
A Petri-Net Based Reflective Framework

for the Evolution of Dynamic Systems

Lorenzo Capra1 and Walter Cazzola2

Department of Informatics and Communication
Università degli Studi di Milano

Milano, Italy

Abstract

Nowadays, software evolution is a very hot topic. Many applications need to be updated or extended
with new characteristics during their lifecycle. Software evolution is characterized by its huge cost
and slow speed of implementation. Often, software evolution implies a redesign of the whole system,
the development of new features and their integration in the existing and/or running systems (this
last step often implies a complete rebuilding of the system). A good evolution is carried out
through the evolution of the system design information and then propagating the evolution to the
implementation.
Petri Nets (PN), as a formalism for modeling and designing distributed/concurrent software sys-
tems, are not exempt from this issue. Several times a system modeled through Petri nets has to
be updated and consequently also the model should be updated. Often, some kinds of evolution
are foreseeable and could be hardcoded in the code or in the model, respectively.
Embedding evolutionary steps in the model or in the code however requires early and full knowledge
of the evolution. The model itself should be augmented with details that do not regard the current
system functionality, and that jeopardize or make very hard analysis and verification of system
properties.
In this work, we propose a PN based reflective framework that lets everyone model a system able
to evolve, keeping separated functional aspects from evolutionary ones and applying evolution to
the model if necessary. Such an approach tries to keep the model as simple as possible, preserving
(and exploiting) the ability of formally verifying system properties typical of PN, granting at the
same time model adaptability.

Keywords: Petri Nets, Reflection, Software Evolution.

1 Email: capra@dico.unimi.it
2 Email: cazzola@dico.unimi.it

Electronic Notes in Theoretical Computer Science 159 (2006) 41–59

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.061

mailto:capra@dico.unimi.it
mailto:cazzola@dico.unimi.it
http://www.elsevier.com/locate/entcs

1 Introduction

Nowadays, software evolution is a very hot topic. Many applications need
to be updated or extended with new characteristics during their lifecycle.
Often, software evolution takes place without stopping the system and directly
patching the software, i.e., without analyzing the situation and planning the
evolution itself or foreseeing how the software could evolve at design-time
before it really needs to evolve.

Software evolution, as well as software maintenance, is characterized by its
huge cost and slow speed of implementation. Often, software evolution implies
complete system redesign, development of new features and their integration
in running systems (this last step often implies a complete system rebuilding).

A good evolution is carried out through evolution of system design inform-
ation, and then through propagation of evolution to implementation. This
approach should be the most natural and intuitive to use (because it adopts
the same mechanisms adopted during the development phase) and it should
produce the best results (because each evolutionary step is planned and doc-
umented before its application). Notwithstanding that its adoption is not so
diffuse because it is not (or is only partially) supported by design/specification
formalisms.

At the moment software evolution, independently of the adopted modeling
techniques, is emulated by directly enriching original design information with
properties and characteristics concerning possible evolutions. This approach
has several drawbacks:

• planning evolution in advance means to have design information polluted
by details related to the design of the evolved system (the model is confused
because it does not represent a snapshot of the current system);

• evolution is not really modeled, its behavior is specified together with the
behavior of the whole software and not as an extension that could be used
in different contexts;

• planning evolution on demand means accessing to design information when
necessary: often this is not possible (information about design are not avail-
able at run-time or they might not be released together with software) or
difficult to realize (due to the growing system complexity, a long time might
be required to understand how a system should correctly evolve).

PN, as a central formalism for modeling distributed (software) systems, are
not exempted from these issues. PN are a powerful graphical formalism used
to model discrete-event dynamic systems and to derive their properties. To
correctly model systems able to evolve, without using tricks that require some

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–5942

PN expertise and that complicate dreadfully the model (affecting in many
cases the possibility itself of analyzing it), it is necessary to enrich the PN
modeling paradigm with evolutionary features.

At present, software evolution through evolutionary design is not suppor-
ted by traditional PN classes. Normally it is achieved by merging the basic
model of the system with information on the potential evolutions of the sys-
tem itself. A similar approach pollutes the model with details not pertinent
to the current structure of the software system. Pollution not only increases
the complexity of the model but hinders the capacity of the existing tools of
analyzing system properties without considering all the possible branches of
evolution.

System evolution is an aspect orthogonal to the (current) system behavior,
hence it could be subject to separation of concerns [7]. Separating evolution
from the rest of the system is worthwhile, because evolution is made inde-
pendent of the evolving system. If a given evolutionary plan should satisfy a
general property (such as security, persistence, fault tolerance and so on), it
could be (at least in part) reused from previous projects.

Separation of concerns could be applied also to a PN-based modeling ap-
proach. Normally system evolution takes place at a different time from design
time. Design information (in our case, a PN modeling the system) will not
be polluted by non pertinent details and will exclusively represent the system
functionality without patches. This leads to a simplified and clean modeling
approach by which a system can be analyzed without discriminating about
what is its current structure and what might be the future one.

In this work we propose a reflective framework that separates the PN de-
scribing a system from the PN that describes how this system evolves when
some events occur. The proposed reflective framework gives both the mech-
anism for separating these aspects and the mechanism to merge them when
a specific event occurs. With respect to several proposals recently appeared
with similar goals, our approach does not define a new PN paradigm, rather
it sets the basis of an evolutionary reflective framework relying upon consol-
idated classes of PNs. This gives us the possibility of using existing tools and
analysis techniques in a fully orthogonal fashion. The framework can be eas-
ily integrated to the GreatSPN tool [6], allowing sw designers to analyze the
current system configuration and to simulate its evolution .

The rest of the paper is structured as follows: in section 2 we briefly
present the adopted PN formalism and we survey the reflection parlance that
we will be used in the rest of the paper; in section 3 we informally overview the
framework, introducing the adopted terminology; in section 4 we present the
components of the reflective PN framework; in section 5 we show our approach

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–59 43

in action; finally in section 6 we draw our conclusions and perspectives.

2 Background

2.1 Petri Nets

We recall here only the basic notation and concepts about the formalisms used
in the paper. We assume that the reader has some basic knowledge of high
level PN (HLPN) extensions [8].

The Well-formed Net (WN) formalism [5] was inspired by the Colored
Petri Nets formalism and has the same modeling power of CPNs. Unlike
CPNs, it includes transition priorities and inhibitor arcs. These features are
very useful to represent the operational patterns of the meta-level models.
As in all High Level PN formalisms, tokens in places are associated with
an identifier (color), similarly transitions are parameterized, so that different
(color) instances of a given transition can be considered for enabling and firing.
However the WN color annotation syntax is peculiar: it was defined with the
aim of developing efficient analysis techniques able to automatically exploit
the behavioral symmetries embedded in the model.

Definition 2.1 A WN is a ten-tuple(
Σ, P, T, C, W+, W−, H, Φ, Π,M0

)
P and T are the place and transition sets; transition input, output and inhib-
itor arcs are defined by W+, W−, H, which define also their color annotations
(called arc functions); M0 is the initial (colored) marking. Π defines the
transition priorities (assigning a priority level Π(t) ∈ N to each transition).

The other elements correspond to color annotations, described next. Σ =
{C1, . . . , Cn} is the set of basic color classes. Each Ci is a finite, non empty set
of colors. Each color class can be partitioned into static subclasses Ci,1, . . . , Ci,k,
to distinguish some colors of the class. A basic color class may be circularly
ordered, but we omit this part of the definition, being not used in our models.

C is a function associating a color domain to each place and transition. A
color domain is defined as the Cartesian product of possibly repeated basic
color classes, hence the color associated with tokens in place p as well as the
color instances of a transition t, take the form of tuples of basic color class
elements. The color domain of t is implicitly defined by the set of variables
inscribing the arcs surrounding t (V ar(t)), for simplicity assumed non empty.
Each variable (in truth representing a projection) refers to a given basic color
class. Letting c(xi) be the class of xi, C(t) is defined as c(x1) × . . . × c(xm),

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–5944

∀xi ∈ V ar(t). A color instance of t (ĉt) is a consistent assignment of colors to
variables in V ar(t).

An arc function f(p, t) (where f may be W+, W−, H) is defined as f :
C(t) → Bag(C(p)); it takes the form of a weighted sum of tuples of (linear
combinations of) elementary functions defined on basic color classes. The
allowed elementary functions are the projection, selecting one element of a
transition instance color tuple, and the diffusion function (denoted S or S Ci,j),
returning the set of all elements in a given basic color (sub)class.

Φ is a T-indexed function, associating a guard to each transition, that re-
stricts the set of admissible color instances to those satisfying a given predic-
ate. Predicate basic terms represent simple conditions on transition instance
tuple elements: equality of colors selected by projections (e.g., x = (<>)y),
or membership of a color to a specified static subclass (e.g., d(x) = (<>)Ci,k).

The transition priority Π is a T indexed function associating a priority level
(in N) to each transition; priority level 0 transitions are graphically represented
as white boxes, while all other priority levels are for immediate transitions,
graphically represented as black bars.

A marking M is a mapping M : P → Bag(C(p)). A transition instance ĉt

has concession in M iff (i) for each input place p of t W−(t, p)(ĉt) ≤ M(p),
(ii) for each inhibitor place p of t H(t, p)(ĉt) >′ M(p), (iii) Φ(t)(ĉt) = true
(>,≤ relations and +,− operations are implicitly extended to multisets; >′

restricts the comparison to non-zero elements of H(t, p)(ĉt)). A marking is
called tangible if no immediate transitions are enabled, otherwise it is called
vanishing.

ĉt is enabled in M if it has concession, and no other higher priority trans-
ition instance has concession in M. It can fire, leading to the new marking

M′: ∀p ∈ P,M′(p) = M(p) + W+(t, p)(ĉt)−W−(t, p)(ĉt).

The class of nets we shall use for the base-level (see section 3) correspond to
the uncolored version of WN: a base-level net is a is a P/T net with priorities

and inhibitor arcs, formally a seven-tuple
(
P, T,W+, W−, H, Π,M0

)
, where

f(p, t) ∈ N (f may be W+, W−, H), and M0(p) ∈ N. The other definitions
given above (concession, enabling, firing rule) are still valid, but for replacing
f(p, t)(ĉt) with f(p, t).

2.2 Reflection

Computational reflection (or reflection for short) is defined as the activity
performed by an agent when doing computations about itself [9]. This activity
involves two aspects: introspection and intercession. Bobrow et al. define

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–59 45

these two terms as follows:

Introspection is the ability of a program to observe and therefore reason
about its own state. Intercession is the ability for a program to modify its
own execution state, or alter its own interpretation or meaning [2].

Reflection applies quite naturally to the object-oriented paradigm [9]. Just
as objects in the conventional object-oriented paradigm are representations
of real world entities, objects can themselves be represented by other objects,
usually referred to as meta-objects. Computation done by meta-objects (meta-
computation) is for the purpose of observing and modifying the objects they
represent, called referents. Meta-computation is often performed by meta-
objects by trapping the normal computation of their referents. In other words,
an action of the referent is trapped by the meta-object, which performs a
meta-computation either replacing or encapsulating the referent’s action. Of
course, meta-objects themselves can be manipulated by meta-meta-objects,
and so on. Thus, a reflective system can be structured in multiple levels, con-
stituting a reflective tower. Base-level objects (termed base-objects) perform
computations on the entities of the application domain. Objects in the other
levels (termed meta-levels) perform computations on the objects residing in
the lower levels. The interface between adjacent levels in the reflective tower
is usually termed as meta-object protocol (MOP).

Reification is an essential capability of all reflective models. Each level of
the reflective tower maintains a set of data structures representing (reifying)
lower level computation. Of course, deciding which aspects are reified depends
on the reflective model (e.g., structure, state and behavior, communication).
In any case, the data structures comprising a reification must be causally
connected to the aspect(s) of the system being reified. All changes to the
reification are reflected in the system, and vice versa. Depending on the
reflective model, the causal connection may operate at compile-, load- or run-
time, but in all cases the meta-object programmer is not concerned about how
the causal connection is achieved.

Transparency is another key feature of all reflective models. In the context
of reflection, transparency refers to the fact that the objects in each level are
completely unaware of the presence and workings of objects in higher levels.
In other words, each meta-level is added to the base-level without modifying
the referent level itself. An important application of transparency is in the
separation of functional features from (possibly several distinct) nonfunctional
features. Of course, separation of concerns enhances the system’s modifiab-
ility. Depending on whether a required modification to the system involves
functional or nonfunctional properties, functional objects alone or nonfunc-
tional objects alone may be modified.

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–5946

Figure 1. A snapshot of the meta-level. The base-level reification
represents the connection between the two levels.

3 Reflective Petri Nets: the Model

The reflective approach we propose should permit the design of a software
system formally described as a PN to dynamically evolve.

The approach is based on adopting a reflective architecture structured
into two logical layers. The first layer, called base-level, is represented by the
PN of the software system prone to be evolved, also called base-level PN ;
whereas the second layer, called meta-level (depicted in Fig. 1) is composed
by the evolutionary strategies that will drive the evolution when certain events
occur. The base-level PN and the PN representing the evolutionary strategies
depend on the kind of evolution to carry out, and on the evolving system.

The reflective framework is responsible for really carrying out the evolution
of the base-level PN. It reifies the base-level PN into the meta-level as colored
marking of a subset of places (representing a generic PN), called base-level
reification. The base-level reification is used by the evolutionary framework
itself and by the evolutionary strategies to observe (introspection) and manip-
ulate (intercession) the base-level PN. Each change on the reification will be
reflected on the base-level PN by the framework, i.e., the base-level PN and
its reification are causally connected.

According to the reflective paradigm, the base-level PN evolves irrespective
of the meta-level program (being not aware of the existence of a meta-level).
The meta-level program is implicitly activated (shift-up action) under two

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–59 47

conditions: either when the base-level PN model, during its simulation, reaches
a given configuration, or following some external (i.e., not specified in the base-
level) events. In such cases the base-level simulation is temporary suspended,
and a suitable strategy is put into action.

Intercession on the base-level PN is carried out in terms of a set of basic
operations suggested by the evolutionary strategy on the base-level reification.
We have chosen a very minimal set of operations, called the evolutionary
interface, that permits any kind of evolution both related to the structure and
the behavior. The chosen set of operations allow us to introduce and to remove
places, transitions and arcs, and to freely move the tokens all over the base-
level net. This set of operations enables the meta-program to implement both
structural and behavioral evolution (changing the topology and the marking of
the base-level PN, respectively). A consistency check ends each strategy, with
the aim of verifying preservation of basic system properties, before reflecting
back changes on the base-level net (an example is given in Section 5.1). In a
sophisticated design a recovery strategy might be executed in case of negative
check result. Finally control passes back to the (evolved) base-level PN, that
can continue its own dynamics.

A system must evolve to face an unpredictable event. In our framework,
the occurrence of an event is modeled by a place. When an event occurs
the evolutionary framework puts a token in this place. This action triggers
the transitions that guard all the strategies. If a guard is verified the corres-
ponding strategy is activated, that consequentially manipulates the base-level
reification. Each evolutionary strategy is a PN that exploits the evolutionary
interface by putting a token in the place corresponding to the operation to
trigger (see Fig. 1).

Evolutionary strategies have a transactional semantics: either they suc-
ceed, or leave the base-level PN unchanged. In our model, we realistically
assume that several strategies are possible at a given instant: the adopted
policy is to select one in non-deterministic way (see also Figure 1). A prior-
ity level can be also assigned to alternative strategies, to reduce (or annul)
non determinism. These simple solutions, typical of the adopted PN-based
approach, might be enhanced (without affecting the framework design) by
adding a meta-meta-level having in charge selection of the “best” strategy.

The interaction mechanism between base-level and meta-level, and between
meta-level entities, will be formalized in Section 4. Let us outline some essen-
tial aspects:

• the structure of the evolutionary framework is fixed, while the evolutionary
strategy is related to a given base-level PN; both are modeled by WNs

• the evolutionary framework and the evolutionary strategy are separated

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–5948

components, sharing two disjoint sets of boundary places: the representa-
tion of the base-level PN and the evolutionary interface (Figure 1). Such
interfaces represent the base-level (suitably reified as a marking which en-
codes topology and state of the base-level) and the evolutionary commands
sent by a given strategy to the framework to be put into action, respectively.
Interaction between components is realized through simple place superpos-
ition. This operator is supported by the Algebra module [1] of GreatSPN.
Labels taking the form place_name|postfix denote boundary-places. Each
pair of places with the same postfix are merged (by the way, they must
have the same color domain);

• base-level reification place color domains are similar to formal parameters,
that are instantiated when a given base-level PN is considered; their initial
marking corresponds to the default base-level configuration

• implicit synchronization between base-level and meta-level might take place
in several ways, specified at meta-level design phase. A reasonable assump-
tion is that the meta-level is implicitly activated (that means a token is
pushed in place events in Figure 1) whenever a new tangible marking of
the base-level in entered (coherently with the assumption that base-level
immediate transitions represent logical, or not observable, activities). In al-
ternative, a set of (non immediate) transitions could be initially selected as
responsible for meta-level activation (either when any of them is enabled, or
after it has fired); this set might be dynamically changed by the meta-level
itself. More sophisticated solutions are possible, but deeply discussing this
topics is outside the scope of the paper

• once the meta-level is active, the base-level reification representing the base-
level current marking is automatically updated. Base-level introspection is
then carried out by the evolutionary strategy, checking for some condition
on base-level current state, topology, or both. For example it might be
checked whether the base-level current marking is dead, or there is a set
of places P ′ forming a structural deadlock (a potential source of deadlock:
∀t ∈ T :

∑
p∈P ′(W+(p, t)−W−(p, t)) < 0).

Depending on introspection result, and/or occurrence of external events
(represented by homonym boundary places) a particular strategy is selected
and put into action. Occurrence of an external event could be simulated
by (interactively) pushing a token in a given place, or it could be expli-
citly modeled by a separated PN suitably composed with the evolutionary
strategy. Periodically occurring or scheduled events could be directly en-
coded in the base-level model (think e.g. to a city road whose access is
forbidden to cars each week-end).

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–59 49

The framework is thus characterized by a fixed part (the high-level PN rep-
resenting the evolutionary framework and the evolutionary interface), and by
a part varying from time to time according to the evolving system and the
necessary evolution (the base-level PN and the high-level PN representing the
evolutionary strategy; the latter might in turn evolve, if a meta-meta-level
were present). The fixed part is used to put evolution into practice for any
kind of system, independently of its structure and behavior, is responsible for
the reflective behavior of the architecture, and hides the work of the evolution-
ary sub-system to the base-level PN. This approach permits a clean separation
between the PN describing the evolution and the model of the evolving sys-
tem, that will be updated only when necessary. So the base-level PN model is
not polluted by details related to evolution and the analysis we can perform
on this model (as well as on the meta-level model) is not affected by pollution.

4 The Petri Net Based Reflective Framework

In this section the meta-level components of the PN-based reflective framework
highlighted in Section 3 are described in detail. Their semantics, behavior and
interactions are precisely stated.

Formalizing the evolutionary framework and the evolutionary strategy in
terms of WNs allows us on one side to specify complex transformation pat-
terns in a very simple way, on the other side to validate such models using
consolidated analysis techniques. In particular a symbolic structural analysis
technique (traditionally employed in classical PN) has been used, recently
proposed for an extension of the WN formalism [3].

4.1 The Evolutionary Framework

The evolutionary framework model (Figure 2) defines the framework evolu-
tionary engine. It performs a sort of concurrent-rewriting on the base-level,
suitably reified as a marking of the evolutionary framework. Places whose
labels have as prefix BLreif belong to the base-level reification, while those
having as prefix EvInt belong to the evolutionary interface.

While WN structure and color annotations (color domains, arc functions,
and transition guards) are generic, basic color classes and initial marking need
to be instantiated (or, if you prefer to adopt a more reflective parlance, to be
reified) for setting a link between evolutionary framework and base-level.

Letting
(
PB, TB, W+

B , W−
B , HB, ΠB,MB

0

)
be the base-level P/T net, the set

of evolutionary framework WN basic color classes is

ΣF = {Place, Tran,ArcType}

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–5950

F
ig

u
re

2:
A

d
et

ai
le

d
v
ie

w
of

th
e

fr
am

ew
or

k
im

p
le

m
en

ti
n
g

th
e

ev
ol

u
ti

on
ar

y
in

te
rf

ac
e.

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–59 51

(denoted P, T,A in Figure 2, respectively), where:

Place = PB ∪ otherP, Tran = TB ∪ otherT, ArcType = i ∪ o ∪ h

PB and TB are partitioned into cardinality one static subclasses identifying
single places and transitions of the base-level standard configuration. Thus it
is possible, when designing a given strategy, to explicitly refer to these ele-
ments. The subclasses otherP , otherT contain (names of) places and trans-
itions that might added to the base-level during its evolution. Even if WN
classes are finite, otherP and otherT are to be logically considered as unboun-
ded. This scheme of static partitioning of basic color classes might be further
refined/adapted depending on modeling needs.

As concerns the colored initial marking of the evolutionary framework
model (MF

0) we have (base-level reification color domains are intuitively set
to: C(BLreif|Places) = C(BLreif|Marking) : Place, C(BLreif|Trans) :
Tran, C(BLreif|Arcs) : Place× Tran× ArcType)

MF
0 (BLreif|Places) =

∑
p∈PB

1 · p, MF
0 (BLreif|Trans) =

∑
t∈TB

1 · t
∀ p ∈ PB, t ∈ TB, k ∈ ArcType : MF

0 (BLreif|Arcs)(〈p, t, k〉) = f(p, t)

where A(c) denotes the multiplicity of c in multiset A, and f denotes W−
B , W+

B ,
HB depending on whether k is i, o, h, respectively.

The marking of places above corresponds to the topology of the base-level: for
example, a base-level output arc of cardinality 2 from transition t2 to place p1,
is encoded by a pairs of tokens 〈p1, t2, o〉 in BLreif|Arcs. Any change to the
marking of these places corresponds to a modification that will be reflected
on the base-level topology. The base-level current marking corresponds to the
marking of place BLreif|Marking. At the beginning it is set to:

∀p ∈ PB, MF
0 (BLreif|Marking)(p) = MB

0 (p)

Then it is automatically refreshed at any activation of the meta-level. By the
way the evolutionary framework can modify this marking, meaning that the
current state of the base-level is changed through reflection.

Evolutionary Framework behavior

The behavior associated with the evolutionary framework is very intuitive.
Every place of the evolutionary interface represents a basic command that can
be issued by the evolutionary strategy (described below). Each time a token is
pushed in that place, a sequence of immediate transitions is triggered putting
into action the corresponding command. A succeeding sequence results in
changing the base-level reification marking.

Eight basic actions are implemented: adding and removing a (set of)

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–5952

place(s) (EvInt|newP, EvInt|delP), adding and removing a (set of) trans-
ition(s) (EvInt|newT, EvInt|delT), adding and removing a (set of) arc(s)
(EvInt|newA, EvInt|delA), and finally, increasing and decreasing a given
marking (EvInt|incM, EvInt|decM). As an example, a token 〈p〉 occurring
twice in place EvInt|incM corresponds to the command “increase the mark-
ing of p of two units”. Commands may have side effects: for example removing
an existing place p makes all the arcs connected to p are removed, and the
tokens staying in p are flushed. For the sake of space, we have not included
here commands for changing base-level transition priorities, and for adding a
new place/transition without specifying its name.

A given command is carried out only if it is consistent with the current
base-level configuration. Otherwise the command execution is aborted and
the model is restarted, by means of special transitions ({restarti}) whose fir-
ing makes the whole meta-level model (obtained composing the evolutionary
framework and evolutionary strategy) go back to its initial state (before last
activation). The GreatSPN tool is provided with restart transitions. Trying
to remove a yet not existing place/transition, trying to add an already ex-
isting place/transition, or trying to add a new arc 〈p, t, k〉 before p or t are
present in the base-level topology are possible restart causes. Who designs
the strategy is responsible for specifying a consistent sequence of commands.
Some commands can be issued and put into action in parallel in a consistent
way.

Any kind of net transformation can be defined as a combination of basic
commands: for example “replacing the input arc connecting p and t with
an inhibitor arc of cardinality three” correspond to putting one token 〈p, t, i〉
in EvInt|delA, and three tokens 〈p, t, h〉 in EvInt|newA. A more complex
example will be shown in Section 4.

Different transition priority levels are used in order to guarantee atomicity
and consistency of commands. In particular we have to remark that restart
transitions are associated to the lowest priority, and that priority levels in
Figure 2 are relative: they become absolute after composing the evolutionary
framework model with the evolutionary strategy, so as the minimum priority
used in the evolutionary framework is set greater that the maximum prior-
ity level used in the evolutionary strategy (according to the transactional
semantics).

4.2 The Evolutionary Strategy

The evolutionary strategy specifies a set of alternative transformations on the
base-level that can be put in action when some conditions (checked by intro-
spection of the base-level PN) hold and/or some external event has occurred.

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–59 53

The general structure of the evolutionary strategy is depicted in Figure 1. The
model color domains are the same as the evolutionary framework.

The evolutionary strategy specifies base-level transformation patterns of
arbitrary complexity. A strategy designer is unaware of the details of WN
formalism. So we define a minimal language that allows everyone to specify
his own strategy in a simple way.

We have found convenient to adopt a syntax inspired to the Hoare’s CSP,
enriched with a few “ad-hoc” constructs and notations for easy manipulation of
the base-level reification. A strategy specified in this way can be automatically
translated into the corresponding WN model, that will be in turn composed
with the evolutionary framework to obtain the desired meta-model (in the PN
literature there are several examples of mapping from CSP-like programs into
(HL)PN models).

Meta Language basic elements

The overall strategy scheme depicted in Figure 1 correspond to the following
CSP program 3

* [cond1; ext_event1 ? event1() --> strategy1;cons_check1 2
cond2; ext_event2 ? event2() --> strategy2;cons_check2 2

...
condn; ext_eventn ? eventn() --> strategyn;cons_checkn

]

where condi may be true (meaning that the corresponding strategy is always
activated at every shift-up) and the input command that (for convenience)
simulates occurrence of an external event is optional.

Other than four built-in types (N, bool, Place, Tran) the language disposes
of the set and cartesian product type constructors. The arc with multiplicity
(ArcM : Arc× N) and the marking (MarkP : Place× N) types can thus be
introduced (this way we can represent a multi-set as a set). New types can be
also defined by using classical set operators.

The i-th strategy is defined in terms of routine calls corresponding to the
set of basic actions described in Section 4.1. Their signatures are:

• addP lace(Set(Place)), newPlace(), remPlace(Set(Place));

• addTran(Set(Tran)), newTran(), remTran(Set(Place));

• addArc(Set(ArcM)), remArc(Set(Arc));

• incMark(Set(Mark)), decMark(Set(Mark))

3 Recall that: i) CSP is based on guarded-commands; ii) structured commands are in-
cluded between square brackets; and iii) symbols ?, *, and 2 denote input, repetition and
alternative commands, respectively.

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–5954

(a) Standard situation (b) Temporary situation

Figure 3. City layout: a) the layout during normal activities b) the layout during road maintenance.

The meta-programmer can refer to (a set of) base-level elements either ex-
plicitly, by means of constant symbols (corresponding to static subclasses
of Place and Tran), or implicitly, by means of variables (normally used in
membership test preceding loops or selection commands). By means of an
assignment p = newPlace() (t = newTran()) it is also possible to add an
unspecified net element to the base-level, afterwards referred by variable p (t).

The following notations can be used to express any logical condition on
the base-level topology/state (e : Place∪Tran, a : Arc, p : Place): •e, e•, ◦e,
conn(e), #p, card(a). Symbols •e, e• denote the pre/post sets of a net element
(defined as usual). Symbol ◦e denotes the set of elements connected to e via
inhibitor arcs. Symbol conn(e) denotes the set •e ∪ e• ∪ ◦e. Last, #p denotes
the current marking of p.

In addition to the CSP control structures, a particular version of the re-
petitive command can be used (letting Ei be any language type):

*(e1 in E1, ..., en in En)[�command�]

command is executed iteratively for each e1 ∈ E1, . . . , en ∈ En; at each itera-
tion, variables e1, . . . , en are bound to particular elements of E1, . . . , En.

Having at disposal the language above, it is possible to specify any kind
of evolution, such as “for each place p belonging to the pre-set of t, if there
is no inhibitor arc connecting p and t, add one with cardinality equal to the
marking of p minus one”, that becomes:

*(p in •t) [card(<p,t,h>) == 0 --> addArc({<p,t,h,(#p - 1)>})]

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–59 55

5 Reflective Petri Nets in Action

5.1 Base-Level Model and Strategy Example

The simple example of base-level we are describing, taken from traffic man-
agement field, was presented in [4] (Figure 3). The corresponding PN model
is depicted in Figure 4.

A small portion of a city map is considered. The entities of interest are
cross-points, streets and traffic lights. The main scope of the evolutionary
design is to guarantee safe connectivity between different points of the city, in
front of occasional circumstances such as temporary or permanent closure of
streets due to maintenance works, car accidents, natural events, and so on.

The adopted abstraction level does not consider other interesting aspects,
such as the presence of vehicles having different priorities (e.g., emergency
vehicles, and normal vehicles). Including also such aspects in the base model
is only a descriptive matter (by the way the model complexity should be
affected).

Mapping the city description into a PN model is straightforward. Net
places represent cross-points, while transitions represent (mono-directional)
flows of cars along street portions. If a given street can be run in both dir-
ections, then it will be associated with a pair of transitions. Finally, each
traffic light is represented by a place (that when marked corresponds to the
red signal) and a pair of transitions switching the traffic light color. Traffic
lights are connected to the controlled cross-points through suitable inhibitor
arcs. For safety reasons, some traffic lights must be synchronized (see the
pairs of places TL 1 2 : {tl1,tl2} and TL 3 4 : {tl3,tl4} in Figure 4.a). In
the base model the number of vehicles flowing through the city cross-points is
initially unbounded: inhibitor arcs allow one to simulate traffic saturation in

(a) Standard situation (b) Temporary situation

Figure 4. Petri Net model of the city map in Figure 3.

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–5956

ArcsToBeAdded : <S P6,S Le_St,S i> + <S P4,S Le_St,S o> + <S P4,S NW_St,S o> +

<S P2,S NW_St,S i> + <S P4,S U_St,S i> + <S P5,S U_St,S o> + <S tl3,S U_St,S h>

PlacesToBeRem : <S P1>+<S P3>+<S TL_1_2>

TransToBeRem : <S C_St_Le>+<S C_St_R>+<S M_St_U>+<S Lo_St>

ArcsToBeRem : <S P2,S NW_St,S o>+<S P5,S U_St,S i>

g(checkTL_3_4_h) : [d(p1)=TL_3_4 and d(p2)=TL_3_4 and d(t1)=ROAD and d(t2)=ROAD]

g(checkTL_3_4_io) : [d(p1)=TL_3_4 and d(p2)=TL_3_4 and p1<>p2 and t1<>t2]

g(switchTL_3_4) : [d(p1)=TL_3_4 and d(p2)=TL_3_4]]

check_conn1 : <p1,t1,S i>+<p2,t1,S o>+<p1,t2,S o>+<p2,t2,S i>

Figure 5. Evolutionary Strategy for the model in Figure 4.

a very easy way.

A number of interesting properties can be derived by resorting to the
powerful analysis techniques typical of PN (state-space exploration, struc-
tural analysis). For instance the model in Figure 4.a has nicely shown to be
live, independently of the initial disposition of tokens representing vehicles
along the city cross-points. That means each vehicle can always reach every
destination, moving from any point of the city.

Assume that at a given moment the city map in Figure 3.a needs to be
modified due to maintenance work at Church St., as described in 3.b. The
corresponding evolutionary strategy is formalized by the WN models depicted
in Figure 5. The upper part of the picture refers to the first phase of the
strategy, and it corresponds to the meta-program fragment below (all names
but t and k refer to constants; street names are shortened, for instance C_St_Le
stands for ChurchStreetLeft):

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–59 57

ext_event ? work_at_church_st() -->
*(t in conn(P4), k in ArcType)

[card(<p,t,k>) <> 0 --> remArc({<p,t,k>})];
remArc({<P2,NW_St,o>,<P5,U_St,i>});
remPlace({P1,P3} + TL1_2);
remTran({C_St_Le,C_St_R,M_St_u,Lo_St});
addArc({<P6,Le_St,i>,<P4,Le_St,o>,<P4,NW_St,o,1>,<P2,NW_St,i,1>,

<P4,U_St,i,1>,<P5,U_St,o,1>,<lt3,U_St,h,1>});
...

The first command which is issued corresponds to: “safely remove all the arcs
connected to P4”.

The second phase of the strategy is depicted in the lower part of 5 (the
corresponding code fragment is not included for the sake of space). It realizes
a sequence of high-level logical actions:

• the topological consistency of TL 3 4 synchronized traffic lights (which was
touched in the first phase) is checked: traffic lights at the same carrefour
must be reciprocally connected by a pair of input/output transitions (con-
necting arc must have multiplicity one); each traffic light must be linked to
at least one street through an inhibitor arc of multiplicity one;

• the consistency of the state of TL 3 4 is checked (either traffic light tl3 or tl4
must be red at a given instant), and in case of positive check, it is switched
(that corresponds to change the base-level marking);

• pending transitions are removed, to guarantee the semantics of the base-
level (isolated transitions have always concession): the pairs of transitions
{switch1, switch2} connected to TL 1 2 turn out to be isolated, so they are
automatically removed.

The strategy just described succeeds. After the evolution is reflected, the
base-level model looks like in Figure 4.b.

6 Conclusions and Future Work

Nowadays, software evolution is a really hot topic. Many applications need
to be updated or extended with new characteristics during their lifecycle. A
good evolution has to pass through the evolution of the design information of
the system itself.

PN are a central formalism for modeling concurrent and distributed sys-
tems. In this paper, we have faced the problem of the evolution of a PN
model through the definition of a reflective architecture that allows the meta-
program to observe and then to evolve the base-level PN. With this approach
the model of the system and the model of the evolution (called evolutionary
strategy) are kept separated, granting, therefore, the opportunity of analyzing
the model without useless details. The evolutionary aspect is orthogonal to

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–5958

the functional aspect of the system.

At the moment, to keep the presentation simple, we are using two different
formalisms for the base-level PN (classic PN) and the meta-level program
(colored PN). In general it might be convenient to adopt the same formalism
(colored PN) for both the levels, this will give origin to the reflective tower
allowing the designer to model also the evolution of the evolution of the system,
and so on. In the next, we are going to extend the GreatSPN tool for supporting
our approach.

References

[1] Bernardi, S., S. Donatelli and A. Horvàth, Implementing Compositionality for Stochastic Petri
Nets, Journal of Software Tools for Technology Transfer 3 (2001), pp. 417–430.

[2] Bobrow, D. G., R. G. Gabriel and J. L. White, CLOS in Context - The Shape of the Design
Space., in: A. Pæpcke, editor, Object Oriented Programming: The CLOS Perspective (1993), pp.
29–61.

[3] Capra, L., M. De Pierro and G. Franceschinis, A High Level Language for Structural Relations in
Well-Formed Nets, in: G. Ciardo and P. Darondeau, editors, Proceeding of the 26th International
Conference on Application and Theory of Petri Nets, LNCS 3536, Miami, USA, 2005, pp. 168–
187.

[4] Cazzola, W., A. Ghoneim and G. Saake, System Evolution through Design Information
Evolution: a Case Study, in: W. Dosch and N. Debnath, editors, Proceedings of the 13th
International Conference on Intelligent and Adaptive Systems and Software Engineering (IASSE
2004) (2004), pp. 145–150.

[5] Chiola, G., C. Dutheillet, G. Franceschinis and S. Haddad, On Well-Formed Coloured Nets
and Their Symbolic Reachability Graph, in: Proceedings of the 11th International Conference on
Application and Theory of Petri Nets,, Paris, France, 1990, pp. 387–410.

[6] Chiola, G., G. Franceschinis, R. Gaeta and M. Ribaudo, GreatSPN 1.7: GRaphical Editor and
Analyzer for Timed and Stochastic Petri Nets, Performance Evaluation 24 (1995), pp. 47–68.

[7] Hürsch, W. and C. Videira Lopes, Separation of Concerns, Technical Report NU-CCS-95-03,
Northeastern University, Boston (1995).

[8] Jensen, K. and G. Rozenberg, editors, “High-Level Petri Nets: Theory and Applications,”
Springer-Verlag, 1991.

[9] Maes, P., Concepts and Experiments in Computational Reflection, in: N. K. Meyrowitz, editor,
Proceedings of the 2nd Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’87), Sigplan Notices 22, ACM, Orlando, Florida, USA, 1987, pp. 147–
156.

L. Capra, W. Cazzola / Electronic Notes in Theoretical Computer Science 159 (2006) 41–59 59

	Introduction
	Background
	Petri Nets
	Reflection

	Reflective Petri Nets: the Model
	The Petri Net Based Reflective Framework
	The Evolutionary Framework
	The Evolutionary Strategy

	Reflective Petri Nets in Action
	Base-Level Model and Strategy Example

	Conclusions and Future Work
	References

