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Abstract—An increasing number of modern software systems
need to be adapted at runtime without stopping their execution.
Runtime adaptations can introduce faults in existing function-
ality, and thus, regression testing must be conducted after an
adaptation is performed but before the adaptation is deployed to
the running system. Regression testing must be completed subject
to time and resource constraints. Thus, test selection techniques
are needed to reduce the cost of regression testing.

The FiGA framework provides a complete loop from code to
models and back that allows fine-grained model-based adaptation
and validation of running Java systems without stopping their
execution. In this paper we present a model-based test selection
approach for regression testing during the validation activity to
be used with the FiGA framework. The evaluation results show
that our approach was able to reduce the number of selected
test cases, and that the model-level fault detection ability of the
selected test cases was never lower than that of the original test
cases.

Index Terms—model-based regression test selection, model-
based validation, model-based dynamic adaptation, executable
UML models, JUnit tests, unanticipated adaptation.

I. INTRODUCTION

The ability to perform runtime adaptations is becoming

a requirement for many highly available software systems.

These systems need to be adapted without stopping them.

For example, intelligent transportation systems must provide

continuous services to human and software clients for safety

reasons.

Runtime adaptation is needed based on changes in a soft-

ware system context and requirements. These changes can

be foreseen at design time, and in this case, anticipated

adaptations are prepared during development and included

in the system design. When unforeseen changes discovered

at runtime, unanticipated adaptations must be planned and

deployed into the running system. In both cases, the runtime

adaptation process is complex, and models can be used to

manage this complexity by representing aspects of a running

system at a higher abstraction level to ease the planning

process [1].

Model-based approaches focus on using models at runtime

to support self-adaptation in autonomous systems, and is

dominated by work in the self-adaptation area [2], [3], [4],

[5], [6], [7]. These approaches support anticipated coarse-

grained adaptations that are controlled and automated by the

MAPE feedback loop in autonomous systems [8]. Adaptation

in these approaches is restricted to the addition, deletion, and

reconnection of components. On the other hand, unanticipated

adaptations require human intervention. These adaptations

involve code changes, and can be fine-grained at the level of

classes, methods, and statements.

Models that provide a fine-grained view of the running

system and its implementation can be used by developers to

plan fine-grained adaptations to support unforeseen changes.

For example, the fine grained adaptation (FiGA) framework

supports unanticipated and fine-grained adaptations of a run-

ning system at the model level [9], [10].

Runtime adaptations, both anticipated and unanticipated,

can affect existing functionality and can introduce faults to

the running system. Therefore, regression testing needs to be

performed to ensure that the modified parts of the software

behave as intended [11]. Regression testing needs to be

performed before the deployment of the adaptation.

Regression testing is one of the most expensive activities

performed during the lifecycle of a software system, and

regression test selection (RTS) [11] is one strategy to make

regression testing more efficient and effective. RTS is defined

as the activity of selecting a subset of test cases from an exist-

ing test set to verify that the affected functionality of a program

is still correct [11], [12]. For runtime adaptations, testing must

be performed under tighter time constraints and resources

than what is normally associated with pre-deployment testing.

Thus, it is important to reduce the number of regression test

cases that must be re-executed.

RTS can be based on the analysis of code or model level

changes of a software system. Model-based RTS techniques

can be more efficient and convenient for the approaches that al-

ready use models to apply adaptations at runtime. Additionally,

the use of model-based RTS techniques is growing, and will

have crucial importance in the future for several reasons: (1)

model-based approaches can scale up better than code-based

approaches for large software systems [13], (2) maintaining

traceability at the model level can be more practical compared

to maintaining traceability at the code level because dependen-

cies are specified at a higher level of abstraction [12], and (3)

it is easier to analyze the changes between different versions

of models compared to the changes between different code

versions [12]. However, to the best of our knowledge, none

of the studied model-based approaches for runtime adaptation
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support RTS at the model level.

We propose a new model-based approach for regression

test selection, which is used at runtime for regression testing

of unanticipated fine-grained adaptations performed at the

model level. The proposed approach uses (1) class models

and activity models to represent fine-grained behaviors of a

software system and its test cases, and (2) a fine-grained

model comparison tool to identity model changes during the

adaptation process. The proposed approach exploits model

execution, which is used to record the coverage information

for each test case at the activity model level. The approach

can apply RTS at different levels of granularity. The pro-

posed approach is applied within the fine grained adaptation
(FiGA) framework [9], [10] that supports unanticipated and

fine-grained adaptation of a running system through model

adaptation.

In Sect. II we provide an overview of the FiGA framework.

In Sect. III we describe the proposed regression test selection

approach. Evaluation of the proposed approach is described

in Sect. IV. Related work is presented in Sect. V, and we

conclude with plans for further work in Sect. VI.

II. BACKGROUND OF THE FIGA FRAMEWORK

The Fine-Grained Adaptation (FiGA) framework [9], [10]

allows a developer to adapt a program that is running on a stan-

dard JVM without stopping it by modifying UML models and

propagating model changes to the source code. The program

change process is kept separate from the running program

instance until the changes are ready to be compiled and loaded

into the Java virtual machine, so as not to compromise the

service provided by the program. The FiGA framework uses

Reverse R[15] to generate UML models from the source code,

and uses the JavAdaptor [16] tool to modify the running Java

program without stopping it.

JavAdaptor works at a low level, requiring as an input the

compiled version of the class to update and a connection to

the Java virtual machine in which the program is executing.

JavAdaptor is responsible for updating the running byte code

while preserving the program state.

We extended the FiGA framework to support the validation

of runtime adaptations at the model level [14]. The rest of

Sect. II summarizes the extended FiGA framework. The FiGA
framework that is integrated with the validation component

is shown in Fig. 1. In this framework, the adaptation and

validation of a running program is performed through a

repetitive loop that is composed of five steps. This process

can be repeated whenever the application needs to be updated.

Each step (except step(3b) and step(5)) has a program code

part indicated by (step(n)) and a test code part indicated by

(step(n)’). Both parts of a step are performed in parallel.

Step (1): Model Generation from Program Code.
Reverse R[15] is used to generate the UML models from the

application source code.

Step (1)’: Model Extraction from Test Suites. Assuming

that the original application has a pre-deployment code level

test suite to validate the application before of its adaptation,

Reverse Rextracts UML class and activity models from the test

suite of the application. Each individual test case is represented

as an activity model.

Step (2): Modification of Program Model. Developers

change the models to deal with the needed adaptation. Each

model change can be expressed as a sequence of elementary

model changes (γi) that can be easily and automatically

mapped to a code change (δi). The model changes are deter-

mined by model differencing [17], [18], and mapped to calls

to the change operators with the proper parameters.

Step (2)’: Modification of Test Suite Model. Developers

adapt the models of the test cases to specify new test configu-

rations and assertions in order to validate the adapted models

of the application.

Step (3): Adaptation Process for Program. The sequence

of elementary model operations and their mappings to pro-

gram code changes are defined formally as follows: Let S0

represent source code for a running Java program and M0

its UML model. M1 represents the model obtained after

adapting M0, and S1 represents the program source code

obtained after propagating model changes to S0. Let � be

the change sequencing operator: M1 = M0 � Γ, where Γ
is a composition of change operations expressed with model

operators γi, each representing an elementary change such that

Γ = γ1 � γ2 � · · ·� γi � · · ·� γn.
We define Δ as those changes necessary to adapt the source

code to the system modeled by M1 such that S1 = S0 � Δ
where Δ is obtained by composing the elementary changes

(δi) on the code: Δ = δ1 � δ2 � · · ·� δi � · · ·� δn.
Each model change operator has a mapping to a correspond-

ing elementary code change. Therefore, the composition of

model change operators (Γ) expresses the changes made at the

model level, and the composition of code change operators (Δ)

expresses the corresponding set of code level changes. The σ
function maps the set of model changes to code changes, such

that Δ = σ(Γ). Details of the adaptation semantics are given

in Section 2 of our previous work [10].

Step (3)’: Adaptation Process for Test Suites. The def-

initions in step (3) also apply to the sequence of elemen-

tary model operations and their mappings to test suite code

changes.

Step (3b): Validation of Adapted Program Model. In the

FiGA framework, the models representing the program and the

test suite are executable [14]. The models representing the test

suite are executed with the models representing the program.

If the execution of a test model fails, the developer needs to

modify the models representing the program to fix the faults

(i.e., goes back to step 2 and 2’). The validation process is

completed when all the models for the test cases pass, after

which the adaptation can be deployed.

Step (4): Propagating Changes to the Program. Model

changes are propagated to the running program only when all

required model changes are performed. The sequence of model

changes is determined by model differencing between M0 and

M1, and mapped into calls to code change operators with the

proper parameters.
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Fig. 1. Overview of the FiGA Approach [14].

Step (4)’: Propagating Changes to the Test Suites. Similar

to step (4), the test suite models are also kept synchronized

with the test suite code.

Step (5): Updating the Running Application using
JavAdaptor. The modified Java classes are selected as input

to the JavAdaptor tool, which is triggered to deploy program

changes to the running application without stopping it while

preserving its state [16]. At this point, future adaptations occur

by starting again from step 1 but with the new source code

and test suite instead.

In FiGA framework, UML class and activity models are

used to represent, adapt, and execute test cases. The current

FiGA framework considers JUnit test cases. Each individual

test case is represented as an activity model. The FiGA
framework exploits the Rational software architect (RSA)

simulation toolkit 9.01 to execute the activity models. We

added the Java and JUnit libraries to the tool and enabled

model execution using Java. JUnit assertions are evaluated at

the model level. The FiGA framework supports the following

mappings from the code level to the model level in order to

integrate with the RSA model simulation tool:

1) Mapping Java statements to code snippets of action nodes

and transition flows [14]. When the model execution flow

reaches an action node, the code snippet associated with

the node is executed. Similarly, when the model execution

flow reaches a decision node, its outgoing transition flows

1http://www-03.ibm.com/software/products/en/ratisoftarchsimutool

are evaluated and the transition that evaluates to True is

executed.

2) Mapping method calls to calls between activity models

representing these methods [14]. Formal parameters of an

operation are represented as local attributes in the activity

model that implements it. These attributes are used to pass

actual parameters between calls to activity models during

their execution. We implemented a technique to pass

caller objects and actual parameters to the calls between

activity models. If an activity model representing the A::m

method has a loop that repeatedly calls an activity model

representing the B::n method, then different instance of

the called activity model is uniquely identified for each

call and the technique to pass parameters passes actual

parameters to it.

The executable models in our approach provide abstraction

over code and have the benefits of ease of understanding

and visualizing, but are complete and precise enough to be

executable like code. For example, each action node of an

activity model is associated with an executable code snippet

that contains Java statements, and each transition flow that

is outgoing from a decision node has a boolean statement

associated with it.

The validation process includes regression testing and test-

ing new behaviors introduced during adaptation. Our prior

work [14] addresses the validation of new behaviors and

adaptation of test cases at the model level. The focus of

this paper is on regression testing. In this work we present
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a new model-based regression test selection approach that

can be used within the FiGA framework. The steps of the

proposed RTS approach start after step(1) and step(1)’, and

end before step(3b). The process of selecting test cases for

regression testing needs to be performed before the execution

of regression test cases in step(3b). The new RTS approach

is described in the following section.

III. MODEL-BASED REGRESSION TEST SELECTION

The proposed model-based regression test selection ap-

proach consists of three steps:

1) Calculate a traceability matrix that relates activity models

representing the test cases to activity models representing

methods of the program.

2) Identify the changes made to the original class and

activity models to obtain the adapted ones.

3) Classify test cases represented as activity models into

the three categories: obsolete, retestable, and reusable,

as defined by White [19]. Obsolete test cases are invalid

and cannot be executed on the modified version of the

software. Retestable test cases are still valid, and exercise

the modified parts of the software. Retestable test cases

need to be re-executed for regression testing to be safe.

Reusable test cases only exercise unmodified parts of

the program, and thus, while they are still valid, they

do not need to be re-executed to ensure safe regression

testing. A safe regression test selection technique must

select all modification-traversing test cases for re-

gression testing [20]. A test case is considered to be

modification-traversing for a program P if it executes

changed code in P, or if it formerly executed code that

had been deleted in P [13].

A safe RTS approach is not defined to be safe from

all possible faults (e.g., some program changes might

cause side effects on other unmodified parts of the

program). A safe RTS means that, if there exists a

modification-traversing test case, then it will be se-

lected for regression testing [13].

A. Calculate the Traceability Matrix

This step is performed after the class and activity models

are generated from the original software system and its JUnit

test suite, and before adapting the models, i.e., after step (1)

and step (1)’ in Fig. 1. The activity models representing

the JUnit test cases are executed with the activity models

representing methods of the program. During execution, two

types of information are collected: (1) what activity models

are exercised by each test case, and (2) what flows in each

activity model are exercised by each test case.

The first type of information is used to calculate the

traceability matrix at a coarser granularity level. We refer

to it as activity-level traceability matrix. The second type of

information is used to calculate the traceability matrix at a

finer granularity level. We refer to it as flow-level traceability

matrix. The activity-level traceability matrix is used to classify

Diff1. Add (a2<Opaque Action>)(b2<Opaque Action>)<Control Flow>
to Activity1<Activity>: Edge

Diff2. Add arg1<Property> to Activity1<Activity>.ownedAttribute: Property
Diff3. Add m1<Call Behavior Action> to Activity1<Activity>: Node
Diff4. Modify a2<Opaque Action>.body: from "varArray[i]=var;"

to "varArray[++i]=var;"

Fig. 2. An example for RSA model diff report.

test cases according to whether they traverse modified/un-

modified activity models. The flow-level traceability matrix is

used to classify test cases according to whether they traverse

modified/unmodified transition flows in activity models.

B. Identify the Model Changes

The models generated by Reverse Rare compliant with

the Rational Software Architect (RSA) modeling tool. The

proposed RTS approach uses the RSA model comparison tool

to identify model changes. When developers make changes to

the models, this tool identifies changed model elements and

types of changes made to them. The class model changes that

can be identified by the RSA model comparison tool are:

1) Addition, deletion, and modification of class attributes

and operations.

2) Addition, deletion, and modification of classes and rela-

tions between classes.

The activity model changes that can be identified by the

RSA model comparison tool are:

1) Addition and deletion of action nodes, call behavior

action nodes, decision and merge nodes, and start and

end nodes.

2) Modification of action nodes based on changes to code

stored in a code snippet associated with an action node.

3) Addition and deletion of transition flows.

4) Modification of a transition flow, and modification of a

boolean expression associated with a transition flow.

5) Addition, deletion, and modification of attributes of an

activity model.

6) Addition, deletion, and modification of an activity model.

The changes to class and activity models identified by the

RSA model comparison tool are saved in a model diff report.
Fig. 2 shows an example of a model diff report where Diff1

states that a transition flow is added from action node a2 to

action node b2 in Activity1 activity model. Diff2 states that

the attribute arg1 is added to the activity model Activity1.

Diff3 states that a call behavior action node labeled with m1

is added to the activity model Activity1. Diff4 states that

the code statement varArray[i]=var of the action node a2 is

modified to varArray[++i]=var.

C. Classify the Test Cases

The process to classify test cases takes four inputs: (1) the

flow-level traceability matrix, (2) the activity-level traceability

matrix, (3) the model diff report that is generated by the RSA

model comparison tool, and (4) a set of all activity models

representing the program methods; let us call this set as the
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activityModelsSet. Based on these inputs, the activity models

representing the test cases are classified as obsolete, retestable,

and reusable as follows:

1) Obsolete: In our approach, an activity model of a test case

is classified as obsolete if (1) it contains a direct call to a

deleted activity model, or (2) it contains a direct call to

an activity model with modified attributes (because the

test inputs do not match the type and/or number of the

model attributes).

The test cases are classified as follows: for each change in

the model diff report, if the change involves the deletion

of an activity model or the deletion/addition/modification

of an owned attribute of an activity model, then the

activity-level traceability matrix is used to find all test

cases that traverse that activity model. If any of these

test cases has a direct call to that activity model, then the

test case is classified as obsolete.

Test cases corresponding to activity models that are

classified as obsolete need to be modified or deleted

from the test suite. Our approach does not identify all

types of obsolete test cases, such as when the original

test oracle (corresponding to JUnit assertions) does not

conform to the new software specification and needs to

be changed. Supporting the identification of such cases

by our approach is planned for future work.

2) Retestable: Classification of test cases as retestable can

be performed at the activity-level and at the flow-level.

In the first case, the activity-level traceability matrix is

used, and the test cases are classified as follows:

• For each change in the model diff report that involves

the deletion or modification of an activity model, the

traceability matrix is used to find all test cases that

traverse the deleted/modified activity model, and these

test cases are classified as retestable (if these test cases

do not have direct calls to the deleted activity model).

• For each change in the model diff report that involves

the deletion or modification of a class attribute, the

activityModelsSet is used to find all activity models that

access the attribute. Next, the traceability matrix is used

to find all test cases that traverse any of these activity

models, and these tests are classified as retestable.

In the second case, the flow-level traceability matrix is

used. A transition flow in the model diff report or in the

flow-level traceability matrix is labeled by its source and

destination nodes. The test cases are classified as follows:

• For each change in the model diff report that involves

the deletion or modification of a transition flow, the

traceability matrix is used to find all test cases that

traverse this transition flow, and these tests are classi-

fied as retestable.

• For each change in the model diff report that involves

the addition of a transition flow, if the source node

of the transition flow is not identified as added in the

model diff report (the source node exists in the original

models before the adaptation), then the traceability

matrix is used to find all test cases that traverse any

transition flow ending in this source node, and these

tests are classified as retestable.

• For each change in the model diff report that involves

the deletion or modification of a node, the traceability

matrix is used to find all test cases that traverse any

transition flow ending in the node, and these tests are

classified as retestable.

• For each change in the model diff report that involves

the deletion or modification of a class attribute, the

activityModelsSet is used to find all action nodes that

access the attribute. Next, the traceability matrix is used

to find all test cases that traverse any transition flow

ending in any of these action nodes that access the

attribute, and these tests are classified as retestable.

3) Reusable: Test cases that are not classified as obsolete or

retestable are classified as reusable. These tests do not

traverse modified or deleted elements of activity models,

so they are unnecessary for safe regression testing.

D. Tool Implementation

We implemented a prototype tool for our approach. The

tool consists of two components. The first component is a

processor that is used to collect coverage information for test

cases at the model level. This component is applied after

the models are obtained from the program via Reverse Rand

before these models are adapted. The RSA model simulation

tool generates an executable representation of the models

that are obtained via Reverse R. In particular, the RSA tool

generates Java code that represents the UML models, and this

code contains links to the UML model files (e.g., EMX files of

the UML models), and contains calls to the API of the RSA

model simulation tool. The processor component is used to

instrument the executable representation of the UML models

with statements that write to a file, during model execution,

the names of the executed activity models, flows, and nodes.

Let us call this file as the execution history file.

Executing activity models representing test cases with the

activity models representing methods of the program (as

explained in Sect. III-A) produces an execution history

file that contains for each test case the names of all activity

models and their elements that were traversed by the test case.

The second component implements the test classification

technique described in Sect. III-C. The second component

reads the execution history file and prepares the flow-

level and activity-level traceability matrices. Then, it reads

the other inputs (the model diff report and activityModelsSet)
and classify the test cases as explained in Sect. III-C. This

component is applied after the models of the program are

adapted and before the validation process is started (after step

(2) and before step (3b)).

IV. EVALUATION AND DISCUSSION

The goals of this study were to (1) evaluate the reduction

in the number of test cases that can be achieved using the

proposed model-based RTS (Sect. IV-B), (2) evaluate the time
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TABLE I
ORIGINAL ARS AND NANOXML 2.0, AND THEIR MODELS

Software
System

Number
of
classes

Number
of meth-
ods

LOC

Number
of
baseline
tests

Number
of
activity
models
of meth-
ods

Number
of
activity
models
of test
cases

ARS 9 58 721 61 43 61

NanoXML 19 147 5827 97 59 97

saved by executing the reduced test suite (taking into account

the execution time of the RTS approach) compared to when

the full test suite is executed (Sect. IV-C), and (3) evaluate the

fault detection ability of the reduced test suite at the model

level (Sect. IV-D).

A. Description of the Subject Programs

We evaluated the proposed model-based RTS approach on

two subjects: an airline reservation system (ARS) and the

NanoXML2 parser. The ARS is a prototype system that was

implemented by undergraduate students, and it is an example

of a highly-available system that cannot be stopped at runtime.

The ARS implements features related to flight reservations. A

flight is characterized by the airline, the departure and desti-

nation airports, and its schedule. Each customer can look for a

flight and reserve a seat on it. In our design, a SystemManager

class provides access to all the ARS functionality; including

the access to airport, airline, and flight instances. The baseline

JUnit test suite of the original ARS contains 61 test cases that

provide 100% branch coverage. Table I summarizes the data

about the ARS and the extracted activity models from the ARS

program and its baseline test cases.

The first version of our ARS implementation has a limitation

in its flight reservation functionality by supporting reservations

only on direct flights. The class and activity models of the ARS

software were adapted to support reservation on flights with

stops.

We chose NanoXML because (1) it was implemented by a

third party, (2) its size is larger than the size of ARS, and (3)

to evaluate how the model-based RTS approach would work

when code-based adaptations to support new functionality are

applied at the model level (multiple versions of NanoXML are

available3 and each adding new functionality to the previous

version). NanoXML is an XML parser written in Java. Version

2.1 supports parsing XML namespaces that is not supported

in version 2.0. The NanoXML package provides XML files to

be used as inputs for self testing. We created 97 code level

test cases for NanoXML 2.0 such that each test case contains

statements to read and parse an input XML file. Each file

contains XML data with different properties than XML data

in other files (i.e., different number of XML entities, children,

and attributes), and therefore, each test case contains different

assertion statements to check the properties of the results.

2http://nanoxml.sourceforge.net/orig/
3http://sir.unl.edu/portal/bios/nanoxml.php

TABLE II
ADAPTED MODELS OF ARS AND NANOXML

Software System Change type Classes Activity models of methods
ARS Added 0 5

Deleted 0 0

Modified 4 14

NanoXML Added 2 16

Deleted 0 0

Modified 6 13

The test suite provides 81% statement coverage in NanoXML

version 2.0. Table I summarizes the data about the NanoXML

version 2.0.

NanoXML version 2.0 was adapted at the model level to

version 2.1. First, the code changes between both versions

were extracted by differencing the code for version 2.0 with

the one for version 2.1. Next, the class and activity models

were extracted from version 2.0 and its baseline test cases.

An activity model was extracted for each of the 97 test cases.

Table I shows the data about the extracted activity models.

Thereafter, the code changes between version 2.0 and 2.1 were

applied on the class and activity models representing version

2.0 to get version 2.1 at the model level.

B. Reduction in the Number of Test Cases

We applied the proposed model-based RTS approach within

the FiGA framework on the adapted models of ARS and

NanoXML to evaluate the reduction in the number of test

cases compared to the number of test cases in the complete

test suite for each system.

ARS study: Table II summarizes data about the adapted

models of the ARS to support reservation on flights with

stops. Five new activity models were added to implement new

methods, and 14 of the existing activity models were mod-

ified. The modifications involved adding/deleting nodes and

transition flows between them, and modifying Java statements

in code snippets of action nodes. Formal input parameters

for the Airline::bookSeat() operation were modified, and

the corresponding attributes in its activity model were also

modified.

The RTS approach was applied at the activity-level and

at the flow-level. The results are shown in Table III. Both

the activity-level RTS and flow-level RTS selected the same

set of obsolete test cases, which are 4 test cases that

contain direct calls to the activity model of the method

Airline::bookSeat(), where the input formal parameters to

this method were modified. The activity-level RTS selected

23 out of 61 test cases as retestable, and the flow-level RTS

selected 18 test cases out of 61 test cases as retestable.

NanoXML study: Table II summarizes the data about the

adapted models of NanoXML 2.0 to get to version 2.1 at the

model level. The RTS approach was applied at the activity-

level and at the flow-level. The results are shown in Table III.

Both the activity-level RTS and flow-level RTS classified the

same set of test cases (75 out of 97) as retestable. The reason
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TABLE III
RESULTS OF THE MODEL-BASED RTS APPROACH

Software
System Level of RTS Obsolete Retestable Reusable

ARS Activity-level RTS 4 23 34

Flow-level RTS 4 18 39

NanoXML Activity-level RTS 0 75 22

Flow-level RTS 0 75 22

for getting similar results at both levels is that for most of

the modified activity models, specifically the activity models

representing methods of the XMLElement and StdXMLParser
classes, all test cases traversing a modified activity model are

also traversing modified elements (i.e., nodes and transitions

flows) in that model.

The RTS approach did not classify any test case as obsolete

because the 97 test cases do not contain direct calls to deleted

activity models or to activity models with modified attributes.

Evaluation of the safety of the RTS approach: In the

ARS and NanoXML studies, if the set of test cases classified

as retestable by the model-based RTS approach contains all

modification-traversing test cases, then the RTS approach is

considered to be safe for these studies. In our model-based

RTS approach, a test case is considered to be a modification-
traversing if it executes changed elements in the adapted mod-

els, and/or it formerly executed elements that had been deleted

in the adapted models. We investigated the execution of the 61

test cases of the ARS on the original and adapted models, and

recorded all the test cases that executed changed/added/deleted

elements. This set of 18 test cases is called the modification-
traversing set for the ARS. Similarly, we applied the same

process on the 97 test cases of the NanoXML and extracted

the modification-traversing set which consists of 75 test cases.

In the ARS study, the activity-level RTS selected 23 test

cases as retestable, which included all the 18 test cases in

the modification-traversing set. However, it selected 5 more

test cases that traverse modified activity models, but they do

not traverse the modified elements (modified edges and nodes)

in these activity models. The flow-level RTS selected 18 test

cases out of 61 test cases as retestable, which were exactly

the same test cases in the modification-traversing set.

For NanoXML, both the flow-level and activity-level RTS,

selected the same test cases (75 tests) as retestable, which

were exactly the same test cases in the modification-traversing
set. The remaining test cases do not traverse modified activity

models.

C. Reduction in Time

The reduction in time is measured as the difference between

the (1) time taken to execute all the original test cases and

(2) the time it takes to run the test classification algorithm

(Sect. III-C) and execute the selected test cases. We excluded

from the calculation the time required to obtain the trace-

ability matrix (Sect. III-A) and to identify model changes

(Sect. III-B). The reason is that these two steps are performed

during the adaptation process and they do not consume any

time during the testing phase. Additionally, all model dif-

ferencing is already performed in the FiGA framework to

generate new source code and update the running system,

so it is not an extra step that is only required by the RTS

functionality.
We measured the reduction in time for the ARS and

NanoXML studies when the flow-level RTS approach was

applied on them (see in Sect. IV-B). The reduction in time

was 1.756 seconds for the ARS study, and 1.1179 seconds

for the NanoXML study. The time to classify test cases was

0.1240 seconds for ARS and 0.1740 seconds for NanoXML

when the flow-level traceability matrix was used to classify

the test cases.

D. The Fault Detection Ability of the Reduced Test Set
To evaluate the fault detection ability of the reduced test set,

we compared the number of mutants killed by the reduced test

set with the number of mutants killed by running the full test

set.
We performed two mutation testing experiments. The

adapted version of the NanoXML at the model level (the

adapted models representing NanoXML version 2.1 as ex-

plained in Sect. IV-B) is the subject of the two experiments.

The goal of the first experiment was to evaluate the fault

detection ability of the reduced test set that is calculated based

on changes made to all adapted models of the NanoXML 2.1.
In the second experiment, the goal was to evaluate the fault

detection ability of a reduced test set that is calculated based

on changes made to the models of a specific class. That is, for

each adapted class, the model-based RTS approach was used

to calculate a reduced test set by only considering changes

made to the activity models representing methods for that

class. Then, the fault detection ability of the reduced test set

for each class was compared with the fault detection ability

of the full test set.
Mutation experiment when RTS was applied on the

adapted model as a whole: The experiment consists of four

steps. In the first step, the code level NanoXML version 2.1

is available4, and the code level baseline test suite (the 97

test cases) was executed on it and all tests passed. Simi-

larly, the corresponding model level test cases (the activity

models representing the 97 test cases) were executed on the

adapted models representing NanoXML version 2.1 and all

tests passed. A set of activity models representing test cases

can be executed in a single run as follows. Calls to all activity

models representing test cases are added to an activity model,

and when this activity model is executed by the RSA model

simulation tool, all of the called activity models inside it are

automatically executed.
In the second step, the PIT tool5 was used to apply

first-order method-level mutation operators to the code level

NanoXML 2.1. There are no tools (to the best of our knowl-

edge) that support generating mutations at the model level. The

4http://sir.unl.edu/portal/bios/nanoxml.php
5http://pitest.org
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TABLE IV
MUTATION RESULTS WHEN RTS WAS APPLIED ON THE WHOLE ADAPTED

MODELS

Mutations
Introduced/Killed Number Mutation

Score
Mutants in M 466 NA

Mutants killed by MT 310 67%

Mutants killed by RT 306 66%

TABLE V
MUTATION RESULTS PER CLASS, WHEN RTS WAS APPLIED ON EACH

ADAPTED CLASS

Class name
(ci)

Number
of tests
in Tci

Number
of
mutants
in Mci

Mutation
score of
Tci

Mutation
score of
MT

XMLElement 75 66 64% 64%

StdXMLParser 65 108 70% 70%

StdXMLBuilder 65 22 73% 73%

StdXMLReader 53 39 49% 59%

NonValidator 63 64 69% 69%

XMLWriter 52 61 48% 48%

PIT tool modifies the bytecode in memory (bytecode mutator),

and generates a mutation report that shows information about

all applied mutations, such as the location (i.e., class name,

method name, and line number) of a mutated code and the

change made to that code. The applied mutation operators

were6: (1) Conditionals Boundary Mutator, (2) Increments

Mutator, (3) Invert Negatives Mutator, (4) Math Mutator,

(5) Negate Conditionals Mutator, and (6) Void Method Calls

Mutator.

In the third step, we repeated each mutation on a copy of the

class and activity models representing the NanoXML 2.1. For

each mutation in the report generated by the PIT tool, we found

the code line for that mutation in the NanoXML 2.1 program.

Then, we found the corresponding code statement of that code

line at the model level, and applied the same mutation to it.

The code statement at the model level can be associated with

an action node or a transition flow. For example, based on the

report, we found that in the XMLElement::addChild() method

of the NanoXML 2.1 program, the conditional expression

(child == null) of an IF statement at line 350 was changed

by the Negate Conditionals Mutator to (child != null). We

detected the decision node representing the IF statement in

the activity model representing the XMLElement::addChild()

method, and negated the conditional expressions that are

associated with the outgoing transition flows of the decision

node. Each mutation was applied on a copy of the class and

activity models representing the NanoXML 2.1. Let us call

the set of all mutated copies as M.

The set of activity models representing the baseline test

cases for the NanoXML (the 97 test cases) is called MT.

6http://pitest.org/quickstart/mutators/

Because no changes were made to the test cases in MT and

no new test cases were added to improve the test coverage,

the test cases were not able to kill all model level mutants

in M. The reduced set of activity models representing the test

cases that were classified as retestable by our model-based

RTS approach (the 75 test cases as shown in Table III) is

called RT.
In the fourth step, the test cases of MT were executed on all

mutants in M, and the killed mutants were reported. Similarly,

the test cases of RT were executed on all mutants in M, and

the killed mutants were reported. The results are shown in

Table IV.

The test cases in RT achieved a mutation score that is close

to the mutation score achieved by all test cases in MT, which

indicates that the fault detection ability for the reduced test

cases was comparable to the fault detection ability of the all

test cases. The test cases of MT killed 4 more mutants in

M than the test cases of RT. These 4 mutants were added in

non-adapted activity models. We found that the test cases that

killed these 4 mutants were not selected as retestable because

they do not traverse adapted models.

Most of the live mutants (466-310) were not killed because

they are not covered by the 97 test cases. These test cases

were created based on the provided XML files, and they do

not provide 100% coverage in the NanoXML code. The live

mutants could be killed by improving the coverage of the

test suite and checking additional internal states that are not

checked by the existing test cases.

Mutation experiment when RTS was applied on each
adapted class: In this experiment, we set up the test selection

process to select a reduced test set for each adapted class

as follows. The flow-level RTS process calculated a reduced

test set for each adapted class ci of NanoXML 2.1 by only

considering changes made to the activity models for ci. The
reduced test set for ci is called Tci . Next, for each adapted

class ci, the PIT tool was used to apply first-order method-

level mutation operators only to ci methods, and each applied

mutation was repeated on a copy the class and activity models

representing the NanoXML 2.1. Let us call the set of these

mutated copies as Mci . We applied the six mutation operators

listed previously.

Finally, for each ci, the test cases of Tci were executed

on all mutants in Mci , and the killed mutants were reported.

Similarly, the set of all test cases (the set MT of the first

mutation experiment) were executed on all mutants in Mci ,

and the killed mutants were reported. The results are shown

in Table V.

We applied this study only on the 6 classes that were

adapted to get to NanoXML 2.1 from version 2.0. Applying the

model-based RTS approach for each class showed reduction in

the number of retestable test cases per class. For example, the

reduced test set for the StdXMLReader class consists of 53 out

of 97 test cases. For five of these classes, the test cases of Tci

and MT achieved equal mutation scores. The reduced test set

for the StdXMLReader class achieved a smaller mutation score

compared to MT. We found that the mutants that were killed
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by MT but not by the reduced test set of the StdXMLReader
class are the same 4 mutants that were not killed by the test

cases in RT in the previous mutation experiment.

The two mutation experiments showed that the reduced test

sets, which were calculated based on the adaptation made

to the whole NanoXML models and based on the adapted

models of each individual class, achieved mutation scores that

were equal or close to the mutation scores achieved by all test

cases. These results are promising but cannot be generalized

to other software systems. We plan to apply the proposed RTS

approach on additional systems and try different fault types.

E. Threats to Validity

We identify factors that might affect the outcome of the

RTS approach.

Internal validity: In the FiGA framework, models are

generated from annotated code. Developers can annotate the

code at different granularity levels. For example, a method

implementation can be annotated to represent each single

statement as an action node in the activity model, or can be

annotated to represent a couple of statements as an action

node. If a program is annotated at a finer level of granularity

such that each single statement is represented as a node in

an activity model, then the size of the models and the flow-

level traceability matrix will increase, and affect the result for

reduction in time. Annotating a program at a coarser level of

granularity might reduce the precision of the RTS approach,

in which the RTS approach classifies test cases that are not

modification-traversing as retestable.

The current approach does not support all changes that can

be made to the class model, such as changes to the inheritance

hierarchy, which might lead to some retestable test cases being

omitted by the RTS approach.

Construct validity: The RTS approach is based on flow-

level and activity-level coverage criteria. There are other

coverage criteria (e.g., def-use criteria) that can be used to

select test cases for regression testing, which were not explored

in this work.

External validity: The experiment was performed using

two subject programs, and therefore, our results cannot be

generalized to other programs.

V. RELATED WORK

This section discusses related work for code-based and

model-based RTS approaches.

Code-based approaches: Many graph-walk approaches

address the problem of RTS. Rothermel and Harrold [21]

proposed a safe approach for RTS for procedural software. The

algorithm uses control flow graphs (CFG) to represent each

procedure in a program P and its modified version P’. Each
node in a CFG represents a simple or conditional statement,

and each edge represents flow of control between statements.

Affected entities by modifications are selected by traversing

in parallel the CFGs of P and P’, and when the target entities

of like-labeled CFG edges in P and P’ differ, then the edge is

added to the set of affected entities.

Rothermel and Harrold extended the CFG-based algo-

rithm for C++ using the Inter-procedural Control-Flow Graph

(ICFG) [22]. The analysis algorithm in this approach works

only for complete programs. When classes interact with other

classes, the called classes must be fully analyzed. The analysis

algorithm cannot be applied to programs that call external

libraries, unless the code of the libraries is available. Harrold,

Jones, Li, and Liang adopted a similar approach for Java soft-

ware using the Java Inter-class Graph as representation [23],

which handles incomplete programs and does not require

complete analysis of the external libraries that are used.

These graph-walk approaches are known to be safe and

precise when they apply RTS at the edge level (i.e., select test

cases that traverse affected edges in the graph). Our approach

is similar to these approaches in terms of its ability to apply

RTS at the flow-level. For example, our approach selects

test cases that traverse edges that are connected to modified

action nodes, and test cases that formerly traversed deleted

edges. However, our approach uses activity models instead of

CFGs, where each of our action nodes can represent multiple

code statements. This can make our approach less precise

than graph-walk approaches that represent each statement as

a separate node.

Firewall approaches [13], [24], [25] are based on the concept

of drawing a firewall around the entities of the system that need

to be retested. Kung et al. [24] applied RTS at the class level.

This approach constructs an object relation diagram (ORD)

that describes static relationships among classes, such as

inheritance and association. The approach reports the classes

executed by each test cases. The firewall of a class C is defined

as a set of all classes that are dependent on C. When C is

modified, then all test cases traversing any of the classes in its

firewall are selected. Our approach can work at a finer level

of granularity (i.e., flow-level).

Jang et al. [25] applied RTS at the level of method to C++

software. They identify firewalls around all affected methods

by a change and select all test cases exercising these methods

for regression testing. Our approach can select test cases at a

finer level of granularity than the method level.

Vokolos and Frankl [26] considered RTS based on text

differencing using Unix diff. The approach compares the

original code version with the modified version to identify

the modified statements, and selects test cases that exercises

code blocks containing these statements.

Soetens et al. [27] proposed an RTS approach that is based

on a change model that identifies fine-grained changes made

to Java software as change objects according to FAMIX

model. The FAMIX model represents software entities such

as packages, classes, methods, and attributes. Dependencies

between software entities are defined in the change model, and

these dependencies are exploited for test selection. The change

model can detect additions, removals, and modifications of

packages, classes, methods, attributes, and method invocation

statements. Each detected change is mapped to its set of

relevant test cases based on change dependence hierarchy

defined in the change model. This work applied mutation
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testing to evaluate the fault detection ability of the reduced

test suite, and the evaluation showed that the reduced test suite

and the complete test suite achieved comparable results.

Model-based approaches: Chen et al. [28] used UML

activity models for specification-based RTS. In their work, an

activity model represents requirements and specifications of a

system. Changes to the specifications result in modifications

to the activity model, and these modifications at the model

level drive the selection of test cases. Their approach is used

to apply black-box (specification-based) RTS. Our proposed

approach is different than this approach because we use

activity models to represent program behaviors.

Briand et al. [12] presented a technique for RTS based on

UML use case models, and class and sequence models. Their

approach is applied at the design level, in which test cases

are selected according to design change information. Their

approach identifies changes in the three types of models and

the impact these changes have on the test cases. This approach

supports functional testing, in which each test case triggers

operations belonging to interface classes. Such operations are

represented as use cases in the use case model, and each

use case is connected to sequence models that represent the

interaction scenarios of that use case. Korel et al. [29] used

control and data dependencies in an extended finite state

machine to identify the impact of model changes and perform

RTS.

Farooq et al. [30] used UML class and state machine models

for RTS. This approach identifies changes in the class model

and in the state diagrams, and uses the impacted and changed

elements of the state diagrams to apply RTS.

Zech et al. [31] presented a generic model-based RTS

platform, which is based on the model versioning tool MoVE.

The approach consists of the three phases: change identifi-

cation, impact analysis, and test case selection, which are

controlled by OCL queries. This tool was demonstrated on

a small program as a proof of concept, and the results showed

that the OCL queries for impact analysis are complex even

for simple rules. Some of the presented model-based RTS

approaches implemented prototype tools, such as START [30]

and RTSTool [12]. These tools do not support UML activity

models.

The proposed RTS approach improves over the presented

model-based RTS approaches in terms of safety. In these

model-based approaches, certain changes to method imple-

mentations may not be visible and detectable at the model

level, such as a change to an operation implementation that

does not modify its contract and signature [12]. Therefore,

existing model-based RTS approaches are not safe with respect

to such changes [12]. In our approach, such changes can be

performed in activity models and can be identified and used

for RTS, i.e., our approach identifies changes made to code

statements associated with action nodes.

To the best of our knowledge, our proposed approach is

the first approach that uses UML class and activity models to

perform RTS, in which the models are executable, and RTS

can be applied at different granularity levels.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented a new model-based approach

for regression test selection. The proposed approach can be

applied at runtime to select regression test cases to validate the

adapted models of a running software system. The approach

exploits model execution to obtain a traceability matrix be-

tween models of test cases and models of the program, and

uses a model comparison tool to identify model changes. The

approach can be used to apply regression test selection at

different levels of granularity in activity models.

The proposed approach was applied within the FiGA frame-

work, and was evaluated using two subject programs. The re-

sults showed that the proposed approach resulted in a reduction

in the number of test cases that are selected for regression

testing, and a reduction in time. The mutation testing results

showed that the fault detection ability of the reduced test set

was close to the fault detection ability of the full test set.

We plan to evaluate the safety and efficiency of the proposed

approach on additional subject programs. We will support the

identification of other types of changes (e.g., modifications

to the inheritance hierarchy) at the model level and other

coverage criteria (e.g., def-use criteria). We will evaluate the

overhead required when the RTS approach is applied within

the FiGA framework in terms of the effort spent on annotating

code, reverse engineering, and applying changes at the activity

model level.
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