
Information and Software Technology 57 (2015) 32–51
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
A concern-oriented framework for dynamic measurements
http://dx.doi.org/10.1016/j.infsof.2014.08.006
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: cazzola@di.unimi.it (W. Cazzola), alex.marchetto@gmail.com

(A. Marchetto).
1 In the rest of the paper, feature and concern will be used as synonyms.
Walter Cazzola a,⇑, Alessandro Marchetto b

a Department of Computer Science, Universitá degli Studi di Milano, Italy
b Fondazione Bruno Kessler, Trento, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 July 2013
Received in revised form 19 August 2014
Accepted 20 August 2014
Available online 28 August 2014

Keywords:
Software measurements and metrics
Static and dynamic software artifact
analysis
Software feature and concern
Evolving software programs requires that software developers reason quantitatively about the modularity
impact of several concerns, which are often scattered over the system. To this respect, concern-oriented
software analysis is rising to a dominant position in software development. Hence, measurement tech-
niques play a fundamental role in assessing the concern modularity of a software system. Unfortunately,
existing measurements are still fundamentally module-oriented rather than concern-oriented. Moreover,
the few available concern-oriented metrics are defined in a non-systematic and shared way and mainly
focus on static properties of a concern, even if many properties can only be accurately quantified at run-
time. Hence, novel concern-oriented measurements and, in particular, shared and systematic ways to
define them are still welcome. This paper poses the basis for a unified framework for concern-driven
measurement. The framework provides a basic terminology and criteria for defining novel concern met-
rics. To evaluate the framework feasibility and effectiveness, we have shown how it can be used to adapt
some classic metrics to quantify concerns and in particular to instantiate new dynamic concern metrics
from their static counterparts.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

A concern is any consideration that can affect the implementa-
tion and maintenance of program modules [1]. In particular, a
concern is identified by portions of code not necessarily contiguous
that contribute to implement such a concern; the concern can be
selectively exercised through ad hoc scenarios defined by, e.g., use
cases or test units. A software requirement or functionality, for
instance, is a concern while the dynamic counterpart is the execu-
tion of a requirement or functionality. As an example, the services
provided to the user by a software system that controls an
automated teller machine (ATM) are concerns.

Normally, the software is developed reasoning in term of the
features1 it must provide but the tangled nature of the resulting
application forces the maintainer to reason quantitatively about
their modularity to facilitate its maintenance. With the increasing
relevance of concern-oriented programming, see, for example, the
advent of aspect-oriented programming (AOP) [2] and feature-
oriented programming (FOP) [3], there is an urge to revise existing
metrics (as done by [4]) and to develop new ones supporting concern
quantification against software variability. For instance, some stud-
ies [5,6] suggested that an increment to software modularity might
correspond to: (i) an increment of undesirable couplings involving
the realization of two or more concerns; and (ii) a decrement of
the cohesion among the elements realizing a concern. This kind of
concern-specific design anomalies are key factors to decrease software
maintainability.

However, to provide an accurate characterization of how a con-
cern affects a program is not a trivial task [4]. Many concerns are
often tangled and scattered across a number of modules and,
therefore, there is no direct traceability between a concern and
the module boundaries [1]. The mapping between concern and
code modules—i.e., ‘‘where the concern is implemented in the
code’’—is not always well-documented and well-preserved during
the system design, implementation and maintenance. In such
cases, the mapping between concerns and code modules can be
inferred by static code analysis (to the static extent) and completed
by dynamically exercising the concern, e.g., via test units (to the
dynamic extent) [7]. As a result, concern-specific properties cannot
be detected by applying conventional module-oriented metrics
and proper variants of such metrics have been investigated in the
literature, such as [4,8,9].

By analyzing the existing literature in the field of concern-
oriented metrics, however, we observed two main limitations:

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.08.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.08.006
mailto:cazzola@di.unimi.it
mailto:alex.marchetto@gmail.com
http://dx.doi.org/10.1016/j.infsof.2014.08.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

2 To the best of our knowledge, [4] is the most relevant piece of work in this field by
introducing disparity, concentration and dedication metrics.

W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51 33
1. Existing metrics are not systematically defined, that is, there
is a lack of shared frameworks or approaches that can sup-
port the systematic definition of concern-oriented metrics.
In fact, to the best of our knowledge, there exists only one
measurement framework (i.e., the one described in [9])
devoted to design and describe concern-oriented metrics;
all the others frameworks available in the literature—such
as [10,11]—only support module-oriented metrics, thus
they cannot be reused as-is to define new concern-oriented
metrics. Consequently, designers of measurement tools can-
not rely on formal, systematic and shared terminology, set
of notions and criteria to: define and describe concern met-
rics and systematically validate and compare them, e.g.,
with the existing ones. This leads to ambiguous and overlap-
ping metric definition that hampers the adoption of concern
metrics in academic and industry settings and the execution
of empirical studies using these metrics in general.

2. Existing concern-oriented metrics are mainly static, i.e., they
quantify statically-computable properties of a concern, as we
have identified in a recent systematic study [9]. However, as
happens in the case of software modules [10,11], some rele-
vant properties of a concern can only be precisely discovered
though the concern execution [4], such as dynamic coupling
or cohesion. Static and dynamic metrics are hence comple-
mentary also at concern-level as well as at module-level. In
fact, static metrics are conservative and can lose precision
since they are based on static analysis of software artifacts
(e.g., source code), while dynamic metrics are strongly tied
to specific software executions, thus they can be more precise
than the static ones but they can suffer of under-
approximated results, i.e., the part of the system not executed
is not considered in the metric computation.

This paper presents a contribution in this field by providing a
concern-driven framework for defining and describing both static
and dynamic metrics, at both module and concern levels. In partic-
ular, the presented framework extends and complements our mea-
surement framework presented in [9] by capturing run-time
properties that can be quantified for a concern and how they can
be obtained. The framework is composed of a group of terms,
notions and criteria for defining and comparing dynamic concern
metrics beyond those for defining and comparing static concern
metrics.

We evaluated the presented framework’s feasibility and effec-
tiveness in two ways. First, we conducted an experiment (Section
6) where some subjects (students) have used the framework to
instantiate some dynamic concern-oriented metrics from their sta-
tic or module-oriented counterparts; the goal of this experiment
was to answer the research question: (RQ1): ‘‘Can the framework
be used to describe several concern-oriented metrics using a common
and precise terminology and set of concepts?’’. Second, we reported
on a case study (Section 7) where we used some dynamic and sta-
tic concern oriented metric to measure a pool of open source appli-
cations; the case study has been carried out with the goal of
answering to the research question: (RQ2) ‘‘Are the dynamic con-
cern-oriented metrics useful to predict the concern bug-proneness?’’.
This case study aimed at showing utility and effectiveness of such
dynamic concern metrics for bug-proneness estimation.

The rest of the paper is organized as follows. In Section 2 we
present a survey of existing maintainability measurements and
describe their adaptation to quantify dynamic properties. Further-
more, we stress the relevance of dynamic measurement by exam-
ples. In Section 3 we analyze the specific characteristics of
measuring concerns dynamically, that are in particular, concern
mapping and triggering, as well as a tool supporting the identifica-
tion of a concern and its components at runtime. We introduce the
framework in Section 4 and the criteria composing it in Section 5.
Section 6 provides an experimental evaluation of the proposed
framework by metrics instantiation while Section 7 reports a study
we conducted about the usage of dynamic measurements instanti-
ated at concern-level through the presented framework. Finally,
Section 8 summarizes the state-of-the-art about metric frame-
works, and in Section 9 we draw our concluding remarks.
2. Towards dynamic concern measurement

To support dynamic concern-driven metrics definition and
measurement we had to understand which properties and
notions characterize a concern at run-time and whether it is
worth measuring. Since the literature on dynamic concern mea-
surement is scarce2 we have looked at the literature about metrics
(both at module and concern level) and dynamic properties of soft-
ware systems for identifying such properties and characteristics.
Therefore, to have a wide and comprehensive understanding of
the concern’s properties, we studied and adapted some existing
static concern metrics and some well-accepted module-oriented
metrics to quantify dynamic concern properties. Such an approach
permitted to cover a larger amount of possible measurements and
relevant properties that might otherwise be overlooked. Out of
these findings, then, we defined a set of framework criteria that
capture such properties and that make the framework complete
and effective enough to describe existing and new dynamic
concern-oriented metrics.

In the rest of this section we present the result of our investiga-
tion, in particular we show how the considered metrics have been
adapted to the dynamic and/or concern-oriented context. We have
classified the considered metrics according to their original charac-
teristics as follows:

� Dynamic module metrics. These are dynamic module-
driven metrics originally defined for object-oriented
systems. They were adapted or extended to be applied to
concerns as well.

� Static concern metrics. These are static metrics originally
defined for concerns. They were adapted or extended to be
dynamically applied.

� Dynamic concern metrics. These are dynamic metrics
already defined for concerns that do not require any
adaptation.

Table 1 summarizes the result of the literature review we con-
ducted. The table shows the considered suite of metrics and it
reports for each metric the original definition (column ‘‘Original
Definition’’) present in the literature and the definition obtained
from our adaptation (column ‘‘Modified Definition’’). To complete
the picture, in Table 2 we report the definition of those metrics that
are already defined as dynamic and concern-oriented and therefore
that do not need any adaptation in order to be considered.

The adaptation process is quite straightforward and relies on
the adoption of the concept of concern execution that corresponds
to the execution of the elements composing the concern that can
be prodded by, for example, an ad hoc use case or test unit. If the
considered metric is dynamic but not concern-oriented we
mapped the subject and/or the target of the measurement to the
concerns; whereas if the metric is already concern-oriented but
not dynamic we have exclusively considered the events that occur
during the execution. For instance, in Concern Diffusion over Opera-
tions (CDO) we look for components that participate in the concern

Table 1
Metric suite summary: original (2nd col.) vs. modified (3rd col.) definition.

Dynamic module metrics

Metric Original definition Modified definition

dCBOoC dynamic Coupling Between Objects (dCBO) [12] counts, for a class, the
number of couples with other classes at run-time

dynamic Coupling Between Objects over Concerns (dCBOoC) counts, for a
concern, the number of couples between an elementa with other elements at
run-time. Note that the considered elements can be tied to different concerns

dLCOMoC dynamic simple Lack of Cohesion in Methods (dLCOM) [12] for a class is the
number of pairs of methods in the class that have no instance variables in
common minus the number of pairs of methods that have common instance
variables at run-time. When this value is negative, the metric value is set to 0

dynamic simple Lack of Cohesion in Methods over Concerns (dLCOMoC) for
a concern is the number of pairs of methods in the concern that have no instance
variables in common minus the number of pairs of methods that have common
instance variables at run-time. When this value is negative, the metric value is
set to 0

LCoC Live Code (LC) [13] measures the number of bytecode instructions that are
executed

Live Code over Concerns (LCoC) measures the total bytecode instructions
exercised during a concern execution

NToC Number of threads (NT) [13] counts the largest number of threads simulta-
neously active or running

Number of threads over Concerns (NToC) counts the largest number of
threads simultaneously active or running during the execution of a given
concern

Static concern metrics (aspect, feature, and property terms are used as synonym of concern)

Metric Original definition Modified definition

dCD Crosscutting Degree of a Concern (CD) counts the number of components
affected by the pointcuts and by the introductions in a given aspect

dynamic Crosscutting Degree of a Concern (dCD) counts the number of
executed components that are affected by the pointcuts and by the introductions
in a given concern

dCDC Concern Diffusion over Components (CDC) [14] counts the number of primary
components that mainly contribute to the implementation of a concern and the
number of components that access the primary components by using them in
attribute declarations, formal parameters, return types, throws declarations and
local variables, or call their methods

dynamic Concern Diffusion over Components (dCDC) counts the number of
primary components that contribute to the implementation of a concern that
are exercised during the concern execution and the number of components that
access the primary components by using them in attribute declarations, formal
parameters, return types, throws declarations and local variables, or call their
methods during the concern execution

dCDO Concern Diffusion over Operations (CDO) [14] counts the number of
operations whose main purpose is to contribute to the implementation of a
concern. In addition, it counts the number of methods, constructors, and advice
that access any primary component of the concern by accessing their attributes,
calling their operations or using them in parameters, return types, declarations
and statements

dynamic Concern Diffusion over Operations (dCDO) counts the number of
operations whose main purpose is to contribute to the implementation of a
concern exercised during the concern execution. In addition, it counts the
number of methods, constructors, and advice that access any primary
component of the concern by accessing their attributes or calling their
operations during the concern execution

dCSC Concern Sensitive Coupling (CSC) [9] quantifies the number of server
components that a concern realized by a given client component is coupled to. In
other words, CSC counts the number of explicit connections that are associated
to the concern in a component

dynamic Concern Sensitive Coupling (dCSC) quantifies the number of server
components that a concern realized by a given client component is coupled to
during the concern execution. In other words, dCSC counts the number of
explicit connections in the system execution that are associated to the concern
in a component

dFCD Feature Crosscutting Degree (FCD) [15] counts the number of classes that are
crosscut by a feature

dynamic Feature Crosscutting Degree (dFCD) counts the number of class
components exercised at run-time that are crosscut by more than one concern

dLCC Lack of Concern-based Cohesion (LCC) [9] counts the number of concerns
addressed by the assessed component

dynamic Lack of Concern-based Cohesion (dLCC) counts the number of
concern addressed by the assessed component during the execution

dSize Size [16] counts the number of methods and attributes of a class associated to a
property

dynamic Size (dSize) counts the number of operations and attributes of a
component associated to a concern during its execution

dSpread Spread [16] counts the number of classes related/tied to a given property dynamic Spread (dSpread) it counts the number of the components related/
tied to a concern and exercised at run-time

a A concern component is one of the elements (classes, methods, . . .) composing the concern. Since we are interested to the concern execution we consider their dynamic
counterpart (objects, method calls, field accesses, . . .).

Table 2
Metric suite summary (cont’d): Wong’s [4] metrics.

Metric Definition

Given
� Bf is the set of execution slices of P (program) used to implement the feature f, and
� Bc is the set of execution slices in c component of P

where an execution slice is a portion of the program code executed by an input that exercises a feature

Disparity The disparity measures how close a feature f is to a program component c. It holds 1 when Bf \ Bc ¼ ;. i.e., if and only if none of the blocks that implement c
are used to implement f; it holds 0 when Bf ¼ Bc, i.e., if and only if the component c implements only and totally the feature f

Concentration The concentration measures how much a feature f is concentrated in a program component c. It holds 1 when Bf # Bc, i.e., if all the blocks used to implement f
are in c; whereas it holds 0 when Bf \ Bc ¼ ;, i.e., if and only if none of the blocks that implement c are used to implement f

Dedication The dedication measures how much a program component c is dedicated to a feature f. It holds 1 when Bc # Bf i.e., if all the blocks used to implement c are also
used to implement f; whereas it holds 0 when Bf \ Bc ¼ ;, i.e., if and only if none of the blocks that implement c are used to implement f

34 W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51
definition whereas in the Dynamic Concern Diffusion over Operations
(dCDO) we narrow the metric definition to the components that
participate in the concern definition and are exercised during the
concern execution. Some further adjustments were necessary to
target the metric to the corresponding dynamic element, e.g.,
methods become method invocations.

The set of metrics in Table 1 has been analyzed to understand
its main characterizing factors, such as the measured run-time

Fig. 1. The chain of responsibility (CoR) example.

Table 3
Static and dynamic measurements.

CSC dCSC

IController 0 0
AbstractController 1 0
CoreController 0 1
PhotoController 0 1
SMSController 0 0

Total 1 2

W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51 35
properties and the counted software objects/components. These
factors have to be included in our framework since they are
necessary to describe a wide variety of dynamic concern-oriented
metrics. Conversely, we do not validate these metrics any more
since they are a straightforward variations of well-known metrics
and their validation can be assessed from the original validation.

Summarizing, to capture and describe dynamic concern met-
rics, the framework must master all the basic elements necessary
to deal with such kind of metrics. For example, the framework
should provide the elements to answer this basic questions: how
does a concern look at runtime? What are the basic elements
composing a concern at runtime? How are such elements
related/connected to each other? To answer such questions we
analyzed the metrics listed in Table 1 to identify relevant concepts
and notions characterizing dynamic aspects and properties of con-
cern at runtime. For example, a software application can be seen as
a set of components (e.g., classes or aspects) capable of interacting
with each other. At runtime such components are replaced by their
dynamic counterparts (i.e., instances of classes and aspects) and
the potential connections are realized by message exchanges (i.e.,
method calls, effects at the join points, . . .). Hence, we enrich our
(initially static) framework [9] by means of this notion of
‘‘instance’’ of components. Then, we analyzed again the metrics
listed in Table 1 to identify relevant aspects and properties of
dynamic concerns (e.g., run-time properties and the counted soft-
ware objects/components). Such aspects have been used, on one
side, to extend and complement those aspects and properties
already captured by the criteria of our framework (e.g., ‘‘instances’’
is a significant element in the dynamic metrics but it is not for
static metrics; static and dynamic coupling [10] are distinctive
relationships that exist among software elements that can be mea-
sured both statically and dynamically but with different results).
On the other side, the identified aspects and properties have been
used to look for (sub)criteria that our initial framework lacks to
capture and/or to describe (e.g., concern projection into code [9]
is inadequate to dynamically map system elements to concerns
at runtime, in fact, due to code inheritance and polymorphism
the effectively executed code can be substantially different from
the one statically identified).

3. Concern mapping and triggering

Apart from the key factors necessary to describe them, concerns
and their dynamic measurement introduce also two more aspects:
(i) how to track code elements down in the target concerns and (ii)
how to trigger such elements to exercise the concern in their defini-
tion. The relevance of dynamic concern metrics. Let us try to explain
this on the object-oriented design of a product line for mobile device
applications described in [17] and partially reported in Fig. 1.
Fig. 1(a) shows a partial class diagram realizing the Chain of Respon-
sibility (CoR) design pattern implemented in the product line. Inher-
itance relationships are extensively exploited by classes to make
them play the pattern roles. For instance, CoreController,
PhotoController and SMSController extend AbstractCon-

troller which implements the IController interface.
Let us briefly analyze the case of the metrics Concern Sensitive

Coupling (CSC) [14], as well as its dynamic counterpart dCSC
(definitions are in Table 1). To compute CSC metric it is necessary:
(i) to map the target concern into the code elements, (ii) to parse
the identified code elements to extract the information required
to compute the metrics (that is, the number of explicit connections
associated to a concern in each element). Several techniques [7]
exist to statically map concerns into code elements. All these
methods are semi-automatic; they perform some (partial) source
code analysis complemented by user intervention to identify those
code elements related to a concern. Code elements realizing the
CoR concern are shadowed in the design of Fig. 1(a) to quantify sta-
tic concern metrics, such as CSC.

Table 3 presents the measurement of CSC for the excerpt of the
design illustrated in Fig. 1(a). Due to the inheritance relationship,
dynamic coupling, and polymorphism, the effective class of the
object sending or receiving a message may be different from the
class implementing the corresponding method. To make this clear,
Fig. 1(b) shows a partial sequence diagram representing one possi-
ble execution scenario of this application. An execution scenario s
is a sequence of interactions among system components/objects
stimulated by input data or events and that realizes a system
behavior, feature or functionality. The scenario in Fig. 1(b)
represents a call chain from controller objects to the appropriate
controller (in this case, c3 which is an instance of the
SMSController class) that will handle the request. Observing
an execution of the CoR concern according to this scenario, or its
sequence diagram (Fig. 1(b)), one can see that in addition to the
static concern coupling between AbstractController and
IController pointed out in the class diagram of Fig. 1(a), a

36 W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51
dynamic concern coupling exists (i.e., messages passing between
controller objects couple their respective classes). For example,
the CoR implementation (Fig. 1(b)) shows a message exchange
between instances of CoreController and PhotoController

that reveals that these classes are coupled. This information cannot
be captured by a static code analysis, i.e., it cannot be considered
for measuring CSC. Instead, it can be point out and captured by
observing some executions of the target concern, i.e., it can be
considered for measuring the dCSC. Since CSC and dCSC (Table 3)
identify the static and dynamic concern couplings respectively
they are obviously complementary. The CSC value for Abstract-
Controller is 1 since the code of the CoR concern in this class
is—in the static view—coupled to IController interface. This
connection is easy to spot in static diagrams, such as a UML class
diagram (Fig. 1(a)). On the other hand, only a system execution is
able to point out the connections identified by the dCSC metric,
such as the dynamic concern coupling in CoreController and
PhotoController.
3.1. How to measure dynamic concern metrics

It should be fairly evident that the dynamic measurement of a
system can only be achieved by analyzing the running system. To
this regard, a running object-oriented system is a set of class
instances (objects) exchanging messages (method invocations or
field accesses) to collaborate in realizing their tasks. The classic
measurement techniques can apply also to concern-oriented (e.g.,
aspect- and feature-oriented) programs but different characteris-
tics must be addressed, e.g., the behavior of a concern, how the
concern is instantiated, and the effective coupling between con-
cern and base code. A dynamic concern (or a concern at run-time)
is, hence, strictly tied to the main concept of the dynamic analysis:
the concern execution. In particular, it is identified by portions of
code that are executed to realize a given concern (e.g., a given
aspect, trait, feature, or functionality) and generally, at run-time
a concern can be exercised by: (i) an application run; (ii) a trace,
i.e., a part of the application run; (iii) a given scenario that can
include many traces or (iv) a given set of scenarios. More formally,
the dynamic measurement of a given concern involves the follow-
ing main steps:

1. the definition of the execution scenario/s and inputs neces-
sary to exercise the concern, e.g., a set of predefined test
cases ([18,19] presented some approaches to automatically
derive such scenarios);

2. the tracing of the concern execution and the recording of the
relevant information via system instrumentation—as in
[20,21]—or via some ad hoc run-time support—as by exploit-
ing the JVMTI3;

3. the execution of the system to exercise the selected
scenario.

During the concern execution, the mechanism installed in step
2 records a set of traces containing data about the system behavior.
Off-line measurements are based on trace analysis after the system
execution has been completed (e.g., see the metrics to measure the
dynamic coupling [10,11]) whereas on-line measurements are
done on-the-fly during or instead of the trace recording (e.g., see
the metrics to measure the performance of a system, e.g., CPU load
[10,11]).

Moreover, the dynamic measurement can be based on the exe-
cution of several execution scenarios and on several sets of inputs
contemporaneously. To have a complete picture of the system con-
3 http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti.
cern execution, we have to exercise as many usage scenarios as pos-
sible and in every possible execution context. Unfortunately, this is
not always possible since such a combination of usage scenarios
and contexts can be huge if not infinite: some coverage criteria,
as shown by [22], can be successfully applied that will lead to a par-
tial view of the concern behavior. Therefore, static and dynamic
measurements have a different view of the system and also the
measurements will differ accordingly. Ad hoc scenarios allow to
exercise all and only the elements composing a given concern.

3.2. Tool support

In [20], Cazzola and Marchetto presented AOP HiddenMetrics:
an Eclipse-based tool that supports the measurement of dynamic
metrics for Java and AspectJ applications in a noninvasive way thanks
to the use of aspect-oriented programming. Aspect-oriented pro-
gramming provides a composition mechanism that permits to
clearly separate the measurement process from the subject of the
measurement avoiding code pollution or replication typical of
traditional and more invasive approaches and, thus, widening the
applicability of the measurement process. In AOP HiddenMetrics,
the metrics are implemented as aspects and woven into the target
application only when they have to be measured. Indeed,
AOP HiddenMetrics uses a transparent plug/unplug mechanism to
instrument the code of the target application with the measurement
code (i.e., the aspects implementing the metrics). On one side, the
tool supports different measurements (e.g., coupling on method
calls, lack of cohesion of operations, code execution coverage) on
several software properties (e.g., size, coupling, cohesion, memory
use, code coverage) by means of predefined aspects. On the other
side, it provides also an easy way to extend its set of metrics: to
define new metrics requires only a bit of knowledge of aspect-
oriented programming. A complete overview of AOP HiddenMetrics

can be read in [20].
In this work, the AOP HiddenMetrics metrics set has been

enriched with the concern-level metrics presented in Table 1 and
the process needed to compute and measure them has been tuned.
At this point, to measure an application the user has to:

1. define a set of system executions and code a set of test cases
(e.g., in jUnit) able to exercise them;

2. choose the metrics to measure and weave the correspond-
ing aspect/s to the target system; and

3. execute the test cases and wait for the aspect to collect the
resulting measures.

The test case definition (i.e., step 1) is in charge of the user since it
depends on the target system to measure; the remaining steps
(i.e., step 2 and 3) are completely automated by AOP HiddenMetrics.
See Section 7 for detailed examples of the tool usage.
4. Framework: basic concepts

This section presents the basic concepts used by our concern-
oriented framework for dynamic measurements (Table 4 summa-
rizes them). It also introduces a standard terminology which
allows to express all the dynamic metrics in a consistent and
meaningful manner, independently of the implementing language
of the target system.

4.1. Concern and system elements

We introduce concepts and notions used to define a concern
and the existing relationships between a concern and the struc-
tural elements of a system that realize such a concern. Moreover,

http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti

Table 4
Concern and system elements: summary of relevant notions.

Notation Description

S target system

CðSÞ;OðSÞ set of components and instances of S respectively
MðcÞ ¼ AttðcÞ [OpðcÞ [DecðcÞ set of members (attributes, operations and declarations) of a component c
MðobÞ ¼ AttðobÞ [OpðobÞ set of members (attributes and operations) of an instance ob
RtðopÞ;ArgsðopÞ; IPðopÞ; StðopÞ set of return types, parameters, code-injection points and statements for an operation op

ConðSÞ set of concerns of S
MðconÞ ¼ AttðconÞ [OpðconÞ [DecðconÞ set of members (attributes, operations and declarations) of a concern con

CCðSÞ set of the connections among components and instances of S
CCðcÞ ¼ ECðcÞ [ICðcÞ set of (explicit and implicit) connections of a component c with other components
CCðoÞ ¼ ECðoÞ [ICðoÞ set of (explicit and implicit) connections of an instance o with other instances

AncestorsðcÞ; ParentsðcÞ sets of ancestors, parents, children and descendants of a component c
ChildrenðcÞ;DescendantsðcÞ

ACðSÞ; LCðSÞ partition of CðSÞ and OðSÞ among applications, and libraries

W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51 37
these concepts are helpful in specifying the key abstractions for a
system, each type of abstraction is alternatively called an element.

A concern can be realized by an arbitrary set of elements of a
system S. S consists of a set of components, denoted by CðSÞ. A
component c 2 CðSÞ can be, for example, a class, an interface, an
aspect, a feature or a set of these elements. At run-time, the coun-
terpart of CðSÞ is represented by a set of instances, i.e., objects
denoted by OðSÞ, any c 2 CðSÞ can be instantiated by one or more
objects ob 2 OðSÞ independently of its actual type (e.g., class).
Aspects, features, traits and so on affect the instantiation process
by enriching the final instance with data from a different concern.
In general, the generic term instance is used to identify all kinds of
objects when a more precise terminology is not necessary. The
mapping / : PðOðSÞÞ ! PðCðSÞÞ connects an instance or a group
to the component they are instantiated from. For example, if ob
is an instance of the class c woven by the aspect a;/ðfobgÞ returns
the set fc; ag. During the execution, an instance can be considered
in isolation or aggregated at different granularity levels such as
class-, scenario-, use-case-, and system-level. For example,
Fig. 1(a) shows that the CoR pattern is statically composed of the
abstract class AbstractController, the interface IController,
and the classes: CoreController, PhotoController, SMSCon-
troller. Instead, dynamically the CoR pattern, see the scenario
in Fig. 1(b), is only composed of instances of such classes, e.g.,
interfaces cannot be instantiated into objects.

Each instance ob exposes a set of attributes, AttðobÞ, and a set of
operations, OpðobÞ. From the dynamic perspective, hence, given
c 2 CðSÞ, the sets AttðcÞ and OpðcÞ are defined as the set of attributes
and operations defined or provided by c. Note that operations are
all those logical elements providing utilities, services and function-
ality. For instance are operations: the methods as defined in the
object-oriented languages like Java; pointcuts and advices as
defined in aspect-oriented languages4 like AspectJ; but also the
mixins as used in feature-oriented languages (like Jak/AHEAD [23])
provide methods and method refinements that are considered as
operations. Moreover, in the presence of dynamic weaving (as in
CaesarJ [24]) and for dynamic object-oriented languages (e.g.,
Python) attributes and operations can be added to the objects at run-
time and not only to the class; in such cases AttðobÞ and OpðobÞ can
differ from the corresponding sets (AttðcÞ and OpðcÞ) for the compo-
nent c; ob is instance of c. The set MðcÞ of members of c is defined by
MðcÞ ¼ AttðcÞ [OpðcÞ [DecðcÞ, where Dec(c) represents a set of dec-
larations of the component c. Analogously, the set of the members of
4 As [2] defined them, pointcuts are language elements that capture the so-called
join points,—i.e., well-defined points in the program flow such as method calls, object
instantiations, and variable accesses—, where the advices are woven.
an instance MðobÞ is defined as MðobÞ ¼ AttðcÞ [OpðcÞ. An operation
o 2 OpðobÞ can have a return type, RtðoÞ, a set of parameters, ArgsðoÞ,
a set of code-injection points IP (e.g., join points in aspect-oriented
programming, mixins in feature-oriented programming), and a set
of statements or executable lines of code, StðoÞ. At run-time, an oper-
ation o can be invoked and/or executed by a concern, an attribute a
can be instantiated and/or accessed during the concern execution, a
join point jp can be hit and thereby the woven advice executed, and
mixins mxs are composed of feature-based software units by code
synthesis. At run-time, a system can be viewed as a set of instances
collaborating through messages to realize the system functionality.
These collaborations are based on the connections CCðSÞ existing
between elements of the systems like instances or components.
Hence, CCðSÞ is composed of operation calls, attributes uses, effects
at join points and so on.

Notice that software concerns are compositions of generic ele-
ments of a system. A concern is an abstraction addressed by those
elements that have the purpose of realizing it. An example of con-
cern is a software requirement or functionality while the dynamic
counterpart of a concern is a requirement or a functionality that
can be executed through, at least, a scenario. To have a concern-
based measurement, it is necessary to associate each structural
element of the system (e.g., components) to the concerns it is real-
izing. For instance, Fig. 1(a) shows the projection of the CoR pattern
on the code (static point of view of the concern) and Fig. 1(b)
shows one execution scenario of the CoR pattern that can be exe-
cuted to map the concern to the elements realizing it (dynamic
point of view of the concern), see Section 3.

The set of concerns addressed/implemented by the system S is
defined as ConðSÞ. SCNðconÞ is a set of scenarios which exercise
the concern con 2 ConðSÞ. CðconÞ is the set of components realizing
a concern. Instead, AttðconÞ and OpðconÞ, are respectively the set of
attributes and operations realizing a concern and so, as well as for
components, the set of members of a concern con is defined as
MðconÞ ¼ AttðconÞ [OpðconÞ. To statically identify the set of mem-
bers that implement a concern also a set of declarations, Dec(con),
must be considered: MðconÞ ¼ AttðconÞ [OpðconÞ [DecðconÞ.
4.2. Components and connections

The connection is a dependency relationship where an element
(server) provides a service to another element (client). Two
elements are dynamically connected when one of them sends a
message to the other. Method and constructor invocations, attri-
bute accesses and effects at the join points are examples of
exchanged messages. This variety characterizes the connections
among the elements.

Table 5
Concern-oriented model instantiation.

Element Static

Java AspectJ Jak

System system system system, system extension
Concern concern concern concern
Component classes and interfaces classes, aspects and interfaces classes, mixins, and their refinements and extensions
Interface method signature method signature method signature, class/mixin specification
Attribute fields and variables fields, variables and inter-types classes, mixins, fields and variables
Operation methods and constructors methods, constructors, inter-types and advices methods, constructors and expressions
Statement java instructions java and aspectj instructions jak instructions (like java inst.), expressions

Dynamic

Java AspectJ Jak

System scenarios, features scenarios, features composition of features
Concern scenarios scenarios features
Component class instances class and aspect instances class and mixin instances
Interface reflective invocationsw reflective invocationsw reflective invocationsw of component and their

compositions
Attribute usage of fields and variables usage of fields, variables and inter-types usage of classes, mixins, fields and variables
Operation method and constructor

invocations
methods, constructors, inter-types and advice invocations and
advice executions

method, class, mixin and constructor invocations,
expression executions

Statement bytecode instructionsww bytecode instructionsww bytecode instructionsww

38 W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51
Two kinds of connections can be identified: explicit, and implicit.
For instance, an explicit connection of a component c, denoted by
ECðcÞ, is caused by elements of c calling an operation or accessing
an attribute of another component. On the other hand, an implicit
connection of a component c, denoted by ICðcÞ, is caused by hitting
a woven join point during the execution or by a handler catching
an exception. The set of connections of a component c is defined
as CCðcÞ ¼ ECðcÞ [ICðcÞ. Similarly, CCðoÞ ¼ ECðoÞ [ICðoÞ the set of
connections of an instance o. A reflective invocation, such as
mtd.invoke(obj, args), introduces an implicit connection
among, at least, three components: the class of the obj variable,
that represents the target of the message, the class of the this ele-
ment, that represents the source of the message and the class defin-
ing the method reified by the mtd variable, that represents the
context. Note that the context and the target can differ at run-time
due to, for example, inheritance and inter-type declarations. The
objects involved as arguments are similarly coupled. Reflection
hampers static code analysis since the involved components can
be reflectively created from external inputs. Similar issues can be
raised for many other language constructs, as AspectJ’s cflow

and if, CaesarJ’s deploy and Scala’s mixed trait/class based inher-
itance mechanism. Furthermore, components may participate in
inheritance relationships. Inheritance and late binding can lead
to different measurements with respect to the static approach (as
described in the examples of Section 3). To this respect, for a
component c, the following sets are defined: (i) Ancestors(c)—all
recursively defined parents; (ii) Parents(c)—the directly declared
parents; (iii) Children(c)—the directly derived children, and
(iv) Descendants(c)—the recursively derived children.

The set of all components of a system CðSÞ can be seen as parti-
tioned into two subsets according to the extent of each component
in the system itself: components defined in the system, or in a
library or framework belong to the application, that are respec-
tively ACðSÞ and LCðSÞ. Given one of these partitions it is also pos-
sible to determine the set of instances, attributes, and operations
belonging to the partition, e.g., given ACðSÞ its sets of instances,
attributes and operations are OðACðSÞÞ;AttðACðSÞÞ and OpðACðSÞÞ,
respectively. In other terms, OðACðSÞÞ represents the set of
instances belonging to components part of the application. The
mapping /ðOðACðSÞÞ : PðOðSÞÞ ! PðACðSÞ [LCðSÞÞ connects an
instance or a group of instances to the part (i.e., ACðSÞ or LCðSÞ) they
are instantiated from. For example, if ob is an instance of the class c
belonging to the application, i.e., ACðSÞ, and woven with an aspect a
belonging to a library, i.e., LCðSÞ;/ðobÞ returns ACðSÞ and LCðSÞ.
Conversely, in case both c and a belonging to the application, i.e.,
ACðSÞ;/ðobÞ returns only ACðSÞ.

4.3. Language mapping

The aforementioned concern-oriented model is abstract enough
to be instantiated for different modeling and programming lan-
guages. Table 5 provides a brief example on how our model can
be instantiated to Java, AspectJ and Jak programming languages.
Moreover, it shows the differences between static (given in [9])
and dynamic instantiation on these languages. Most of the map-
pings are intuitive and derive directly from the framework descrip-
tion. Few notes can be added: w interfaces are typical concepts
without a dynamic counterpart but reflective calls can be identified
through them also during the application; ww even if the bytecode
instructions can be easily reverted to their source counterparts,
they have a different granularity (many bytecode instructions are
out of a single Java instruction) and metrics such as LOC clearly
have a different measurement unit; www scenarios can be realized
by test cases written in jUnit [25] or similar tools.

5. Framework: the criteria

This section presents the concern-oriented framework for
dynamic measurement which relies on the notions introduced in
the previous sections.

The framework is defined according to a set of criteria and sub-
criteria we derived from our investigation on (dynamic) concern-
oriented metrics, i.e., the one documented in Section 2 and Section
3. Each criterion comes with a small description explaining which
is the criterion, its instantiation details and some examples show-
ing how to use it to describe new metrics. This version of the
framework is based on the framework presented in [9]. New crite-
ria or sub-criteria needed for specifying dynamic measurements
have been introduced when appropriate.

5.1. Entities of concern measurement

The entity of measurement determines the application ele-
ments that we are going to measure and for which we are measur-
ing/evaluating a given property of interest. Dynamic measurement
at the concern level is aimed to capture run-time characteristics or

W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51 39
properties of given concerns and to manipulate them in a formal
way. This criterion, hence, defines the level at which the collected
measurement information can be interpreted. For instance, the
run-time ‘‘size’’ of a concern can be different from the conventional
static size since the system elements actually executed can be dif-
ferent, or they can have different characteristics from those defined
in the system and composing the target concern. The run-time size
can be measured, e.g., in terms of concern instances or operations
really exercised during a software execution and it gives us an idea
about the size of a given system aspect at concern-level.

Criterion instantiation. Usually concern measurement adopts
concerns as the entity of measurement, but other selections are
also possible. Although all elements in the concern-oriented model
(see Section 4) may be selected in this criterion, the most common
entities of concern measurement are: (i) system, (ii) concern, (iii)
component, (iv) instance, (v) attribute, and (vi) operation.

Example. If we are interested in knowing how much a given con-
cern is spread over the operations of the application to measure,
we have to measure how many operations are executed to realize
such a concern. In this case, the entities of measurement is the
‘‘concern’’ since we are measuring a property of the concern of
interest. Conversely, if we want to know how many operations
are exercised if a component (e.g., class, feature or aspect) is
instantiated the entity of measurement is ‘‘component’’.

5.2. Concern-aware attributes

Attributes are the properties that a concern (or, more generally,
an entity of measurement) possesses and in which we are interested
in. If we observe the behavior of two concerns by using scenarios we
can say, for example, that one is more spread than the other in the
system. A concern metric allows us to capture the ‘‘is more spread
than’’ relationship and map it to a formal system, enabling us to
mathematically explore the relationship. An entity possesses many
attributes and an attribute can qualify many different entities [15].
For example, size can apply to several different software entities,
such as components, computational units, operations, or concerns.
An additional factor, ‘‘at run-time?’’—with ‘‘yes or ‘‘no’’ as possible
values—specifies if the properties should be observed at run-time.

Criterion instantiation. In the attribute selection we may choose
any property of the entity that we want to measure. Possible values
related to static properties (i.e., properties that can be observed
without the system execution) can be: (i) scattering, (ii) tangling,
(iii) closeness [4], (iv) coupling, (v) cohesion and (vi) size. Similarly,
possible values related to dynamic properties of the system under
analysis are: (i) run-time scattering,5 (ii) run-time tangling,6 (iii)
run-time closeness [4], (iv) run-time coupling [10,12], (v) run-time
cohesion [12], (vi) run-time size [13]; (vii) used memory [13]; (viii)
and concurrency [13].

Example. If we are interested in knowing how much a given con-
cern is spread over the operations of the application to measure,
we are interested in measuring the ‘‘scattering’’ property of the
concern. Conversely, if we want to know how many system ele-
ments are composing the concern, we are interested in measuring
the ‘‘size’’ property of the target concern.

5.3. Units

A concern measurement unit determines how to measure an
attribute. An attribute can be measured by one or more units and
5 That is, the situation where the execution of one concern triggers the instanti-
ation of many objects from different classes. For example, objects from three classes
were instantiated in the execution of CoR in Fig. 1(b).

6 That is, the situation where the execution of two or more concerns triggers the
instantiation of objects from the same class.
the same unit may be used to measure more than one attribute.
For example, the size of a concern at run-time might be measured
by counting either the number of executed bytecode instructions,
code statements, the number of components used during the exe-
cution of the scenario realizing the concern.

Criterion instantiation. Possible values are any quantifiable ele-
ment as computational unit. For example, (i) concerns, (ii) compo-
nents, (iii) operations, (iv) attributes, (v) lines of code, (vi) bytecode
instructions, (vii) executable lines of code or statements, (viii) allo-
cated memory, (ix) exchanged messages, (x) frequencies of state-
ment execution, (xi) number of active threads, (xii) number of
reached joint points, (xiii) advice executions, (xiv) execution time,
(xv) instances.

Example. If we are interested in knowing how much a given con-
cern is spread over the operations of the application to measure,
we have to measure how many operations are used to realize such
a concern. In this case, the entities of measurement is the ‘‘opera-
tion’’. Instead, if we want to know how much the concern is spread
over the components of the system, we have to work at ‘‘compo-
nent’’ (e.g., classes, aspects) level by measuring the number of sys-
tem components used to realize the target concern.

5.4. Concern measurement values

A measured metric value cannot be easily interpreted unless
knowing the type and the possible range of values that the metric
can assume. To understand how to interpret a measured metric
value is fundamental to compare the same metric value with those
that are known to be possible values that the metric can theoreti-
cally assume. For instance, it is important to know if the value that
can be assumed by a given metric has upper/lower limits or not;
this let us understand if the measured metric value is high or not.

Criterion instantiation. A set of permissible values may be finite
or infinite, bounded or unbounded, discrete or continuous.

Example. In the case, for example, of scattering and size mea-
sured in terms of the number of components and operations are
bounded and discrete ratio-scale metrics.

5.5. Concern granularity

The granularity of a concern metric is the level of detail at
which the measurements are gathered. This criterion is
determined by the following factors: (i) element granularity;
(ii) element distinction; (iii) direction of the connection; and
(iv) aggregation level.

The element granularity factor specifies which elements will be
measured, that is, how to aggregate the yielded values. For exam-
ple, when we say ‘‘the number of concerns of a component that . . .’’
the entity is a component but what we are counting (granularity)
is the number of concerns, i.e., ‘‘concern’’.

The element distinction factor defines how the elements are
counted, that is, if we ignore duplicated elements or not when
we re-apply the metric to a different goal. For instance, this factor
specifies if the same component should be counted for any differ-
ent concern or not in a given metric.

The direction of the connection factor specifies if the dynamic
connections can be in the import direction (i.e., a method is exe-
cuted on an object call) or in the export direction (i.e., a method
is called by another object’s method).

The aggregation level factor specifies the level where the mea-
sured information are aggregated. For instance it can be: instance,
class or aspect, scenario, use-case, and system.

Criterion instantiation. Possible values for element granularity
are: (i) concern, (ii) component, (iii) operation, (iv) attribute, (v)
member (attribute and/or operation), (vi) lines of code and (vii)
bytecode instructions. Element distinction has to be ‘‘yes’’ (count

40 W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51
only once) or ‘‘no’’ (count all possible occurrences). Possible values
for direction of the connection are: ‘‘import’’ and ‘‘export’’ and for
aggregation level are: ‘‘instance’’, ‘‘component’’ (class and/or aspect),
‘‘scenario’’, ‘‘use-case’’, and ‘‘system’’.

Example. If we are measuring the strength of the dynamic con-
nection of components realizing a concern, we have to: identify the
messages that are exchanged by instances of the system compo-
nents that are used to realize the concern; aggregate them at the
component level; and compute the corresponding metric. In such
a case, the entity of measurement is the concern, the unit of mea-
surement is the message while the granularity is the component.
Moreover, with the aim of correctly identifying the messages to
be counted we have to decide if we have to consider all possible
occurrences of the same message independently of its direction
or not, i.e., we have to decide if, for example, object ‘‘o1 uses object
o2’’ corresponds to ‘‘o2 uses object o1’’ or if they are two different
messages.

5.6. Domain

There are three pertinent issues about domain: (i) the partition
of the system to take into account, i.e., application, library or both;
(ii) how to account for inheritance, that is how to consider the ele-
ments in the hierarchy of the element under analysis; and, in case,
(iii) which kind of hierarchy element relationships have to
consider.

Regarding the system partition, we have to define which system
partition should be accounted for; e.g., the considered elements
may belong to the application domain (excluding components of
frameworks and libraries used by the system under analysis).

Regarding inheritance, a metric needs to specify if inheritance
can be considered or not and which kind of hierarchy element rela-
tionships have to be considered. For instance, given a concern met-
ric for run-time coupling among objects; we need to define if
messages exchanged with parents of an object must be counted
in the coupling metric or not. To precisely define the domain of
the measures of interest it is important to limit overestimation
and generalization of such measurements when they are actually
applied. For example, if we are measuring the size of the compo-
nents instantiated during the run of a concern, we have to decide
how to consider and measure the inherited components. The risk,
in fact, is that inherited elements of parent components can be
considered twice: when the parent component is instantiated
and when a child component is instantiated and used. Hence, dif-
ferent kind of relationships between elements of the element hier-
archy need to be considered (e.g., ‘‘parents’’, ‘‘children’).

Criterion instantiation. The possible values for inheritance are
‘‘yes’’ (consider) or ‘‘no’’ (ignore). Besides, if inheritance is taken
into consideration metrics have to specify which set of elements
should be included: ‘‘ancestors’’, ‘‘parents’’, ‘‘children’’, or ‘‘descen-
dants’’. Instead, about the domain, we may restrict elements in
the domain based on: ‘‘application’’ and ‘‘libraries’’. Other categori-
zations are also conceivable.

Example. If we are measuring the size of a concern in terms of
number of components that compose it, for example, in an
object-oriented system, we have to decide if we want to consider
the type hierarchy. For example, if a class A is used to realize the
target concern C, and A is child of Pa, to compute the size of the
concern C we have two possibilities: (i) only consider A; or
(ii) consider both A and its parent Pa. This choice can lead to two
different measures especially in large systems. Hence, it is
important to precisely define how to compute the concern size.
Furthermore, to measure the concern size we have to decide if
we have to take into account only the components of the target
system or if we have to consider also components used by the
application but that are defined into third-party libraries. This
decision can give us more precise or fine-grained information
about the size of the software concerns we are measuring,
nowadays several software use a lot of third-party libraries to
implement their features.

5.7. Concern mapping: concern projection or triggering

One of the most crucial parts in concern measurement is how to
project it into elements in the design/application and how to trig-
ger them. At least four issues are related to mapping: (i) what the
concerns are, (ii) how the concern can be implemented/exercised,
(iii) onto which artifact the concern is going to be mapped, and
(iv) how the mapping among concerns and elements can be exe-
cuted. Clearly, it is not mandatory to specify them. In this case,
all kinds of concerns, concern-element maps and concern execu-
tions are allowed by the considered metric. Moreover, concern
metrics have to specify if they allow concerns overlapping or not.
For instance, it is possible that two different concerns could be pro-
jected into the same operation. Often, code analysis and inspection
are used to map a concern into program/code elements. For
instance, static techniques for concept location (e.g., [26]) can be
applied to this aim. However, such type of approaches cannot be
successfully used to measure dynamic concern properties.
Dynamic concern metrics require that the mapping between con-
cerns and (measured) code is realized at run-time (e.g., by taking
into account the concern execution). Therefore, at run-time a con-
cern can be triggered by: (i) a system execution; (ii) an executable
scenario; (iii) a set of scenarios (use cases). For instance, feature
location techniques based on dynamic analysis (e.g., [27]) can be
successfully applied to trigger a concern.

Criterion instantiation. As previously explained, a concern can
be: a feature, or a set of features, functional or nonfunctional
requirements, an implementation mechanism. Possible values for
how to exercise a concern can be: feature execution, execution sce-
narios, use-cases, and system. While, possible values for artifacts
can be each computational unit of the system (e.g., components,
members, lines of code, code instructions or statements, basic
blocks, sub-systems).

Example. Kaur and Johari [7] surveyed existing techniques to
map software concern into code elements. Static and semi-auto-
matic techniques are based on the analysis of software artifacts,
for instance, the prune dependency rule [28], FEAT [1] and Fan-in
Analysis [29]. While dynamic techniques require the definition of
execution scenarios (as in [18,19]) that can exercise the concern
of interest, thus triggering its code elements, and code instrumen-
tation infrastructures able to capture the triggered elements.

6. Framework evaluation by instantiation

In a first stance, the effectiveness of the proposed framework
has been evaluated by formally instantiating a set of dynamic con-
cern metrics. We hence answered the following research question
(RQ1):

‘‘Can the framework be used to describe several dynamic and con-
cern-oriented metrics using a common and precise terminology
and set of concepts?’’

To answer this question, we carried out an experiment with
subjects [33] that involved 50 master students enrolled in the soft-
ware engineering course. The object of the study is the framework
and the purpose of the study is to prove that the framework is
usable to define a large set of dynamic and concern oriented met-
rics. The master students attending the software engineering
course have a common background in computer science and are
acquainted with the necessary concepts as metrics, measurements

W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51 41
and software quality even if they are not experts; in few words
they represent the average user: acquainted with the topic but
not too skilled. Such a choice has granted a more germane evalua-
tion of the framework avoiding any spike (all perfect or completely
a mess) in the feedback.

The students have been asked to use our framework to define
and describe the metrics informally presented in Table 1 (plus
those defined in [4] and reported in Table 2) and the metrics
reported in Table 6 that we did not use to set up the framework.
The new metrics used in the experiment (Table 6 third column)
are straightforward adaptations of static and module-oriented
metrics found in the literature to dynamic concern metrics. The
two sets of metrics used in the experiment have different roles.
The former set—since used to define the framework—provides an
evidence on the usability of the framework: we already known that
such metrics could be defined with the framework but we were not
aware if this can also be done by people that did not develop the
framework. On the other hand, the inclusion of the latter set of
metrics in the experiment has permitted to show that the frame-
work is not tailored on the metrics used to define it but it can grasp
a wider set of metrics.

The experiment has taken place in two phases. In the first phase
the students got acquainted with the framework, thanks to a lec-
ture and a guided tutorial on the framework use we had at the
end of the software engineering course. In the second phase each
student became an active actor in the experiment by autono-
mously using the framework to define some of the metrics. In par-
ticular in this second phase the students have been scattered all
over the examination room with enough space between them to
avoid collaborations and then each of them had to draw for two
distinct metrics out of a box (the box contained 4 copies of each
metric for a total of 100 pieces of paper; the drawn pieces of paper
were not reinserted in the box) and then they started to work on
the instantiation of the drawn metrics. This phase of the experi-
ment lasted for three hours and it had the final goal to get feedback
about the framework usability, completeness and effectiveness.
Feedback has been collected through an anonymous form given
to the students together with the metrics to be instantiated and
the forms are put back in a separate box at the end of the three
hours; anonymity permitted to have students’ unbiased feedback
since it reduces the risk of ‘‘teachers’ retaliations’’ in case of nega-
tive feedback. Feedback has been collected as open answers to few
generic questions like ‘‘the framework provides all the concepts nec-
essary to instantiate your metrics? If no, please, explains what it is
Table 6
New concern metrics not considered in the framework construction.

Metric Original definition

dpubOp public methods [30] counts the number of ‘‘public’’ methods of a class

dOpLength method length [30] counts the number of methods of a class longer than n
(parameter) lines of code

dDOSC degree of scattering in components (DOSC) [8] measures the degree to
which the components of a system compose a concern

dDOSO degree of scattering in methods (DOSM) [8] measures the degree to
which the methods of a system compose a concern

dOVERL concern overlap [31] measures the percentage of overlap of concern code
for two or more concerns

dNsO number of shared operations (NsO) [32] counts the operations of other
concerns called by every concern

diCd cyclical dependencies (iCd) [32] counts the number of cyclical depen-
dencies of the code elements containing a given concern

dRR Reuse (RR) [32] measures the concern reuse in terms of number of
inherited concerns per each concern

dIC inner concerns (IC) [32] counts the number of inner concerns of a given
concern

dInC concerns for a component (InC) [32] counts the number of concerns a
given component is participating
missing in your opinion or what do you think it is necessary to
change.’’ Basically, the experiment tested if the students were
really able to use the framework to instantiate metrics whereas
the feedback (together with the hints we could extract from the
students’ instantiation) were intended to provide suggestion for
improvements.

Feedback on the instantiation activity about the metrics in
Table 1, confirmed our choices for the framework elements and
components (listed in Section 4) and helped to tune up the set of
possible instantiations for the framework criteria (listed in Section
5). All the students were able to accomplish their task with a small
number of issues and the achieved instantiations were similar to
those we realized. Only in few cases the four instantiations of the
same metric were discordant. Some of the most interesting issues
were:

(i) the instantiations of the dynamic operation lenght metric
revealed that the meaning of unit in the framework was
ambiguous since some students gave a different interpreta-
tion of it (now we extended the framework to cover all pos-
sible values for the unit element);

(ii) the instantiation of the dynamic Concern Sensitive Coupling
metric revealed that the students get confused by what a
connection is; in particular the confusion was related to
the direction of the connection concept (now this concept
has been deeply explained) and

(iii) often the students confused the unit of measurement with the
entities of concern measurement; initially their differences
were not clearly written;

the description of these criteria has been rewritten and some exam-
ples provided to clearly state the differences.

Apart from what we inferred from the metric instantiations;
really few (useful) suggestions came from the students in the
answers to the open questions and in general these were related
to clarify and improve some framework definitions. For instance,
thanks to the students’ feedback we have understood more deeply
the role of the connections (CCðSÞ) among pairs of system elements
like instances and components in different language paradigms
(e.g., object-oriented, aspect-oriented and feature-oriented), and
we detected the different types of units involved in such paradigms
(i.e., classes, components, aspects, features), see Section 4 for
details. Feedback on the instantiation activity of the new metrics
(Table 6) has permitted to evaluate the completeness of the
Modified definition

dynamic public operations counts the number of ‘‘public’’ operations exercised
during the execution of a concern
dynamic Operation Length counts the number of operations executed by a
concern and that exercise more than n (parameter) lines of code
dynamic degree of scattering in components measures the degree to which the
components of a system compose a concern at runtime
dynamic degree of scattering in operations measures the degree to which the
methods of a system compose a concern at runtime
dynamic overlap measures the percentage of overlap of concern executed code for
two or more concerns
dynamic number of shared operations counts the operations of other concerns
executed by every concern at runtime
dynamic cyclical dependencies counts the number of cyclical dependencies
among the components executed by a given concern at runtime
dynamic reuse measures the concern reuse in terms of number of concerns
executed by a concern at runtime
dynamic inner concerns counts the number of sub-concerns executed by a
concern at runtime
dynamic concerns for a component counts the number of concerns that execute a
given component at runtime

42 W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51
framework in terms of its elements and criteria and since the stu-
dents were able to instantiate the whole set without big problems
we are confident that our criteria covers a large enough set of pos-
sibilities. Note that the version of the framework presented in this
paper already takes into consideration all the suggestions for
improvements we implicitly (from the instantiated metrics) or
explicitly (from students’ feedback) got from the experiment. This
limited experiment can be considered as the first attempt to vali-
date the framework by means of a set of instantiations, however,
further efforts are going to be devoted to widen the experiment
and to involve other researchers in this activity for getting an, as
much as possible, complete and shared validation of the
framework. In any case we consider the experiment satisfactory
and it supports our research question RQ1.

Table 7 summarizes the achieved results in terms of values for
the most relevant factors of the whole set of instantiated metrics.
To complete the picture, we report the instantiation of three of
these metrics (basically as done by the students in the experi-
ment): dynamic Concern Sensitive Coupling (dCSC), dynamic Concern
Diffusion over Operations (dCDO) and dynamic Degree of Scattering
across Components (dDOSC). Please note that, dCSC and dCDO
(Table 1) have been used to build and refine the framework, while
dDOSC (Table 6) is only used to validate the framework and not to
define it. By analyzing and selecting each criterion defined by the
framework for the chosen metrics we have the following.

dynamic Concern Sensitive Coupling (dCSC) of a concern con.

Entity of Concern Measurement. Concern is the entity of mea-
surement for this metric.
Attribute. dCSC quantifies coupling of each component c of the
concern con (c 2 CðconÞ).
Unit. The unit is the number of (explicit) connections of the con-
cern components. In other terms, for each component
c 2 CðconÞ, its explicit connections (r 2 ECðcÞ) are considered.
Properties of Values. Permissible values for this metric are not
higher than existing (explicit) connections of the system ECðSÞ
(finite), do not define any interval a priori (unbounded), and
allow integers only (discrete).
Granularity. The granularity of elements that is being
measured is object (i.e., the run-time component). The direc-
tion of connections is import. Only distinct connections are
taken into consideration and the level of aggregation is
component.
Domain. It considers application components (not components
in the framework or libraries) and takes inherited operations into
account. In other terms, we consider each component c of the
application S that is part of the concern con
(c 2 ðACðSÞ \ CðconÞ). However, it does not count inheritance
relationships as connections.
Concern Triggering. Concerns can be a feature executed by
some input. Concerns are identified by the execution of scenarios
(SCNðconÞ) that triggers them. Overlapping of concerns is
allowed.

Using the selected criteria and the concern terminology
described in Section 3 we derive the following formal definition
for dCSC:

dCSCðconÞ ¼fjr 2 ECðcÞj s:t:c 2 ðACðSÞ \ CðconÞÞ ^
exec 2 SCNðconÞ ^ con 2 ConðSÞg

where exec is one of the scenarios (exec 2 SCNðconÞ) that exercises/
triggers the concern con; c is a component defined in the application
(we are not interested in considering components of libraries and
so on) and involved by the concern con (c 2 ðACðSÞ \ CðconÞ) and r
is an explicit connection from c to other components of the system
S; the cardinality of this set represents the desired value for the
metrics.

dynamic Concern Diffusion over Operations (dCDO).

Entity of Concern Measurement. Concern is the entity of mea-
surement for this metric.
Attribute. dCDO quantifies dynamic scattering of a given con-
cern over the operations of a running system (o 2 OpðSÞ).
Unit. The used unit is the number of operations o of each concern
component c (o 2 ðOpðcÞ \ OpðconÞ).
Properties of Values. Permissible values for this metric are not
higher than OpðSÞ (finite), do not define any interval a priori
(unbounded), and allow integers only (discrete).
Granularity. The granularity of elements that is being mea-
sured is operation o. The direction of connections is import
(accessing attributes or operations). All connections are taken into
consideration and the level of aggregation is component.
Domain. It considers application components c 2 ðACðSÞ (not
components in the framework or libraries) and takes into
account inherited operations from all ancestor components.
Concern Triggering. Concerns are features that can be exercised
by the execution scenarios (SCNðconÞ). Overlapping of concerns
is allowed.

Using the selected criteria and the concern terminology
described in Section 3 we derive the following formal definition
for dCDO:

dCDOðconÞ ¼ fjo 2 ðOpðcÞ \ OpðconÞÞj s:t: c 2 ACðSÞ ^
exec 2 SCNðconÞ ^ con 2 ConðSÞg

where exec is one of the scenarios (exec 2 SCNðconÞ) that exercises/
triggers the concern con; c is a component defined in the application
(c 2 ACðSÞ) and o is an operation defined by the component c and
invoked by the concern con (o 2 ðOpðcÞ \ OpðconÞÞ); the cardinality
of this set represents the desired value for the metrics.

dynamic Degree of Scattering across Components (dDOSC).
dDOSC is the dynamic counterpart of the original (static) Degree

of Scattering across Classes (DOSC) defined by Eaddy et al. [8]. They
defined the DOSC metric as the degree to which the concern code is
distributed across classes of the system under analysis. The DOSC
value of a concern ranges from 0 to 1; when it is equal to 0 all the con-
cern code is concentrated in one class while it is equal to 1 that code
is equally subdivided among the classes of the system. The DOSC
metric is inspired by—but with a finer grained than—CDC; this met-
ric represents the classes that compose a concern while DOSC repre-
sents the degree to which the classes of a system form a given
concern. dDOSC for a concern is defined as the degree to which the
components of a system are executed by a given concern at runtime.

Entity of Concern Measurement. Concern is the entity of mea-
surement for this metric.
Attribute. dDOSC quantifies dynamic scattering of a given con-
cern over the system statements (st 2 StðSÞ).
Unit. The used unit is the number of statement st of each concern
component c (st 2 ðStðSÞ \ StðconÞÞ).
Properties of Values. Permissible values for this metric are
ranging from 0 to 1 (finite and bounded), and allow decimal
value in this range (continuous) obtained by dividing integer

Table 7
Instantiation of concerns metrics.

Concern
metrics

Entity Attribute Unit Values Granularity and
distinct

Domain and
inheritance

Concern, artefact
and overlapping

Extended dynamic
dCBOoC component coupling members finite, unbounded, discrete member, yes application, yes feature, component, yes
dLCOMoC component cohesion attributes finite, unbounded, continuous attributes and

operations, yes
application, no feature, operations and

attributes, yes
LCoC component size statement finite, unbounded, discrete statement, yes application, yes feature, component, no
NToC component concurrency component finite, unbounded, discrete component, yes application, no feature, component, no

Extended static concern-oriented
dCD concern scattering components finite, unbounded, discrete component, no application, no feature, component, yes
dCDC concern scattering components finite, unbounded, discrete component, no application, no feature, component, yes
dCDO concern scattering operations finite, unbounded, discrete operation, no application, no feature, operations, yes
dFCD concern scattering components finite, unbounded, discrete component, no application, no feature, component, yes
dLCC component cohesion concerns finite, unbounded, discrete component, no application, no feature, component, yes
dSize concern size members finite, unbounded, discrete member, yes application, no feature, member, no
dSpread concern scattering components finite, unbounded, discrete component, no application, no feature, component, no
dCSC concern coupling connections finite, unbounded, discrete component, yes application, no feature, component, yes

Wong et al. [4]
Concentration concern, component closeness none infinite, bounded, continuous member, no application, no feature, member, yes
Dedication concern, component closeness none infinite, bounded, continuous member, no application, no feature, member, yes
Disparity concern, component closeness none infinite, bounded, continuous member, no application, no feature, member, yes

Extended static and module-oriented
dDOSC concern scattering statement finite, bounded, continuous component, no application, no feature, component, yes
dDOSO concern scattering operations finite, bounded, continuous operation, no application, no feature, component, yes
dOVERL concern overlapping statements finite, bounded, continuous statement, no application, no feature, component, yes
dNsM concern coupling operations finite, unbounded, discrete operation, yes application, yes feature, component, yes
diCd concern coupling connections finite, unbounded, discrete operation, yes application, yes feature, component, no
dRR concern tangling components finite, unbounded, discrete component, yes application, no feature, component, no
dIC concern reusing concern finite, bounded, discrete component, yes application, yes feature, component, yes
dInC concern tangling concern finite, bounded, discrete component, yes application, yes feature, component, no
dOpLength concern complexity statements finite, unbounded, discrete operation, yes application, yes feature, component, no
dpubOp concern complexity operations finite, unbounded, discrete operation, yes application, yes feature, component, no

W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51 43
values representing number of system statement st (i.e., not
higher than StðSÞ).
Granularity. The granularity of elements that is being mea-
sured is statement st. The direction of connections is import
(accessing statements). All connections are taken into consider-
ation and the level of aggregation is component.
Domain. It considers statements of application components
c 2 ðACðSÞ (not components in libraries) and takes into account
inherited operations from all ancestor components, containing
statements.
Concern Triggering. Concerns are features that can be exercised
by the execution scenarios (SCNðconÞ). Overlapping of concerns
is allowed.

Using the selected criteria and the concern terminology
described in Section 3 we derive the following formal definition
for dDOSC:

dDOSCðconÞ ¼ jfst 2 ðStðcÞ \ StðconÞÞj
jfst 2 StðconÞj s:t: c 2 ACðSÞ ^

�

exec 2 SCNðconÞ ^ con 2 ConðSÞg

where exec is one of the scenarios (exec 2 SCNðconÞ) that exercises/
triggers the concern con; c is a component defined in the application
(c 2 ACðSÞ) and st is a statement defined by the component c and
invoked by the concern con (st 2 ðStðcÞ \ StðconÞÞ); the cardinality
of this set divided by the cardinality of the concern statements
(st 2 StðconÞ) represents the desired value for the metrics.

Overall remarks. Summarizing, the experiment showed that we
can positively answer to the research question RQ1, i.e., the frame-
work is usable to describe a large set of concern-oriented metrics
both static and dynamic.
7. Dynamic concern-oriented metrics for bug-proneness

In this section we report on a case study carried out to provide
an initial evidence of dynamic concern metrics utility and effec-
tiveness. Despite their potential usefulness, in fact, the use of such
metrics is scarcely investigated in the existing literature (cf. Sec-
tion 8). The study hence shows how dynamic concern measure-
ments—in particular, size and scattering—(1) can be calculated in
actual cases; and (2) how they can be exploited to predict bug-
proneness of application code.

In this case study we tried to address the following research
question (RQ2):

‘‘Are the dynamic concern-oriented metrics useful to predict the
concern bug-proneness?’’

In particular, according to the existing literature and by consid-
ering that:

i. several software characteristics and properties (e.g., soft-
ware size, complexity, coupling, scattering degree) can
potentially contribute to the bug-proneness [28,34] of a
system;

ii. both static and dynamic characteristics and aspects (e.g., sta-
tic coupling vs. dynamic coupling) can impact on the bug-
proneness of a software system [35–37] and that

iii. static and dynamic metrics can have comparable behavior
and trends when they are measuring related software prop-
erties and characteristics, and/or they complement each
other, when they are measuring unrelated properties [38,39].

We can expect that static and dynamic concern metrics can
complement each other in evaluating and predicting the concern
defectiveness. We investigate this intuition in the case study.

Table 8
Statistics about the considered applications (missing data are unavailable).

Application Lines of code # developers Downloads Bugs

(LOCs) # from 2000 # last week Year of first one # bugs Density (%)

Mtaca 11k 2 1695 1 2003 21 0.19
Buddib 18k 1 1,014,173 926 2006 279 1.55
jMovec 40k 3 4357 1 2002 53 0.13
JTopasd 2k 1 9606 5 2001 13 0.65
XmlSecuritye 43k – – – – 345 0.8
DbVizf 6k 4 15,812 12 2002 69 1.15
Jtidyg 18k 8 314,071 303 2000 176 0.97

a http://sourceforge.net/projects/mtac.
b http://buddi.digitalcave.ca.
c http://jmove.sourceforge.net.
d http://jtopas.sourceforge.net/jtopas.
e http://santuario.apache.org.
f http://jdbv.sourceforge.net/dbViz.
g http://jtidy.sourceforge.net.

44 W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51
7.1. Case study analysis

The case study considers seven Java applications summarized
in Table 8. All of them are open-source systems and their source
code, JUnit test cases, software documentation and bug trackers
are available through their websites. The study covers a large
variety of applications in terms of code lines (size) and number
of downloads (diffusion). Buddi, Jtidy and DbViz are successful
applications (high downloads rate) while Mtac and jMove have a
quite limited number of downloads. Since the users play also
the role of testers in open-source applications, a low number of
users reflects on a low number of bugs detected; e.g., jMove is
quite large (40 k LOCs) but only few bugs (53) have been detected
that can be explained by the low number of downloads/users
(only 4357 since 2002).

Our case study is inspired by the one presented by Eaddy et al.
in [28] but it has different context, i.e., objects of the study as well
as tools supporting the subject of studies in collecting concern
measurements are different, and goals, i.e., Eaddy et al.’s goal
was to capture the relationships between static concern measures
and the concern defectiveness while we aim at studying the role of
dynamic concern measures on the concern bug-proneness predic-
tion. In the Eaddy et al.’s case study, in fact, some software systems
have been analyzed looking for the relationships between static
concern measures—i.e., size and scattering degree—and the con-
cern defectiveness—that is the number of defects in the concern.
From the study, Eaddy et al. [28] observed that concern size and
scattering degree have a negative impact on the concern defective-
ness, that is an increment of the concern size and/or scattering
degree implies an increment in its error-proneness. Similarly to
Eaddy et al.’s study, we measured size and scattering degree of a
set of software concerns for the considered Java applications. Dif-
ferently from them, however, we used both static and dynamic
counterparts of three of the presented metrics (Section 6) to point
out how concern-oriented metrics can be used in software bug-
proneness and the difference, if any, between static and dynamic
measurements.

Our case study consisted of five steps: concern selection, concern
mining, concern defectiveness, concern measurement and correlation
analysis; the whole process is repeated for each considered
application.
7 A program element (class, method and code statement) is related to a concern if a
dependency exists, e.g., the program element is removed when the concern is
removed or changed [28].

8 http://www.cs.wm.edu/semeru/flat3.
9 http://jripples.sourceforge.net.
7.2. Concern selection

This activity aims at identifying the set of concerns that have
to be analyzed for each considered application. To select a set
of suitable concerns, the application’s functional requirements
are identified and analyzed since each application requirement
represents a concern that is a potential candidate for our study.
For example, in the case of a software that simulates ATM ser-
vices, a functional requirement (i.e., a concern candidates for
our study) could be the functionality enabling the customer of
making a deposit to a given bank account. Conversely, any non-
functional requirements, e.g., software maintainability or security,
is not a valid candidate for our study. Hence, we first analyzed the
application requirements documentation and, more frequently,
the user manuals and the application web site for identifying
the provided functionality provided. We then considered only
those functionality whose code represents a non trivial concern.
Overall, the set of selected concerns should cover almost the main
functionality provided by the considered application with a min-
imal overlapping. A concern Cover overlaps another concern C if
Cover is a sub-concern of C, e.g., all program elements of Cover

are part of C [28].

7.3. Concern mining

Each selected concern is mapped to the corresponding portion
of code. This process depends on the kind of performed measure-
ments: static or dynamic. In the former case, static code analysis
and the dependency rule7 are used to point out the concerns. In
the latter case, concerns are triggered and pointed out by executing
the test cases associated to the concerns—the study exploited the
jUnit test cases provided with the application. In the case study this
step has been (partially) automated by using FLAT3 8 [40], JRipples9

[41] and AOP HiddenMetrics [20].

7.4. Concern defectiveness

The actual defectiveness (i.e., number of bugs) of each consid-
ered concern has been determined by manually inspecting the
application’s bug tracker, on-line documentation and code reposi-
tory. By looking at the bug trackers, we identified all failures
reported by the application users (e.g., report of a crash, report of
a functionality not implemented correctly) and recognized as
actual failures, thus solved and closed by the application develop-
ers. For each of these reported failures, we again analyzed both bug

http://sourceforge.net/projects/mtac
http://buddi.digitalcave.ca
http://jmove.sourceforge.net
http://jtopas.sourceforge.net/jtopas
http://santuario.apache.org
http://jdbv.sourceforge.net/dbViz
http://jtidy.sourceforge.net
http://www.cs.wm.edu/semeru/flat3
http://jripples.sourceforge.net

10 http://emma.sourceforge.net.

W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51 45
tracker and code repository with the aim of identifying the bug/s
(e.g., a method called with wrong parameters values, un-initialized
variables) that cause/s the reported failure. To this aim, we looked
in particular at the code patch implemented by the developers to
fix the bug, thus solving the failure. The failure was discarded, in
case: (i) it was a failure related to a software version different from
the one considered in the experiment, (ii) it was a still open (i.e.,
not solved) failure, (iii) it was not an actual failure but for instance
the request of a new software feature, (iv) we were not able to
identify the bug causing it, and (v) it was an unclear or duplicated
failure description. According to [28], each bug was then mapped
to the concern/s where it occurred to determine which is the most
buggy concern. The bug was discarded if it occurs in a non-
considered concern.

7.5. Concern measurement

Size and scattering degree have been statically and dynamically
measured for each selected concern. The concern size has been cal-
culated as the number of code lines realizing the concern (sLOCs
and dLOCs) while the scattering degree has been calculated consid-
ering the concern diffusion over components (sCDC/dCDC) and
operations (sCDO/dCDO). See Tables 1–6 for the metrics definition.

7.6. Correlation analysis

The correlation between the measured metrics and the actual
concern defectiveness has been initially evaluated by applying
the Spearman’s correlation coefficient [42] to determine its existence
and strength. Then, a multiple regression analysis—Nelder et al.
[43]’s generalized linear model—has been performed to bind the
measured metrics to the variance of concern defectiveness and to
determine their capability as predictors of the actual concern
defectiveness. The goal of this analysis is hence threefold: (i)
answering the research question RQ2 about the usefulness of con-
cern-level metrics; (ii) identifying the relationships between con-
cern properties (as measured by the metrics) and defectiveness,
if any; and (iii) understanding the impact of dynamic metrics with
respect to their static counterpart in the prediction of concern
defectiveness.

7.7. Case study results

In the next, the study’s results are summarized step-by-step.

7.8. Concern selection

Twenty-eight concerns—reported in Table 9—have been
selected from the functional requirements of the 7 considered
applications. These concerns represent all the relevant functional-
ity provided by the applications with a limited overlap. For
instance, ExpressionCalculator is the most relevant feature
of Mtac, it provides in fact the capability of executing mathematical
operations while PlotManager is controlling the user interface,
that is collecting the input values then elaborated by
ExpressionCalculator and showing to the user the output
produced by the same ExpressionCalculator.

7.9. Concern mining

How the concern/code mapping has been realized depends on
the type of measured concern metric. If the metric to measure is
static the mapping is based on static code analysis to determine
the code element dependencies and on the application of the
dependency rule to determine the relevance of each code element
for the concern under analysis.
Fig. 2(a) shows an Eclipse screenshot of the environment used to
perform such an analysis for the ReportGenerator concern of the
Jtidy application. First, FLAT3 has been used to determine a textual
similarity between the concern description extracted from the
application requirements and the source code elements. The result
was a list of few core code elements for each concern, e.g., in the
bottom left pane in Fig. 2(a) are listed the elements for the Report-
Generator concern. This list was passed to jRipples to identify new
dependencies and to evaluate—thanks to the application of the
dependency rule—the relevance of each element for the concern
and therefore which element implements it. The right pane in
Fig. 2(a) shows the classes composing the concern under analysis.

Conversely, if the metric to measure is dynamic, the jUnit test
suite provided with each application is analyzed and each test case
is associated to the concern it mainly triggers thanks to the tool for
code coverage Emma10; then the test cases associated to the con-
cern under analysis are executed by means of our tool AOP Hidden-

Metrics [20] to apply the dynamic metric measurement to the
concern. Fig. 2(b) shows, as an example, the code coverage informa-
tion for the ReportGenerator for Jtidy; note that Report-

Test.java is the unit test provided with the application triggering
the homonymous concern.

Overall, to map a concern into the code is a crucial and time
consuming task but, as you can see:
Mapping time
 Mtac
 Buddi
 jMove
 Jtopas
 XMLsec D
BViz J
tidy
Static
concerns
1h060
 3h350
 6h450
 2h100
 5h300 1
h450 3
h150
Dynamic
concerns
150
 250
 1h200
 400
 1h400 5
50 2
70
the process is heavier (between 2 and 6 times) in the case of static
concern measurements. As we will observe in our analysis (see
below), this is mainly due to the semi-manual analysis conducted
to statically map concern to the code versus the automatic analysis
conducted for dynamically map concern to code.

7.10. Concern defectiveness

Given the mapping between concerns and code it has been pos-
sible to associate the bugs in the application bug tracker to the con-
sidered concerns:
Mtac
 Buddi
 jMove
 Jtopas
 XMLsec
 DBViz J
tidy
Considered
(tracked)
bugs
16
(21)
96
(279)
31
(53)
16
(16)
160
(345)
24
(69)

3
(

6
176)
In the study, 379 bugs have been selected among those we were
able to find in the bug trackers (959 bugs) of the considered appli-
cations. 580 bugs were discarded because: (i) they were related to
a software version different from the one we considered: 40%, (ii)
they were still open bugs: 8%, (iii) they were not actual bugs but
they were requests of new features: 16%, (iv) we were not able
to identify the bug causing it: 21%, and (v) their description in
the bug tracker were confused, unclear or duplicated: 15%. The
379 considered bugs have been then distributed among the 28 con-
sidered concerns; the distribution is reported in the last column of
Table 9. This has permitted to determine the most buggy concern

http://emma.sourceforge.net

Table 9
Considered concerns and measured metrics per concern.

Application Concern Dynamic Static Bug

dLOCs dCDC dCDO sLOCs sCDC sCDO

Mtac ExprssionCalculator 870 47 148 3645 55 212 7
Mtac PlotManager 640 26 133 1602 26 189 9

Buddi Account 645 33 158 3728 80 655 26
Buddi Budget 700 32 170 2915 78 700 23
Buddi Transaction 883 40 186 2409 80 655 31
Buddi Reports 546 31 146 3253 85 693 16

jMove CodeAnalysis 7079 100 1241 14,866 138 1365 7
jMove Dependencies 7073 101 1242 14,924 140 1367 8
jMove Metrics 7158 102 1255 15,071 143 1384 9
jMove Statistics 7283 106 1298 30,576 291 2807 7

Jtopas Tokenizer 509 8 102 2309 26 281 6
Jtopas Plugin 323 5 76 1705 14 187 1
Jtopas InputStream 542 6 90 1496 9 148 6
Jtopas TokenProperties 452 6 79 1496 9 148 3

XMLsec C14Helper 537 35 84 5737 49 451 16
XMLsec Canonicalizer 1002 38 129 6502 42 479 33
XMLsec XalanBug 559 40 90 7400 47 598 12
XMLsec InteroperabilityBaltimore 2298 65 380 4777 26 395 67
XMLsec XMLSignature 737 49 111 8888 92 922 32

DBViz importSQL 673 23 113 590 10 39 10
DBViz PrintDiagram 727 22 113 326 7 18 5
DBViz StartDBviz 447 29 75 169 2 11 2
DBViz InputSchema 599 32 91 667 10 41 7

Jtidy Configuration 1291 57 259 5096 62 115 7
Jtidy Lexer 50 3 10 3900 9 90 12
Jtidy ReportGenerator 582 20 82 1728 20 106 4
Jtidy Utility 245 3 11 2741 39 115 3
Jtidy Encoding 220 2 5 1341 5 59 10

Table 10
Spearman’s correlation coefficient. Notice that the correlation between dLOCs and
Bug is statistically significant at 10% (i.e., p� value < 0:1) while the others at 5% (i.e.,
p� value < 0:05).

dLOCs dCDC dCDO sLOCs sCDC sCDO Bug

dLOCs x 0.88 0.92 0.58 0.69 0.59 0.33
dCDC x 0.84 0.74 0.78 0.7 0.40
dCDO x 0.57 0.76 0.69 0.36
sLOCs x 0.82 0.81 0.44
sCDC x 0.9 0.40
sCDO x 0.46

46 W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51
for each application, e.g., PlotManager, Transaction and Lexer

resulted the most buggy concerns for Mtac, Buddy, and Jtidy

respectively.

7.11. Concern measurement

To permit a germane interpretation of the results, our study
considers exactly the same metrics (lines of code—LOCs—, concern
diffusion over components—CDC—and concern diffusion over oper-
ations—CDO) measured both statically and dynamically. Table 9
reports the measured size and scattering degree for each consid-
ered concern. In general, we can observe that static measurements
tend to be more conservative and their variability in different con-
cerns is higher (i.e., a higher median and standard deviation) than
for the dynamic measurements. With respect to the single metrics
instead we can observe that CDC seems to be, on average, the most
conservative metric in both static and dynamic versions (low vari-
ability), while, LOCs largely variates when statically or dynamically
measured (great variability).

7.12. Correlation analysis

The correlation between two variables reflects the degree to
which the variables are related. The Spearman’s correlation coeffi-
cient (q) is the most common measure of correlation and reflects
the degree of linear and non-linear relationship between two vari-
ables.11 By applying the Spearman’s correlation to pairs of static,
11 The correlation q ranges from +1 to �1, the value +1 means that there is a perfect
positive linear relationship; while a coefficient of 0 means no correlation. The
p� value supporting the q correlation value is the probability that one would have
found the current result if the correlation coefficient q were in fact zero (i.e., null
hypothesis); if this probability is lower than the 5% the correlation coefficient is called
statistically significant.
dynamic and static-dynamic metrics (the results are listed in the
first six columns of Table 10), we observed that: (i) there is a
strong12 correlation between pairs of static or dynamic metrics
(e.g., the correlation between dLOCs and dCDC is q ¼ 0:88, with
p� value < 0:05); and (ii) there is a moderate to strong correlation
between pair of static and dynamic related to the considered con-
cern properties (e.g., the correlation between dLOCs and sLOCs is
q ¼ 0:58, with p� value < 0:05). Such a result depends on having
considered properties (size and scattering) of the same ‘‘strongly
related’’ set of code elements; in other terms, an increment on the
number of classes implies an increment of methods and lines of
code.

On the other hand, the measured metrics seem to moderately
correlate with the number of bugs associated to the concerns—as
reported in the last column of Table 10. Moreover, we see that
the static metrics have, on average, a better correlation with bugs
than their dynamic counterparts. These correlation values are
12 In the paper the observed correlation is described using the scale proposed in
[44].

Fig. 2. Screeshots from the Jtidy example of concern-code mapping.

Table 11
Stepwise regression model, with [47]’s pseudo R2 = .52 and AIC = 219.5.

Coefficients Estimate Std. error t value Pr(>jtj)

(Intercept) 3.4 3.8 0.9 0.37
sLOCs �0.001 0.001 �1.4 0.16
sCDC �0.39 0.15 �2.5 0.018
dCDC 0.69 0.16 4.1 0.0004
sCDO 0.057 0.018 3.1 0.0049
dCDO �0.049 0.013 �3.5 0.0018

W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51 47
aligned with Eaddy et al. [28]’s results and they depend on domi-
nating factors effect as well as on the existence of un-expected
confounding factors (those factors, e.g., the programming language
of the analyzed application, that even if it is not identified can
potentially influence both the measured concern metrics and the
concern defectiveness).

Then the stepwise regression analysis [45] has been applied to
discover and measure these dominating factors (i.e., metrics), if
any. The correlation quantifies the degree to which a pair of
variables is related, thus giving an idea about how much one of the
variable tends to change when the other one changes. However,
the existence of correlation does not imply causation. For instance,
a third (unobserved) variable related to both investigated variables
can exist and can be the actual responsible for the observed correla-
tion. In this view, the regression analysis measures the proportion of
variability explained by or due to the regression relationship
between the variables under consideration, i.e., the objective is to
predict values of a variable based on values of other ones.

The stepwise regression analysis is commonly applied to reduce
a set of variables (regression model) according to their correlation
degree. To correlate concern properties with defectiveness, a step-
wise multiple regression analysis that considers all the measured
metrics per considered concern has been applied. The model has
been progressively reduced by removing those metrics with a
lower correlation degree. The resulting model13 contains 5 out of
6 considered metrics: sLOCs, sCDC, sCDO, dCDC, and dCDO. Table 11
summarizes the built model, the probability of each metric of effect-
ing on the concern defectiveness (the column labeled «Estimate»)
and the corresponding p� value for the statistical significance
analysis (the column labeled «Pr(>|t|)»).

Table 11 shows that concern size (both statically and dynami-
cally measured) does not significantly effect the concern defective-
ness and the p� value of sLOCs reveals that its impact is not
statistically significant. This result can depend on the low bug
density reported for Mtac and jMove. Conversely, Table 11 shows
that concern scattering degree (CDC and CDO in both static and
dynamic variants) impacts on the concern defectiveness, i.e., scat-
tering metrics explain some of the variance in the number of bugs
per concern. Even if sCDO and dCDO have a quite limited effect on
the defectiveness, sCDC and dCDC have a strong effect on it. In par-
ticular, sCDC results to have a negative effect, i.e., an increase of
such metrics would result in a decrease of the probability of having
bugs in the concern, while dCDC a positive one, i.e., an increase of
13 That is, the one with the minimal Akaike information criterion (AIC); the AIC is a
measure of the relative goodness of fit of a statistical regression model [46].
dCDC would increase the probability of having bugs in the concern.
An increase of the dCDC metric represents an increase of the con-
cern size, scattering and complexity, thus an increase of concern’s
bug-proneness. Conversely, an increase of the sCDC could not rep-
resent an actual increase of the concern size, scattering and com-
plexity. This should depend on the over-approximation of the
code mapped to the concerns for static metrics with respect to
the actual code of the concerns, i.e., the concern mining step could
result in a code fragment larger than the effective code of the con-
sidered concerns in the case of static code analysis. Hence, this
over-approximation could explain the different impact we
observed between the static and dynamic metric to the bug-prone-
ness. However, only further experimentation could support this
argumentation.

From our stepwise regression analysis, we can observe that con-
cern size and scattering degree have a limited to strong impact in
explaining the variance of the concern defectiveness (this result is
consistent with the ones of Eaddy et al. [28]). In fact, Table 11
shows that most of the dynamic metrics we considered survive
in the final model, i.e., they impact on the bug-proneness as well
as their static counterpart. Furthermore, from the table we also
see that static and dynamic metrics complement each other in
explaining the observed variance. For instance, as said we see that
sCDC results to have a negative effect but dCDC has a positive one.
The results achieved by static analysis and measurements tend to
be over-generalized since static analysis is conservative while the
results achieved by applying dynamic analysis and measurements
tend to be under-generalized since dynamic analysis consider a
limited set of software behaviors. Hence, we guess that by having
in the final model (Table 11) both static and dynamic metrics, we
can limit the intrinsic characteristics and limits of static and
dynamic analysis and measurements. That is, for example, consid-
ering dynamic scattering we can limit the impact on the defective-
ness prediction of the over-generalization caused by the adoption
of (only) static analysis and metrics.

Table 12
Prediction accuracy.

Full regression model Static metrics Dynamic metrics

Prediction accuracy based on the regression model
MMRE 1.4 1.8 1.08
MdMRE 0.71 0.77 0.5
sdMRE 2 3 1.6
Pred25 0.78 0.71 0.78
Pred50 0.89 0.82 0.92

48 W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51
As further analysis, we used the built regression model as a
proxy (indicator) to predict the concern defectiveness. We built a
prediction model by considering the output of the regression anal-
ysis. In particular, we consider here three models built: using all
metrics, only static and dynamic metrics. By applying the leave-
one-out cross-validation to the output produced by the model
we obtained the prediction accuracy values summarized in
Table 12. The accuracy gives us an idea about the prediction sys-
tem performance (‘‘goodness’’ of estimations) of the metrics of
being indicators of the concern defectiveness. The accuracy [48]
of prediction systems are often measured in terms of magnitude
relative error (MRE) and by counting the number of predictions
within m% of the actual values (often m corresponds to 25% or
50%). Table 12 hence summarizes the result achieved by the built
predictor model in terms of MMRE (mean MRE), MdMRE (median
MRE), Pred25 and Pred50 as well as standard deviation of MRE
(sdMRE). The obtained MMRE and MdMRE values (the results of
the full regression model is shown in Table 12 second column)
denote that some estimated concern defectiveness values are a
bit far from the actual concern defectiveness (slightly more than
the double of the actual value), but the result of Pred shows that
78% and 89% of the estimated defectiveness are respectively
around the 25% and 50% of the actual defectiveness value. This
analysis confirms again that concern size and scattering degree
can be used as proxy (indicators) of the concern defectiveness,
indeed the models achieved a reasonably accuracy while limiting
the error rate. By comparing the results of the full regression model
with those achieved by the models built using only the static
(Table 12 third column) or the dynamic (Table 12 fourth column)
metrics it is possible to see that the regression models built using
only dynamic metrics has a better performance, thus contributing
to the improvement of the full model.

7.13. Overall remarks

Summarizing, this case study shows that research question RQ2
can be positively answered, i.e., dynamic concern-oriented metrics
are useful in bug-proneness prediction tasks. We observed, in fact,
that dynamic metrics complement static metrics in predicting the
bug-proneness of concerns, e.g., by limit the over-generalization
introduced by the adoption of static analysis and measurements.
In detail, we observed that static metrics correlate with the con-
cern defectiveness slightly better than dynamic ones (Table 10),
but both static and dynamic metrics have a significant impact in
explaining and predicting the concern defectiveness (Tables 11
and 12). Table 12 (third column) shows that static metrics can be
used to achieve a reasonable accuracy result on predicting the con-
cern defectiveness but Table 12 (second column) shows also that
by using both static and dynamic metrics we can improve the
achieved results. In our opinion, this can be mainly due to the pres-
ence of unused code (e.g., ‘‘dead’’ code or code of other concerns),
that is, the so called over-generalization. However, to statically
map each concern into the application code is not an easy but
rather an error-prone task and the resulting mapping can be too
coarse-grained for the actual concern code (e.g., it can contain
program statements or classes not-related to the current concern).
In the study, the static measurements required, on average, 3 times
the effort (i.e., time spent) devoted to perform dynamic measure-
ments, due to the semi-manual versus automatic concern code
mining applied in the two cases, and it resulted in a less accurate
mapping. Hence tools supporting the developers in the static con-
cern code mining should help to improve the results. In the mean-
time, using both static and dynamic metrics can overcome such a
limitation of the static metrics, thus let us achieve better results
in evaluating and predicting the bug-proneness of the concerns.
7.14. Threat to validity

Unfortunately, the obtained results cannot be easily generalized
to other applications and situations since there are several threats
to validity. As always happens for case studies, in fact, only repeti-
tions by other researchers and considering other context (object
and subject of the study) can better support the achieved results.
In the rest of this section we will discuss the prominent threats
affecting the validity of our study and we classified them according
to Wohlin et al. [33]:

i. threats to construct validity: threats concerning the rela-
tionship between theory and observation;

ii. threats to internal validity: threats impacting the actual
causes of the study outcome;

iii. threats to external validity: threats which limit the ability to
generalize the obtained results;

iv. threats to conclusion validity: threats concerning the rela-
tionship between the main treatment considered in the
study and study outcome.

First, the subjectivity degree that affects some tasks of the study
could limit the study validity (internal validity). For instance, the
selection of the concerns used in the study is a quite subjective task
and this subjectivity could negatively influence the results. We
tried to limit the subjectivity by applying a set of predefined crite-
ria and considering a not trivial number of concerns selected from
different applications of different domains.

Again, the subjectivity degree that affects the mapping between
concern and code (internal validity) and the limited set of consid-
ered applications and concerns per application (external validity)
threaten the study validity. Also the granularity (e.g., classes, fields
and methods wrt lines of code) of the concern mapping can affect
the result (internal validity). We are aware that different or wrong
mapping could negatively affect the achieved results (construct
validity). For example, the lack of links between code elements
and concerns could lead to under-generalization of the code realiz-
ing a given feature or concern as well as too coarse-grain granular-
ity in this mapping activity could lead to an over-generalization of
the code that realizes a concern. Both under/over-generalization
can alter the achieved results. However, we are also aware that
such a threat to validity cannot be completely eliminated, more
research is required toward the mapping of a feature/concern to
a piece of code. To limit such a treat, however, we tried to analyze
the application tracker and code repository, to automate the map-
ping task as much as possible by using tools supporting it, to adopt
tools, mapping processes and criteria (e.g., the prune dependency
rules) successfully used by Eaddy et al. [28] in their experiments.

Another threat to the study validity is due to the used test suites
(internal validity), we are aware that different test suites could lead
to potentially different results. In fact, different test suites can have
a different bug finding capability and can be differently mapped to
application concerns. To limit such a threat we used actual test
suite distributed with the application code by developers, thus

Table 13
Overview of the existing metrics frameworks.

Metrics framework

Definition

Module Concern

Static Dynamic Static Dynamic

[49–54] [35,53,10–13,36] [55,8,17,32,14] [4]

Use and interpretation

Module Concern

[30,56,57,54,11,50,58,59] [60,11,13] [61,62,28,14]

Validation

Empirical Theoretical

[63,14,64,59,34,65] [53,51,65–67]

W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51 49
used to test the application for finding bugs and for checking the
fixed code, i.e., after code maintenance activities.

Another threat to the study validity regards the used sets of
bugs (internal validity), they can potentially threaten the study
validity. Indeed, different set of bugs affecting the applications,
in fact, could potentially influence the achieved results since
they impact on different set of concerns (i.e., functional require-
ments of the application under analysis) and they can be
revealed by different test suites. Moreover, different sets of bugs
can be differently mapped in the application code, thus in the
application concerns (construct validity). To limit such a threat
we used actual bugs described in the application bug trackers
and solved by the application developers by means of code
patches.

Other threats to the study validity concern the applications used
as objects of our study. We used 7 open-source applications devel-
oped in Java (internal validity). We used a not trivial but, however,
limited number of applications so further repetitions of the study
could extends the number of the considered applications. We tried
to select applications having different characteristics (different
domain, different size and complexity), thus we consider the select
ones quite representative of the existing open-source applications
developed in Java. Another threat to validity (external validity) that
regards the application under analysis in this study are the fact that
such applications are small to medium applications (their size in
terms of lines of code ranges from 2 k to 43 k). We consider such
applications quite representative of the medium-size applications
typically distributed in the open-source community. Repetitions
of the study should involve bigger and complex applications. As
already said, all the considered applications are developed in the
same programming language (Java), thus we cannot extend the
achieved results to applications written by using different program-
ming languages. Again, all these application are open-source
applications. On one side, this was useful to have access to several
application artifacts (e.g., code, test cases, documentation, bug
trackers) but, on the other side, we cannot extend the achieved
results to commercial application. Only additional studies can con-
sider commercial applications, even if, we have to say that, it is
always difficult to have access to their artifacts.

Finally, to limit the treats to validity related to the relationship
between treatment and outcome (conclusion validity), we conducted
statistical analysis on the collected data by using the Spearman’s
correlation coefficient and the multiple regression analysis. By
means of this kind of analysis we derived conclusions and answered
to the research question of interest to the study, thus we limited the
subjective interpretation and analysis of the collected data.

Nevertheless these threats to validity, in this case study we
observed that by considering also dynamic metrics at concern-level
we increased the accuracy of the conducted software analysis and
we decreased the effort required to obtain such a prediction. There-
fore, our case study encourages us in considering dynamic metrics
useful to measure additional dimensions of software properties also
at concern-level. Further investigation will be required to a large
benchmark of software systems and concerns.
8. Related works

Several works in the literature discuss metrics-based frame-
works: Table 13 gives an overview of the state-of-the-art in this
field. We grouped the existing frameworks according to their
objective and the granularity of the metrics they investigated. In
detail, we identified three main objectives: (i) definition about def-
inition and description of software metrics; (ii) use and interpreta-
tion about the use and interpretation of existing software metrics;
and (iii) validation about the validation of software metrics.
The frameworks can concern, in fact, metrics working at
module-level i.e., isolated piece of code grouped in units (e.g., pro-
grams, files, and classes) and at concern- or feature-level (piece of
code crosscutting several units). Furthermore, frameworks have
been grouped according to the type of validation they proposed:
empirical rather than the purely theoretical one. In the rest of this
section, we summarize the works in Table 13 by detailing some of
the representative ones.

8.1. Metrics definition

Most of the efforts have been spent to construct frameworks for
defining design-time and object-oriented metrics devoting to
estimate static and/or dynamic properties of an application. For
instance, Jacquet et al. [51] detailed step-by-step the process to
be applied for defining new metrics while Arisholm et al. [10] pre-
sented a measurement framework composed of dynamic metrics
for object-oriented systems. Recently, some frameworks for
defining metrics for investigating properties of an application at
concern-level have been proposed. In particular, almost all efforts
on this subject have been spent to investigate static properties.
For instance, Eaddy et al. [8] and Sant’Anna et al. [14] proposed
two frameworks specifically devoted to analyze software concerns.
They introduced, for example, metrics for evaluating how much
some concerns are scattering and tangling on the original code in
which they are implemented. While for what concerns dynamic
metrics, as already explained in the paper, Wong et al. [4] seems
to be the unique relevant work.

8.2. Metrics use and interpretation

Frameworks guiding the users in the use and interpretation of
metrics are fundamental to be able to apply metrics in practice.
For instance, Erni et al. [30] suggested the use of a three-layer (fac-
tor-criteria-metrics) quality model that relates several metrics to a
number of structural measurements to design principles and rules,
aiming at evaluating and estimating the software system quality.
Eaddy et al. [28], as stated before, empirically proved that there
exists a relationship between some static concern properties
(e.g., size and scattering degree) and the concern error-proneness.

8.3. Metrics validation

One of the major threat to validity limiting the use of new met-
rics concerns their validation. Several frameworks have been pre-
sented to empirically and theoretically validate module-oriented
metrics. For instance, Briand et al. [67] presented a framework then
used to empirically investigate a suite of object-oriented design

50 W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51
metrics as quality indicators. They empirically proved the capabil-
ity of some object-oriented metrics to predict class fault-prone-
ness. Moreover, Basili et al. [34] proposed a generic and rigorous
mathematical framework composed of terms and notions charac-
terizing several software measurement properties (e.g., size,
length, complexity, cohesion, coupling). The framework is hence
proposed to conduct theoretical validations of software metrics,
according to the properties that such metrics measure.

Differently to all these kind of works, we tried to fill a gap of
the literature proposing, on one side, a new framework com-
posed of terms and notions that can be used to describe the
existing metrics while, on the other side, we also introduced
and empirically evaluated some new dynamic concern-oriented
metrics.
9. Conclusions

In this paper we have presented a framework to define and
describe software metrics for measuring dynamic properties of
applications at concern level. This framework extends the one pre-
sented in [9] that was limited to define concern-oriented metrics
for measuring (only) static properties of a system. This extension
permits to describe software metrics for measuring dynamic prop-
erties of a system as well. The result of the work is a new frame-
work that introduces a unified terminology and a set of criteria
used in a consistent and rigorous process to define well-founded
(static and dynamic) concern-oriented metrics for aspect- and
component-oriented applications.

To answer to the following question (RQ1 in Section 6): ‘‘Can
the framework be used to describe several concern-oriented met-
rics using a common and precise terminology and set of concepts?’’
we conducted an experiment in which we have instantiated sev-
eral existing and new concern-oriented metrics by applying our
framework. This experiment helped us to improve and complete
the framework and showed that the framework could be used to
describe a wide range of concern metrics.

In the paper, we reported also a case study conducted to answer
the following question (RQ2 in Section 7): ‘‘Are the dynamic
concern-oriented metrics useful to predict the concern bug-
proneness?’’, thus giving to the reader an idea about both the utility
and the effectiveness of the dynamic concern metrics. In the study,
we measured the capability of some static and dynamic concern
metrics in evaluating and predicting the concern bug-proneness.
Even if quite preliminary, the achieved results of this study show
that dynamic metrics improve the quality of prediction systems.
Further experimentation and case study repetitions could support
our findings.

In the future, we plan to extend our case study analysis for
different kinds of applications: object-, aspect-, and component-
oriented. The main aim of this work will be to understand the real
impact of both static and dynamic software concern-measurements
and their real effectiveness when applied to support software devel-
opment and maintenance.
Acknowledgements

The authors wish to thank Alessandro Garcia, Eduardo Figuei-
redo and Thiago Bartolomei for their precious help on defining
the static version of this framework. Moreover, the authors wish
to thank the anonymous reviewers for their insights that helped
to improve the scientific content and presentation of this work.
Walter Cazzola’s work has been partially supported by the MIUR
project CINA: Compositionality, Interaction, Negotiation,
Autonomicity for the future ICT society.
References

[1] M. Robillard, G. Murphy, Representing concerns in source code, ACM Trans.
Softw. Eng. Methodol. 16 (1) (2007) 1–38.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M.
Loingtier, J. Irwin, Aspect-oriented programming, in: 11th European
Conference on Object Oriented Programming (ECOOP’97), Lecture Notes in
Computer Science, vol. 1241, Springer, Verlag, Helsinki, Finland, 1997, pp. 220–
242.

[3] S. Apel, C. Kästner, An overview of feature-oriented software development, J.
Object Technol. 8 (5) (2009) 49–84.

[4] E.W. Wong, S.S. Gokhale, J.R. Horgan, Quantifying the closeness between
program components and features, J. Syst. Softw. 54 (2) (2000) 87–98.

[5] P. Greenwood, T. Bartolomei, E. Figueiredo, A. Garcia, N. Cacho, C. Sant’Anna, P.
Borba, U. Kulesza, A. Rashid, On the impact of aspectual decompositions on
design stability: an empirical study, in: Proceedings of the 21st European
Conference on Object-Oriented Programming (ECOOP’07), LNCS, vol. 4609,
Springer-Verlag, Berlin, Germany, 2007, pp. 176–200.

[6] F.C. Filho, N. Cacho, E. Figueiredo, R. Maranhão, A. Garcia, C.M.F. Rubira,
Exceptions and aspects: the devil is in the details, in: M. Young, P.T. Devanbu
(Eds.), Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’06), ACM, Portland, OR, USA, 2006,
pp. 152–162.

[7] A. Kaur, K. Johari, Identification of crosscutting concerns: a survey, Int. J. Eng.
Sci. Technol. 1 (3) (2009) 166–172.

[8] M. Eaddy, A.V. Aho, G.C. Murphy, Identifying, assigning and quantifying
crosscutting concerns, in: Proceedings of 1st International Workshop on
Assessment of Contemporary Modularization Techniques (ACoM’07),
Minneapolis, USA, 2007.

[9] E. Figueiredo, C. Sant’Anna, A. Garcia, T.T. Bartolomei, W. Cazzola, A. Marchetto,
On the maintainability of aspect-oriented software: a concern-oriented
measurement framework, in: C. Tjortjis, A. Winter (Eds.), Proceedings of the
12th European Conference on Software Maintenance and Reengineering
(CSMR 2008), IEEE Press, Athens, Greece, 2008, pp. 183–192.

[10] E. Arisholm, L.C. Briand, A. Føyen, Dynamic coupling measurement for object-
oriented software, IEEE Trans. Softw. Eng. 30 (8) (2004) 491–506.

[11] S. Mouchawrab, L.C. Briand, Y. Labiche, A measurement framework for object-
oriented software testability, J. Inform. Softw. Technol. 47 (15) (2005) 979–
997.

[12] A. Mitchell, J.F. Power, Toward a definition of run-time object-oriented
metrics, in: Proceedings of the 7th ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering (QAOOSE’03),
Darmstadt, Germany, 2003.

[13] B. Dufour, K. Driesen, L. Hendren, C. Verbrugge, Dynamic metrics for Java, in:
Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’03), ACM Press,
Anaheim, California, USA, 2003, pp. 149–168.

[14] C. Sant’Anna, A. Garcia, C. Chavez, L. Carlos, A. von Staa, On the reuse and
maintenance of aspect-oriented software: an assessment framework
(SBES’03), in: Proceedings of the XVII Brazilian Symposium on Software
Engineering, Manaus, Brazil, 2003, pp. 19–34.

[15] R.E. Lopez-Herrejon, S. Apel, Measuring and characterizing crosscutting in
aspect-based programs: basic metrics and case studies, in: M.B. Dwyer, A.
Lopes (Eds.), Proceedings of the 10th Conference on Fundamental Approaches
to Software Engineering (FASE’07), LNCS, vol. 4422, Springer, Braga, Portugal,
2007, pp. 423–437.

[16] S. Ducasse, T. Gı̂rba, A. Kuhn, Distribution map, in: Proceedings of the 22nd
IEEE International Conference on Software Maintenance (ICSM’06), IEEE Press,
Philadelphia, Pennsylvania, USA, 2006, pp. 203–212.

[17] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia, S.
Soares, F. Ferrari, S. Khan, F. Filho, F. Dantas, Evolving software product lines
with aspects: an empirical study on design stability, in: Proceedings of 30th
International Conference on Software Engineering (ICSE’08), ACM, Leipzig,
Germany, 2008.

[18] R.C. Martin, G. Melnik, Tests and requirements, requirements and tests: a
Möbius strip, IEEE Softw. 25 (1) (2008) 54–59.

[19] J. Heumann, Generating Test Cases From Use Cases, The Rational Edge (2001).
[20] W. Cazzola, A. Marchetto, AOP HiddenMetrics: separation, extensibility and

adaptability in SW measurement, J. Object Technol. 7 (2) (2008) 53–68.
[21] D.J. Pearce, M. Webster, R. Berry, P.H.J. Kelly, Profiling with AspectJ, Softw.—

Pract. Exp. 37 (7) (2007) 747–777.
[22] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Test case prioritization: an

empirical study, in: Proceedings of the International Conference on Software
Maintenance (ICSM’99), IEEE Computer Society, Oxford, UK, 1999, pp. 179–
188.

[23] D. Batory, J.N. Sarvela, A. Rauschmayer, Scaling step-wise refinement, in:
Proceedings of the 25th International Conference on Software Engineering
(ICSE’03), IEEE Computer Society, Portland, OR, USA, 2003, pp. 187–197.

[24] I. Aracic, V. Gasiunas, M. Mezini, K. Ostermann, An overview of CaesarJ, Trans.
Aspect-Orient. Softw. Develop. 1 (1) (2006) 135–173.

[25] V. Massol, T. Husted, jUnit in Action, Manning Publications Co., 2003.
[26] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, A. Sergeyev, Static techniques for

concept location in object-oriented code, in: Proceedings of the 13th
International Workshop on Program Comprehension (IWPC’05), IEEE, St.
Louis, Missouri, USA, 2005, pp. 33–Ma42.

http://refhub.elsevier.com/S0950-5849(14)00197-9/h0005
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0005
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0010
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0010
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0010
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0010
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0010
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0010
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0015
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0015
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0020
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0020
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0025
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0025
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0025
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0025
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0025
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0025
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0035
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0035
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0045
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0045
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0045
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0045
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0045
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0045
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0045
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0045
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0050
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0050
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0055
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0055
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0055
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0065
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0065
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0065
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0065
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0065
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0075
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0075
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0075
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0075
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0075
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0075
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0075
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0075
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0080
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0080
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0080
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0080
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0080
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0085
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0085
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0085
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0085
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0085
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0085
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0090
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0090
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0095
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0100
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0100
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0100
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0105
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0105
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0110
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0110
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0110
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0110
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0110
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0115
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0115
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0115
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0115
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0120
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0120
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0125
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0125
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0130
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0130
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0130
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0130
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0130

W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51 51
[27] N. Wilde, M.C. Scully, Software reconnaissance: mapping program features to
code, J. Softw. Mainten. Evol.: Res. Pract. 7 (1) (1995) 49–62.

[28] M. Eaddy, T. Zimmermann, K. Sherwood, V. Garg, G. Murphy, N. Nagappan, A.
Aho, Do crosscutting concerns cause defects?, IEEE Trans Softw. Eng. 34 (4)
(2008) 497–515.

[29] M. Marin, A. Van Deursen, l. Moonen, Identifying crosscutting concerns using
fan-in analysis, ACM Trans. Softw. Eng. Methodol. 17 (1) (2007).

[30] K. Erni, C. Lewerentz, Applying design-metrics to object-oriented frameworks,
in: Proceedings of the 3rd IEEE International Software Metrics Symposium
(METRICS’96), IEEE Computer Society, Berlin, Germany, 1996, pp. 64–74.

[31] M. Revelle, T. Broadbent, D. Coppit, Understanding concerns in software:
insights gained from two case studies, in: Proceedings of the 13th
International Workshop on Program Comprehension (IWPC’05), IEEE
Computer Society, St. Louis, MO, USA, 2005, pp. 23–32.

[32] A. Marchetto, A concerns-based metrics suite for web applications, INFOCOMP
J. Comput. Sci. 4 (3) (2005) 11–22.

[33] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer, 2012.

[34] V.R. Basili, L.C. Briand, W.L. Melo, A validation of object-oriented design
metrics as quality indicators, IEEE Trans. Softw. Eng. 22 (10) (1996)
751–761.

[35] A. Tahir, S. MacDonell, A systematic mapping study on dynamic software
metrics, in: Proceedings of the 28th IEEE International Conference on Software
Maintenance (ICSM’12), IEEE Press, Riva del Garda, Trento, Italy, 2012.

[36] S.M. Yacoub, H.H. Ammar, T. Robinson, Dynamic metrics for object oriented
designs, in: Proceedings of the 6th International Software Metrics Symposium
(METRICS’99), Boca-Raton, FL, USA, 1999, pp. 50–61.

[37] B. Dufour, C. Goard, L. Hendren, O. de Moor, G. Sittampalam, C. Verbrugge,
Measuring the dynamic behaviour of AspectJ programs, in: J. Vlissides (Ed.),
Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’04), ACM Press,
Vancouver, BC, Canada, 2004, pp. 150–169.

[38] R. Geetika, P. Singh, Empirical investigation into static and dynamic coupling
metrics, ACM SIGSOFT Softw. Eng. Notes 39 (1) (2014) 1–8.

[39] V. Gupta, J.K. Chhabra, Dynamic cohesion measures for object-oriented
software, J. Syst. Architect. 57 (4) (2011) 452–462.

[40] T. Savage, M. Revelle, D. Poshyvanyk, FLAT3: feature location and textual
tracing tool, in: J. Kramer, J. Bishop, P. Devanbu, S. Uchitel (Eds.), Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering
(ICSE’10), Cape Town, South Africa, 2010, pp. 255–258.

[41] J. Buckner, J. Buchta, M. Petrenko, V. Rajlich, JRipples: a tool for program
comprehension during incremental change, in: J.I. MAletic, J.R. Cordy, H. Gall
(Eds.), Proceedings of the 13th International Workshop on Program
Comprehension (IWPC’05), IEEE, St. Louis, MO, USA, 2005, pp. 149–152.

[42] S.H. Kan, Metrics and Models in Software Quality Engineering, Addison-
Wesley, Reading, Ma, USA, 2003.

[43] J.A. Nelder, R. Wedderburn, Generalized linear models, J. Roy. Stat. Soc. 135 (3)
(2001) 370–384.

[44] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, Lowrence
Erlbaum, 1988.

[45] R.R. Hocking, The analysis and selection of variables in linear regression,
Biometrics 32 (1976).

[46] H. Akaike, A new look at the statistical model identification, IEEE Trans.
Automat. Control 19 (6) (1974) 716–723.

[47] D.L. McFadden, Quantitative methods for analyzing travel behaviour of
individuals: some recent developments, Behav. Travel Modell. (1978) 279–318.

[48] M. Korte, D. Port, Confidence in software cost estimation results based on
MMRE and PRED, in: Proceedings of the 4th International Workshop on
Predictor Models in Software Engineering (PROMISE’08), ACM, Leipzig,
Germany, 2008, pp. 63–70.

[49] X. Franch, G. Grau, C. Quer, A framework for the definition of metrics for actor-
dependency models, in: Proceedings of the 12th International Conference on
Requirements Engineering (RE’04), IEEE Computer Society, Washington, DC,
USA, 2004, pp. 348–349.

[50] P. Ponmuthuramalingam, M. Yamunadevi, An effective analysis of object
oriented metrics in software quality, Int. J. Comput. Technol. Inform. Secur. 1
(2) (2011) 43–47.

[51] J.-P. Jacquet, A. Abran, From software metrics to software measurement
methods: a process model, in: Proceedings of the 3rd International Software
Engineering Standards Symposium (ISESS’97), IEEE Computer Society, Walnut
Creek, CA, USA, 1997, pp. 128–135.

[52] N.R. Brown, R.S. Siegle, Metrics and mappings: a framework for understanding
real-world quantitative estimation, Psychol. Rev. 100 (3) (1993) 511–534.

[53] M. Genero, D. Miranda, M. Piattini, Defining metrics for UML statechart
diagrams in a methodological way, in: Proceedings of the 2nd Workshop on
Conceptual Modeling Quality (IWCMQ’03), LNCS, vol. 2814, Springer, Chicago,
IL, USA, 2003, pp. 118–128.

[54] T. Talbi, B. Meyer, E. Stapf, A metric framework for object-oriented
development, in: Proceedings of the 39th International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS’01), IEEE
Computer Society, Santa Barbara, CA, USA, 2001, pp. 164–172.

[55] J.C. Taveira, J. Saraiva, F. Castor, S. Soares, A concern-specific metrics collection
tool, in: Proceedings of the OOPSLA Workshop on Assessment of
Contemporary Modularization Techniques (ACoM’09), Orlando, FL, USA, 2009.

[56] L.C. Briand, J. Wüst, Modeling development effort in object-oriented systems
using design properties, IEEE Trans. Softw. Eng. 27 (11) (2001) 963–986.

[57] A. Kaur, S. Singh, K.S. Kahlon, A metric framework for analysis of quality of
object oriented design, World Acad. Sci. Eng. Technol. 36 (2009).

[58] D. Coleman, D. Ash, B. Lowther, P. Oman, Using metrics to evaluate software
system maintainability, IEEE Comput. 27 (8) (1994) 44–49.

[59] L.C. Briand, J.W. Daly, J. Wüst, A unified framework for coupling measurement
in object-oriented systems, IEEE Trans. Softw. Eng. 25 (1) (1999) 91–121.

[60] A. Seffah, N. Kececi, M. Donyaee, QUIM: a framework for quantifying usability
metrics in software quality models, in: Proceedings of the 2nd Asia-Pacific
Conference on Quality of Software (APAQS’01), IEEE Computer Society, Hong
Kong, China, 2001, pp. 311–318.

[61] J.M. Conejero Manzano, E. Figueiredo, A. Garcia, J. Hernández, E. Jurado, On the
relationship of concern metrics and requirements maintainability, J. Inform.
Softw. Technol. 54 (2) (2012) 212–238.

[62] A. Marchetto, A. Trentini, A framework to build quality model for web
applications, Int. Arab J. Inform. Technol. 4 (2) (2007) 168–176.

[63] K.A. McKeown, E.G. McGuire, Evaluation of a metrics framework for product
and process integrity, Proceedings of the 33rd Hawaii International Conference
on System Sciences (HICSS’00), vol. 4, IEEE Computer Society Press, Maui
Island, Hawaii, USA, 2000, pp. 4046–4051.

[64] L.C. Briand, J. Daly, V. Porter, J. Wüst, A comprehensive empirical validation of
design measures for object-oriented systems, in: Proceedings of the 5th
International Symposium on Software Metrics (METRICS’98), IEEE Computer
Society, Bethesda, Maryland, USA, 1998, pp. 246–257.

[65] D. Soni, R. Shrivastava, M. Kumar, A framework for validation of object-
oriented design metrics, Int. J. Comput. Sci. Inform. Secur. 6 (3) (2009)
46–52.

[66] B. Kitchenham, S.L. Pfleeger, N.E. Fenton, Towards a framework for software
measurement validation, IEEE Trans. Softw. Eng. 21 (12) (1995) 929–943.

[67] L.C. Briand, S. Morasca, V.R. Basili, Property-based software engineering
measurement, IEEE Trans. Softw. Eng. 22 (1) (1996) 68–86.

http://refhub.elsevier.com/S0950-5849(14)00197-9/h0135
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0135
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0140
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0140
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0140
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0145
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0145
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0150
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0150
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0150
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0150
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0155
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0155
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0155
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0155
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0155
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0160
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0160
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0165
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0165
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0165
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0170
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0170
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0170
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0175
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0175
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0175
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0175
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0185
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0185
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0185
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0185
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0185
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0185
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0185
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0190
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0190
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0195
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0195
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0210
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0210
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0210
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0215
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0215
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0220
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0220
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0220
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0225
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0225
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0230
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0230
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0235
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0235
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0240
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0240
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0240
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0240
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0240
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0245
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0245
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0245
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0245
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0245
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0250
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0250
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0250
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0255
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0255
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0255
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0255
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0255
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0260
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0260
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0265
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0265
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0265
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0265
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0265
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0270
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0270
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0270
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0270
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0270
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0280
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0280
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0285
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0285
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0290
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0290
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0295
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0295
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0300
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0300
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0300
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0300
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0300
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0305
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0305
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0305
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0310
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0310
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0315
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0315
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0315
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0315
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0315
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0320
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0320
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0320
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0320
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0320
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0325
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0325
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0325
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0330
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0330
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0335
http://refhub.elsevier.com/S0950-5849(14)00197-9/h0335

	A concern-oriented framework for dynamic measurements
	1 Introduction
	2 Towards dynamic concern measurement
	3 Concern mapping and triggering
	3.1 How to measure dynamic concern metrics
	3.2 Tool support

	4 Framework: basic concepts
	4.1 Concern and system elements
	4.2 Components and connections
	4.3 Language mapping

	5 Framework: the criteria
	5.1 Entities of concern measurement
	5.2 Concern-aware attributes
	5.3 Units
	5.4 Concern measurement values
	5.5 Concern granularity
	5.6 Domain
	5.7 Concern mapping: concern projection or triggering

	6 Framework evaluation by instantiation
	7 Dynamic concern-oriented metrics for bug-proneness
	7.1 Case study analysis
	7.2 Concern selection
	7.3 Concern mining
	7.4 Concern defectiveness
	7.5 Concern measurement
	7.6 Correlation analysis
	7.7 Case study results
	7.8 Concern selection
	7.9 Concern mining
	7.10 Concern defectiveness
	7.11 Concern measurement
	7.12 Correlation analysis
	7.13 Overall remarks
	7.14 Threat to validity

	8 Related works
	8.1 Metrics definition
	8.2 Metrics use and interpretation
	8.3 Metrics validation

	9 Conclusions
	Acknowledgements
	References

