rather than the language implementa-
tion itself. Finally, we will extend the AiDE [62] LPL devel-
opment environment with an algorithm to produce the feature
model of the mutant family and use its properties to tackle the
mutant equivalent problem.

References

[1] A. J. Offutt, R. H. Untch, Mutation 2000: Uniting the Orthogonal, Ad-
vances in Database Systems 24, Springer, 2001, pp. 34–44.

[2] Y. Jia, M. Harman, An Analysis and Survey of the Development of Mu-
tation Testing, IEEE Transactions on Software Engineering 37 (5) (2011)
649–678.

[3] A. S. Kossatchev, M. A. Posypkin, Survey of Compiler Testing Methods,
Programming and Computer Software 31 (1) (2005) 10–19.

[4] S. Peacock, L. Deng, J. Dehlinger, S. Chakraborty, Automatic Equivalent
Mutants Classification Using Abstract Syntax Tree Neural Networks, in:
Proceedings of the IEEE 14th International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW’21), IEEE, 2021, pp.
13–18.

[5] L. van Hijfte, A. Oprescu, MutantBench: an Equivalent Mutant Problem
Comparison Framework, in: Proceedings of the IEEE 14th International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW’21), IEEE, 2021, pp. 7–12.

[6] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. Le Traon, M. Harman,
Detecting Trivial Mutant Equivalences via Compiler Optimisations, IEEE
Transactions on Software Engineering 44 (4) (2018) 308–333.

[7] L. Madeyski, Y. Orzeszyna, R. Torkar, M. Józala, Overcoming the Equiv-
alent Mutant Problem: A Systematic Literature Review and a Compara-
tive Experiment of Second Order Mutation, IEEE Transactions on Soft-
ware Engineering 40 (1) (2014) 23–44.

[8] F. Hariri, A. Shi, V. Fernando, S. Mahmood, D. Marinov, Comparing
Mutation Testing at the Levels of Source Code and Compiler Intermediate
Representation, in: M. Cohen, A. Memon (Eds.), Proceedings of the 12th
Conference on Software Testing, Validation and Verification (ICST’19),
IEEE, Xi’an, China, 2019, pp. 114–124.

[9] M. Leduc, T. Degueule, E. Van Wyk, B. Combemale, The Software Lan-
guage Extension Problem, Software and Systems Modeling 19 (2) (2020)
263–267.

[10] E. Vacchi, W. Cazzola, Neverlang: A Framework for Feature-Oriented
Language Development, Computer Languages, Systems & Structures
43 (3) (2015) 1–40. doi:10.1016/j.cl.2015.02.001.

[11] W. Cazzola, E. Vacchi, On the Incremental Growth and Shrinkage of LR
Goto-Graphs, Acta Informatica 51 (7) (2014) 419–447. doi:10.1007/

s00236-014-0201-2.
[12] W. Cazzola, R. Chitchyan, A. Rashid, A. Shaqiri, µ-DSU: A Micro-

Language Based Approach to Dynamic Software Updating, Computer
Languages, Systems & Structures 51 (2018) 71–89. doi:10.1016/j.cl.
2017.07.003.

[13] W. Cazzola, A. Shaqiri, Open Programming Language Interpreters, The
Art, Science, and Engineering of Programming Journal 1 (2) (2017) 5–1–
5–34. doi:10.22152/programming-journal.org/2017/1/5.

[14] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Hints on Test Data Selection:
Help for the Practicing Programmer, IEEE Computer 11 (4) (1978) 34–
41.

[15] R. Lipton, Fault Diagnosis of Computer Programs, Student report,
Carnegie Mellon University (1971).

[16] R. G. Hamlet, Testing Programs with the Aid of a Computer, IEEE Trans-
actions on Software Engineering 3 (4) (1977) 279–290.

[17] R. Geist, A. J. Offutt, F. C. Harris, Jr, Estimation adn Enhancement of
Real-Time Software Reliability through Mutation Analysis, IEEE Trans.
Comput. 41 (5) (1992) 550–558.

[18] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson,
Feature-Oriented Domain Analysis (FODA) Feasibility Study, Techni-
cal Report CMU/SEI-90-TR-21, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA (Nov. 1990).

[19] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich, Fea-
tureIDE: An Extensible Framework for Feature-Oriented Software Devel-
opment, Science of Computer Programming 79 (1) (2014) 70–85.

[20] J. Meinicke, T. Thüm, R. Schröter, S. Krieter, F. Benduhn, G. Saake,
T. Leich, FeatureIDE: Taming the Preprocessor Wilderness, in: Proced-
ings of the 38th International Conference on Software Engineering Com-
panion (ICSE’16-Companion), IEEE, Austin, TX, USA, 2016, pp. 629–
632.

[21] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich, G. Saake, Mas-
tering Software Variability with FeatureIDE, Springer, 2017.

[22] D. Ghosh, DSL for the Uninitiated, ACM Queue Magazine 9 (6) (2011)
1–11.

[23] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, U. Aßmann, A Meta-
model Family for Role-Based Modeling and Programming Languages, in:
B. Combemale, D. J. Pearce, O. Barais, J. Vinju (Eds.), Proceedings of the
7th International Conference Software Language Engineering (SLE’14),
Lecture Notes in Computer Science 8706, Springer, Västerås, Sweden,
2014, pp. 141–160.

[24] W. Cazzola, D. Poletti, DSL Evolution through Composition, in: Proceed-
ings of the 7th ECOOP Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE’10), ACM, Maribor, Slovenia, 2010.

[25] E. Vacchi, W. Cazzola, S. Pillay, B. Combemale, Variability Support
in Domain-Specific Language Development, in: M. Erwig, R. F. Paige,
E. Van Wyk (Eds.), Proceedings of 6th International Conference on Soft-
ware Language Engineering (SLE’13), Lecture Notes on Computer Sci-
ence 8225, Springer, Indianapolis, USA, 2013, pp. 76–95.

[26] T. Kühn, W. Cazzola, D. M. Olivares, Choosy and Picky: Configuration of
Language Product Lines, in: G. Botterweck, J. White (Eds.), Proceedings
of the 19th International Software Product Line Conference (SPLC’15),
ACM, Nashville, TN, USA, 2015, pp. 71–80.

[27] T. Kühn, W. Cazzola, Apples and Oranges: Comparing Top-Down and
Bottom-Up Language Product Lines, in: R. Rabiser, B. Xie (Eds.), Pro-

20

https://doi.org/10.1016/j.cl.2015.02.001
https://doi.org/10.1007/s00236-014-0201-2
https://doi.org/10.1007/s00236-014-0201-2
https://doi.org/10.1016/j.cl.2017.07.003
https://doi.org/10.1016/j.cl.2017.07.003
https://doi.org/10.22152/programming-journal.org/2017/1/5

ceedings of the 20th International Software Product Line Conference
(SPLC’16), ACM, Beijing, China, 2016, pp. 50–59.

[28] M. L. Crane, J. Dingel, UML vs. Classical vs. Rhapsody Statecharts: Not
All Models Are Created Equal, in: L. Briand, C. Williams (Eds.), Pro-
ceedings of the 8th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS’05), Lecture Notes in Computer
Science 3713, Springer, Montego Bay, Jamaica, 2005, pp. 97–112.

[29] L. Tratt, Domain Specific Language Implementation Via Compile-Time
Meta-Programming, ACM Transactions on Programming Languages and
Systems 30 (6) (2008) 31:1–31:40.

[30] E. Vacchi, W. Cazzola, B. Combemale, M. Acher, Automating Variability
Model Inference for Component-Based Language Implementations, in:
P. Heymans, J. Rubin (Eds.), Proceedings of the 18th International Soft-
ware Product Line Conference (SPLC’14), ACM, Florence, Italy, 2014,
pp. 167–176.

[31] W. Cazzola, D. M. Olivares, Gradually Learning Programming Supported
by a Growable Programming Language, IEEE Transactions on Emerging
Topics in Computing 4 (3) (2016) 404–415, special Issue on Emerging
Trends in Education. doi:10.1109/TETC.2015.2446192.

[32] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman, W. R. Cook,
A. Gerritsen, A. Hulshout, A. Kelly, G. Konat, P. J. Molina, M. Palatnik,
R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu, E. Visser,
K. van del Vlist, G. Wachsmuth, J. van der Woning, Evaluating and Com-
paring Language Workbenches: Existing Results and Benchmarks for the
Future, Computer Languages, Systems and Structures 44 (2015) 24–47.

[33] M. Fowler, Language Workbenches: The Killer-App for Domain Specific
Languages?, Martin Fowler’s Blog (May 2005).
URL http://www.martinfowler.com/articles/languageWorkbench.

html

[34] M. P. Ward, Language Oriented Programming, Software—Concept and
Tools 15 (4) (1994) 147–161.

[35] S. Erdweg, P. G. Giarrusso, T. Rendel, Language Composition Untangled,
in: A. M. Sloane, S. Andova (Eds.), Proceedings of the 12th Workshop
on Language Description, Tools, and Applications (LDTA’12), ACM,
Tallinn, Estonia, 2012.

[36] P. Wadler, The Expression Problem, Java Genericity Mailing List (Nov.
1998).

[37] Y.-S. Ma, J. Offutt, Y. R. Kwon, MuJava: An Automated Class Mutation
System, in: Proceedings of the 28th International Conference on Soft-
ware Engineering (ICSE’06), ACM, Shanghai, China, 2006, pp. 827–830,
demo Paper.

[38] Y.-S. Ma, J. Offutt, Y. R. Kwon, MuJava: An Automated Class Mutation
System, Software Testing, Verification & Reliability 15 (2) (2005) 97–
133.

[39] E. Tanter, Reflection and Open Implementation, Tech. Rep. TR-DCC-
20091123-013, DCC, University of Chile (Nov. 2009).

[40] J. Pfeiffer, A. Wortmann, Towards the Black-Box Aggregation of Lan-
guage Components, in: F. Ciccozzi, T. Degueule, R. Eramo, S. Gérard
(Eds.), Proceedings of the 3rd International Workshop on Modelling Lan-
guage Engineering (MLE’21), IEEE, Fukuoka, Japan, 2021, pp. 576–585.

[41] D. Jeffrey, N. Gupta, Test Suite Reduction with Selective Redundancy,
in: T. Gyimothy, V. Rajlich (Eds.), Proceedings of the 21st IEEE Interna-
tional Conference on Software Maintenance (ICSM’05), IEEE, Budapest,
Hungary, 2005, pp. 549–558.

[42] N. Jatana, Suri, Bharti, P. Kumar, B. Wadhwa, Test Suite Reduction by
Mutation Testing Mapped to Set Cover Problem, in: Proceedings of the
2nd International Conference on Information and Communication Tech-
nology for Competiive Strategies (ICTCS’16), ACM, Udaipur, India,
2016, pp. 1–6.

[43] L. Zhang, D. Marinov, L. Zhang, S. Khurshid, Regression Mutation Test-
ing, in: Z. Su (Ed.), Proceedings of International Symposium on Software
Testing and Analysis (ISSTA’12), ACM, Minneapolis, MN, USA, 2012,
pp. 331–341.

[44] L. Zhang, D. Marinov, S. Khurshid, Faster Mutation Testing Inspired
by Test Prioritization and Reduction, in: M. Harman (Ed.), Proceedings
of the International Symposium on Software Testing and Analysis (IS-
STA’13), ACM, Lugano, Switzerland, 2013, pp. 235–245.

[45] R. Just, F. Schweiggert, G. M. Kapfhammer, MAJOR: An Efficient and
Extensible Tool for Mutation Analysis in a Java Compiler, in: C. Pasare-
anu, J. Hosking (Eds.), Proceedings of the 26th International Conference
on Automated Software Engineering (ASE’11), IEEE, Lawrence, KS,

USA, 2011, pp. 612–615.
[46] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf, An Experimental

Determination of Sufficient Mutant Operators, Transaction on Software
Engineering and Methodology 5 (2) (1996) 99–118.

[47] E. F. Barbosa, J. C. Maldonado, A. M. Rizzo Vincenzi, Toward the De-
termination of Sufficient Mutant Operators for C, Journal of Software:
Testing, Verification and Reliability 11 (2) (2001) 113–136.

[48] A. Siami Namin, J. H. Andrews, D. J. Murdoch, Sufficient Mutation Oper-
ators for Measuring Test Effectiveness, in: M. B. Dwyer, V. Gruhn (Eds.),
Proceedings of the 30th International Conference on Software Engineer-
ing (ICSE’08), IEEE, Leipzig, Germany, 2008, pp. 351–360.

[49] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, L. Zhang, Predictive Mu-
tation Testing, IEEE Transactions on Software Engineering 45 (9) (2019)
898–918.

[50] M. Polo, M. Piattini, I. Garcia-Rodriguez, Decreasing the Cost of Muta-
tion Testing with Second-Order Mutants, Journal of Software: Testing,
Verification and Reliability 19 (2) (209) 111–131.

[51] J. J. Domínguez-Jiménez, A. Estero-Botaro, A. García-Domínguez,
I. Medina-Bulo, Evolutionary Mutation Testing, Information and Soft-
ware Technology 53 (10) (2011) 1108–1123.

[52] W. E. Howden, Weak Mutation Testing and Completeness of Test Sets,
IEEE Transactions on Software Engineering 8 (4) (1982) 371–379.

[53] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman & Co., 1979.

[54] D. Basile, M. H. ter Beek, M. Crdy, A. Legay, Tackling the Equiva-
lent Mutant Problem in Real-Time Systems: The 12 Commandments of
Model-Based Mutation Testing, in: P. Collet, S. Nadi (Eds.), Proceedings
of the 24th International Software Product Line Conference (SPLC’20),
ACM, Montréal, Canada, 2020, pp. 252–262.

[55] D. Basile, M. H. ter Beek, S. Lazreg, M. Cordy, A. Legay, Static Detec-
tion of Equivalent Mutants in Real-Time Model-Based Mutation Testing,
Empirical Software Engineering 27 (2022).

[56] M. Polo Usaola, P. Reales Mateo, Mutation Testing Cost Reduction Tech-
niques: A Survey, IEEE Software 27 (3) (2010) 80–86.

[57] A. J. Offutt, S. D. Lee, How Strong Is Weak Mutation?, in: W. E. How-
den (Ed.), Proceedings of the 4th Symposium on Testing, Analysis and
Verification (TAV’91), ACM, Victoria, BC, Canada, 1991, pp. 200–213.

[58] T. Kühn, W. Cazzola, N. Pirritano Giampietro, M. Poggi, Piggyback IDE
Support for Language Product Lines, in: T. Thüm, L. Duchien (Eds.),
Proceedings of the 23rd International Software Product Line Conference
(SPLC’19), ACM, Paris, France, 2019, pp. 131–142.

[59] W. Cazzola, Domain-Specific Languages in Few Steps: The Neverlang
Approach, in: T. Gschwind, F. De Paoli, V. Gruhn, M. Book (Eds.),
Proceedings of the 11th International Conference on Software Composi-
tion (SC’12), Lecture Notes in Computer Science 7306, Springer, Prague,
Czech Republic, 2012, pp. 162–177.

[60] W. Cazzola, E. Vacchi, Neverlang 2: Componentised Language Devel-
opment for the JVM, in: W. Binder, E. Bodden, W. Löwe (Eds.), Pro-
ceedings of the 12th International Conference on Software Composition
(SC’13), Lecture Notes in Computer Science 8088, Springer, Budapest,
Hungary, 2013, pp. 17–32.

[61] W. Cazzola, A. Shaqiri, Context-Aware Software Variability through
Adaptable Interpreters, IEEE Software 34 (6) (2017) 83–88, special Is-
sue on Context Variability Modeling. doi:10.1109/MS.2017.4121222.

[62] W. Cazzola, L. Favalli, Towards a Recipe for Language Decomposition:
Quality Assessment of Language Product Lines, Empirical Software En-
gineering 27 (4) (Jul. 2022). doi:10.1145/3514232.

[63] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd Edition, Addison-Wesley, Boston, MA, USA,
2006.

[64] L. Favalli, T. Kühn, W. Cazzola, Neverlang and FeatureIDE Just Mar-
ried: Integrated Language Product Line Development Environment, in:
P. Collet, S. Nadi (Eds.), Proceedings of the 24th International Software
Product Line Conference (SPLC’20), ACM, Montréal, Canada, 2020, pp.
285–295.

[65] G. H. Wachsmuth, G. D. P. Konat, E. Visser, Language Design with the
Spoofax Language Workbench, IEEE Software 31 (5) (2014) 35–43.

[66] M. Völter, V. Pech, Language Modularity with the MPS Language Work-
bench, in: Proceedings of the 34th International Conference on Soft-
ware Engineering (ICSE’12), IEEE, Zürich, Switzerland, 2012, pp. 1449–
1450.

21

https://doi.org/10.1109/TETC.2015.2446192
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1109/MS.2017.4121222
https://doi.org/10.1145/3514232

[67] T. Degueule, B. Combemale, A. Blouin, O. Barais, J.-M. Jézéquel,
Melange: a Meta-Language for Modular and Reusable Development of
DSLs, in: D. Di Ruscio, M. Völter (Eds.), Proceedings of the 8th Interna-
tional Conference on Software Language Engineering (SLE’15), ACM,
Pittsburgh, PA, USA, 2015, pp. 25–36.

[68] H. Krahn, B. Rumpe, S. Völkel, MontiCore: A Framework for Composi-
tional Development of Domain Specific Languages, International Journal
on Software Tools for Technology Transfer 12 (5) (2010) 353–372.

[69] P. Klint, T. van der Storm, J. Vinju, RASCAL: A Domain Specific Lan-
guage for Source Code Analysis and Manipulation, in: A. Walenstein,
S. Schupp (Eds.), Proceedings of the International Working Conference
on Source Code Analysis and Manipulation (SCAM’09), IEEE, Edmon-
ton, Canada, 2009, pp. 168–177.

[70] D. Shin, S. Yoo, D.-H. Bae, A Theoretical and Empirical Study of
Diversity-Aware Mutation Adequacy Criterion, IEEE Transactions on
Software Engineering 44 (10) (2018) 914–931.

[71] B. H. Smith, L. Williams, Should Software Testers Use Mutation Analysis
to Augment a Test Set?, Journal of Systems and Software 82 (11) (2009)
1819–1832.

[72] C. Wohlin, M. Höst, K. Henningsson, Empirical Research Methods in
Software Engineering, in: R. Conradi, A. I. Wang (Eds.), Empirical Meth-
ods and Studies in Software Enginering: Experiences from ESERNET,
LNCS 2765, Springer, 2003, pp. 7–23.

[73] J. Kollár, M. Forgáč, Combined Approach to Program and Language Evo-
lution, Computing and Informatics 29 (6) (2010) 1103–1116.

[74] G. Jouneaux, O. Barais, B. Combemale, G. Mussbacher, Towards Self-
Adaptable Languages, in: W. De Meuter (Ed.), Proceedings of the Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (ONWARD!’21), ACM, Chicago, IL, USA,
2021, pp. 97–113.

[75] C. Lattner, V. Adve, LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation, in: M. D. Smith (Ed.), Proceedings
of the International Symposium on Code Generation and Optimization
(CGO’04), San José, CA, USA, 2004, pp. 75–86.

[76] F. Hariri, A. Shi, SRCIROR: A Toolset for Mutation Testing of C Source
Code and LLVM Intermediate Representation, in: C. Kästner, G. Fraser
(Eds.), Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE’18), ACM, Montpellier, France,
2018, pp. 860–863.

[77] A. Denisov, S. Pankevich, Mull It Over: Mutation Testing Based on
LLVM, in: M. Kintis, N. Li, J. M. Rojas (Eds.), Proceedings of the 13th
International Workshop on Mutation Analysis (MUTATION’18), IEEE,
Västerås, 2018, pp. 25–31.

[78] M. Sousa, A. Sen, Generation of TLM Testbenches Using Mutation
Testing, in: N. Chang, F. Fummi (Eds.), Proceedings of the eighth
IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS’12), ACM, Tampere, Finland,
2012, pp. 323–332.

[79] M. Papadakis, T. T. Chekam, Y. Le Traon, Mutant Quality Indicators,
in: Proceedings of the IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW’18), IEEE, Västerås,
Sweden, 2018, pp. 32–39.

[80] D. Schuler, A. Zeller, (Un-)Covering Equivalent Mutants, in: A. R. Cav-
alli, S. Ghosh (Eds.), Proceedings of the 3rd International Conference
on Software Testing, Verification and Validation (ICST’10), IEEE, Paris,
France, 2010, pp. 45–54.

[81] H. Coles, T. Laurent, C. Henard, M. Papadakis, A. Ventresque, PIT: A
Practical Mutation Testing Tool for Java, in: A. Roychoudhury (Ed.), Pro-
ceedings of the 25th International Symposium on Software Testing and
Analysis (ISSTA’16), ACM, Saarbrücken, Germany, 2016, pp. 449–452.

[82] H. Lackner, M. Schmidt, Towards the Assessment of Software Product
Line Tests: A Mutation System for Variable Systems, in: P. Heymans,
J. Rubin (Eds.), Proceedings of 18th International Software Product Line
Conference (SPLC’14), ACM, Florence, Italy, 2014, pp. 62–69.

[83] C. Henard, M. Papadakis, Y. Le Traon, Mutation-Based Generation of
Software Product Line Test Configurations, in: C. Le Goues, S. Yoo
(Eds.), Proceedings of the International Symposium on Search Based
Software Engineering (SSBSE’14), Lecture Notes in Computer Science
8636, Springer, Fortaleza, Brasil, 2014, pp. 92–106.

[84] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, L. Zhang, A
Survey of Compiler Testing, ACM Computing Surveys 53 (1) (Jan. 2021).

[85] E. Nagai, A. Hashimoto, N. Ishiura, Reinforcing Random Testing of
Arithmetic Optimization of C Compilers by Scaling up Size and Num-
ber of Expressions, Information and Media Technologies 9 (4) (2014)
456–465.

[86] Y. Chen, T. Su, C. Sun, Z. Su, J. Zhao, Coverage-Directed Differential
Testing of JVM Implementations, in: E. D. Berger (Ed.), Proceedings of
the 37th International Conference on Programming Language Design adn
Implementation (PLDI’16), ACM, Santa Barbara, CA, USA, 2016, pp.
85–99.

[87] C. Holler, K. Herzig, A. Zeller, Fuzzing with Code Fragments, in:
T. Kohno (Ed.), Proceedings of the 21st USENIX Security Symposium
(USENIX’12), USENIX Association, Bellevue, WA, USAj, 2012, pp.
445–458.

[88] P.-L. Garoche, F. Howar, T. Kahsai, X. Thirioux, Testing-Based Com-
piler Validation for Synchronous Languages, in: J. M. Badger, K. Y.
Rozier (Eds.), Proceedings of the 6th International Symposium on NASA
Formal Methods (NFM’14), Lectures Notes in Computer Science 8430),
Springer, Houston, TX, USA, 2014, pp. 246–251.

[89] A. Groce, M. A. Alipour, C. Zhang, Y. Chen, J. Regehr, Cause Reduc-
tion: Delta Debugging, Even without Bugs, Journal of Software: Testing,
Verification and Reliability 26 (1) (2016) 40–68.

Walter Cazzola is an Associate Professor
in the Computer Science Department of the
Università degli Studi di Milano, Italy and
the Chair of the ADAPT laboratory. Dr.
Cazzola designed the mChaRM framework,
@Java, [a]C#, Blueprint programming lan-
guages and he is currently involved in the
designing and development of the Neverlang

language workbench. He also designed the JavAdaptor dy-
namic software updating framework and its front-end FiGA.
He has written over 100 scientific papers. His research inter-
ests include (but are not limited to) software maintenance, evo-
lution and comprehension, programming methodologies and
languages. He served on the program committees or editorial
boards of the most important conferences and journals about
his research topics. He is associate editor for the Journal of
Computer Languages published by Elsevier. More informa-
tion about Dr. Cazzola and all his publications are available
at https://cazzola.di.unimi.it and he can be contacted at
cazzola@di.unimi.it for any question.

Luca Favalli is currently a Computer Sci-
ence PhD student at Università degli Studi
di Milano. He is involved in the research
activity of the ADAPT Lab and in the de-
velopment of the Neverlang language work-
bench and of JavAdaptor. His main research
interests are software design, software (and

language) product lines and dynamic software updating with a
focus on how they can be used to ease the learning of program-
ming languages. He can be contacted at favalli@di.unimi.it
for any question.

22

https://cazzola.di.unimi.it
cazzola@di.unimi.it
favalli@di.unimi.it

