
Massimo Ancona, Walter Cazzola, and Eduardo B. Fernandez. Reflective Authorization Systems. In Proceedings of ECOOP Workshop on Distributed Object
Security (EWDOS’98), pages 35–39, Brussels, Belgium, July 1998. Unité de Recherche INRIA Rhǒne-Alpes.

Reflective Authorization Systems

Massimo Ancona† Walter Cazzola‡ Eduardo B. Fernandez?

† DISI-University of Genova, Genova, Italy
e-mail: ancona@disi.unige.it

‡ DSI-University of Milano, Milano, Italy
e-mail: cazzola@dsi.unimi.it

? Department of CSE-Florida Atlantic University,
Boca Raton, Florida, USA

e-mail: ed@cse.fau.edu

Abstract
A reflective approach for modeling and implementing autho-
rization systems is presented. The advantages of the combined
use of computational reflection and authorization mechanisms
are discussed, and three reflective architectures are examined
for pointing out the corresponding merits and defects.
Keywords: Authorization, Object-Orientation, Dis-
tributed Objects, Reflection, Security.

1 Introduction
Security implies not only protection from external intrusions
but also controlling the actions of internal executing entities and
the operations of the whole software system. In this case, the
interleaving between operations and data secrecy may become
very complicated and often intractable. For this reason security
must be specified and designed in a system from its early design
steps [9].
From another point of view

� it is very important that the security mechanisms of the
application be correct and stable;

� the security code should not be mixed with the applica-
tion code, otherwise it is very hard to reuse well-proven
implementations of the security model.

If this is not done, when a new secure application is developed
the programmer wastes time to re-implement and to test the se-
curity modules of the application. Moreover, security is related
to: “who is allowed to do what, where and when”; so security is
not functionally part of the solution of the application problem,
but an added feature defining constraints on object interactions.

From this last remark we can think of security as features at a
different level and we can separate its implementation from the
application implementation.
In our opinion it is possible to use the separation of concerns
and transparency, typical reflection features, to split a secure
system into two levels: in the first one there are (distributed)
objects cooperating to solve the system application; in the sec-
ond level, rights and authorizations for such entities are identi-
fied, specified and mapped into reflective entities which trans-
parently monitor such objects and authorize the allowed access
to the other objects, services or information.
Working in this way it is possible to develop stable and reliable
entities for handling security. It is also possible to reuse them
during system development, thus reducing development time
and costs, and increasing application level assurance.
In most systems authorization is defined with respect to persis-
tent data and enforced by the DBMS and/or operating system.
Object-oriented systems define everything as an object, some
persistent some temporary, where this separation is not visible
at the application level. In these systems authorization must
be defined at the application level to take advantage of the se-
mantic restrictions of the information [8]. An early system (not
object-oriented) (see [9], page 195), attempted this kind of con-
trol by defining programs that had predefined and preauthorized
accesses. Reflection appears as a good possibility for this type
of control because it does not separate persistent from tempo-
rary entities. The Birlix operating system [16] used reflection
to adapt its nonfunctional properties (including security) to dif-
ferent execution and application environments.
In this paper we examine how to use a reflective architecture,
such as those described above, to manage the authorization as-
pects of an application and the advantages and drawbacks of
using such an approach.

35



2 Background on Reflection and Secu-
rity

Computational reflection or just reflection is defined as the ac-
tivity performed by an agent when doing computations about it-
self [13]. Behavioral and structural reflection are special cases
which involve, respectively, agent computation and structure
(for more details see [5]).
A reflective system is logically structured in two or more lev-
els, constituting a reflective tower. Entities working in the base
level, called base-entities or reflective entities, define the sys-
tem basic behavior. Entities in the other levels (meta-levels),
called meta-entities, perform the reflective actions and define
further characteristics beyond the application dependent sys-
tem behavior.
Each level is causally connected to adjacent levels, i.e., entities
belonging in a level maintain data structures representing (or,
in reflection parlance, reifying) the states and the structures of
the entities in the level below. Any change in the state or struc-
ture of an entity is reflected in the data structures reifying it,
and any modification to such data structures affects the entity’s
state, structure and behavior.
Computational reflection allows properties and functionalities
to be added to the application system in a manner that is trans-
parent to the system itself (separation of concerns) [18]. To this
respect, it is useful to consider also reflection granularity [1],
that is, the minimal entity in a software system for which a re-
flective model defines a different meta-behavior. A finer gran-
ularity allows more flexibility and modularity in the software
system at the cost of meta-entity proliferation.
The reflective models considered here are: meta-object [13],
message reification [6] and channel reification [2].
In the meta-object model, meta-entities (called meta-objects)
are objects, instances of a proper class. Each base-entity, called
also referent, can be bound to a meta-object. Such a meta-
object supervises the work of the linked referent.
In the message reification model, the message passing (method
call in object-oriented parlance) between two objects is reified
by a special object, called message. Such a message performs
only behavioral reflection.
In the channel reification model, one or more objects, called
channels are established between two interacting objects. Each
channel is characterized by a kind which specifies the behavior
for message handling by the channel.
We show our ideas using the following scenario: the system is
composed of several objects interacting in a client-server man-
ner. Such objects are classifiable, using security concepts, into
two non disjoint sets objects and subjects; where a subject rep-
resents an entity performing or requesting an activity (i. e. an
active object playing the client role), while an object is a pas-
sive entity supplying a service (i. e. a passive object or an active
object playing the role of server).
For security reasons the services supplied by a server and the
data contained in a passive object are protected and prohibited

to some subjects. One way to model such authorizations is the
access matrix model (see [12]). In this model the authorization
rules are described by a bidimensional matrix indexed on sub-
ject and objects and the access to an object o is allowed to a
subject s when the item hs,oi of the matrix contains the per-
mitted access type. Such a model can be realized by capability
lists, access control lists, or combinations of these.
A Role-Based Access Control (RBAC) model is particularly
suitable for object-oriented systems [15], because accesses can
be defined as operations defined in the objects according to the
need-to-know of the roles [7]. Because reflection supports a
fine granularity of access, its combination with RBAC can be
quite effective.
Formally, an authorization right R for a subject s to access
an object o, through message (method) m can be written
R(s)=(m,o). Here m usually represents a high-level access
type, e.g. hire an employee.

3 How We Model Security With Reflec-
tion

A computational system answers questions and supports ac-
tions in some applicative domain. Following P. Maes [13] we
can say that:

“A system is causally connected with its domain if
the internal structures and the domain they represent
are linked in such a way that if one of them changes,
this leads to a corresponding effect upon the other.”

For example a control software is causally connected with the
controlled process if changes of the state of the physical process
are reflected by changes of the control software state and vice-
versa. To this purpose a control software system incorporates
structures representing the state of the controlled process. If we
consider authorization rights added to a critical control system
we note that the causal connection of authorization with the
application domain is indirect. Authorization (and more gener-
ally security) defines capabilities related to human and/or me-
chanical agents concerned with the responsibility of perform-
ing tasks that are considered critical for the controlled system
behavior. Thus, an authorization validation mechanism is a
second level feature causally connected with software agents
and objects performing control tasks. This is our motivation
for adopting a reflective architecture for implementing autho-
rization schemes. In other words, security specifications corre-
spond to nonfunctional specifications [7] and should be imple-
mented into a meta-level.
Using computational reflection we can separate the authoriza-
tion control mechanism from the application. Moreover, the
meta-level should be protected from malicious intrusions and
attacks from the base-level or from other processes. A solu-
tion could consist in executing the meta-level in a different ad-
dress space as an independent process, communicating with the

36



subject s object o

meta−level

base−level

reify
access

request

request

located in

protected 

area

information
retrieve access

message m

Figure 1: Message Reification Model to Model Security

base-level via a mechanism similar to the local procedure calls
(LPC) of Windows NT [4]. LPC is a locally optimized form of
the well known mechanism of remote procedure call (RPC) of
Unix and other systems: LPC is a message-passing mechanism
through which clients make requests to servers and used for the
server’s reply.
In order to avoid confusion with objects in object-oriented sys-
tems, we use the term base-objects to refer either to subjects
and objects of authorization terminology. Moreover, we call
service request (or method call) every access performed by a
subject on an object. There are three possible reflective archi-
tectures suitable for controlling authorization rules: the mes-
sage reification model, the meta-object model and the channel
reification model. Each of them provides features suitable to
handle different security aspects.
In the message reification model each request m delivered by

a client s to a server o is reified into an instance of message m.
This object retrieves the related role right R(s) = (m,o) from a
predefined and protected area (for example, encoded into data
structures of the meta-level); then, it either validates the request
by delivering the message to its destination o, or invalidates the
request by raising an access violation exception. The valida-
tion phase is hidden to normal computation of the system (see
Figure 1). The message reification model is suitable for im-
plementing uniform authorization mechanisms, not requiring a
variety of specialized mechanisms. This model supports spe-
cialization only for kind of message, not for combined client
and/or server and message kind. Role rights cannot be encoded
into the reified meta-entity because if its short life-cycle. Ad-
dition and deletion of authorizations must be managed with a
different mechanism.
In the meta-object model a meta-object is associated with each
object (as shown in Figure 2); this meta-object reifies the re-
lated access control list of the referred object. Each request
performed by a subject s to an object o is trapped by the re-
lated meta-object mo, which evaluates the authorization re-
quest. Then, it either rejects the request by rising an excep-
tion, or it delivers the request to the original destination s.
This model is suitable for implementing highly specialized role
rights (specialized per object, per subject or per service re-

subject s object o

meta−level

base−level

acces

control 

list

reify

request

meta−object mo

traps

request

o’s authorizations
mo encapsulates

Figure 2: Meta-Object Model to Model Security

quest). Also, each meta-object may hold the methods neces-
sary to modify authorizations rules of the base-objects [10],
which can be used to extend or reduce the existing authoriza-
tions. In this way, the programmer of the base-objects does
not worry about the validity of authorizations changes, which
is encapsulated into the meta-object behavior.
A reflective mechanism is able to model more complex autho-
rization schemes than the ones shown above. For example,
the authorization rules can be refined by the concept of access
mode (such as the read, write and execute access of the Unix
file system). This situation corresponds to modifying the value
of the elements of the access matrix from boolean to multi-
valued data (eg. the symbols r, w and x). Obviously the pres-
ence of more access modes complicates the authorization val-
idation process. In our scenario, we can continue to use the
meta-object model and entrusting the entire validation process
into the corresponding meta-object, increasing and complicat-
ing the meta-object code. Complete workflow authorizations
requiring specific sets of rules involving sequences of message
sending can be managed with this model.
Another approach is to use a reflective model with a finer granu-
larity than the meta-object one and to entrust each access mode
into a different reflective entity. Using the channel reification
model [2] we can define a channel kind for each possible access
mode. Each element of the access matrix is reified by more
channels (one for each value assigned to the matrix item). For
example, when the request performed by s to o has write ac-
cess mode, such a request is trapped by the channel with kind
write established between s and o which validates it (see Fig-
ure 3). In this way the authorization validation process is sim-
plified: each channel checks few authorizations and there exist
reflective entities only for base-entities needing an authoriza-
tion validation protocol. Obviously, the main drawback of this
approach with respect to the meta-object approach is the higher
number of reflective entities involved.
Security models based on communication flow [3] can be mod-
eled by the channel reification model: in particular, models
based on the concept of flow like Escort of Scout [17] and

37



subject s object o

meta−level

base−level

request

channel cr

channels reify and handle only
specific access mode of s to o 

channel cw

Figure 3: Channel to Model Access Mode Authoriza-
tion

Corps [14]. A path is a first class object encapsulating data
flowing through a set of modules. A path is a logical channel
made up of data flow connecting several modules. Other two
security mechanisms adopted in Escort are filters and protec-
tion domains. A filter restricts the interface between two adja-
cent modules. However, filters include no mechanism to ensure
that a module does not bypass the interface by directly access-
ing the memory of the other module. A protection domain is
a boundary drawn between a pair of modules to ensure that
the mutual access is performed only through the defined inter-
face. Filters and protection domains may be modeled respec-
tively by standard reflective channels and protected channels,
i.e., channels executing in a different address space. The con-
cept of path is more complex and requires an extension of the
channel reification mechanism. A channel controlling a path
may be obtained by piping or composing the channels control-
ling the sequence of modules forming a path or by defining a
complex channel successively controlling the interface of a se-
quence of modules in a path. Another approach could be based
on a three-level reflective tower, but this approach increases the
system complexity without significant advantages.

4 Evaluation

Using computational reflection to include an authorization
mechanism into a software system offers many advantages dur-
ing software development. We can specify, develop, implement
and test the modules which implement authorization mecha-
nisms separately from the rest of the application. In this way
we encourage reuse and improve software stability. Moreover,
the authorization process is hidden to the application entities,
thus the code of such entities is simplified. While this can be
accomplished by current DBMS authorization systems, we are
now controlling access to all executing entities, not just the ap-
plication’s persistent data.
The advantages from the security point of view are that only
the entities performing the validation of the authorizations of

an object know its authorizations constraints. In this way au-
thorization leaking is minimized.
A first drawback is that flexibility has a cost in terms of effi-
ciency. The Achille’s heel of using reflection to realize secu-
rity could be its implementation mechanism. In fact, the trap
actions (shift-up and shift-down) are critical actions. It is pos-
sible for a malicious user to intercept the trap and to hijack the
request to another reflective entity which will authorize the re-
quest. For this reason it is important to protect the meta-level
and the access to it. From another point of view this drawback
is, also, a strong point of the model with respect to standard
authorization models; we minimize the vulnerable points to
known system locations that can be more efficiently protected.
The possibility of using different address spaces (e.g., different
processes) to implement the two reflective layers with kernel
system intervention for exchanging information represents an
improvement to the security of the complete system.
Some recent proposals to control actions of Java applets have
similar purposes to our proposal. In those systems, e.g. in [11],
execution domains are created and enforced for specific appli-
cations using downloaded content. However, the objective of
these approaches is to control access to operating system re-
sources, e.g. files, memory spaces, ..., not to control high-level
actions between objects.

5 Conclusions
Reflection offers several advantages when used to model au-
thorization mechanisms. Its main advantage is due to separa-
tion of concerns and modularity. Authorization mechanisms
can be designed within the application from early development
stages, but, at the same time, they can be maintained separate
both from the logical and implementative point of view. This
fact improves reusability of both functional and authorization
software and supports an independent testing of both. More
important, it controls access to all executing entities, not just to
persistent data.
Another advantage is the ability of implementing a protection
layer around the authorization software, thus making the sys-
tem more robust to unauthorized attempts to change role rights.
Obviously, there are also drawbacks: the first is a reduced
execution efficiency; flexibility costs in efficiency. The sec-
ond problem could be represented by the protection mecha-
nism around the authorization layer (meta-level). Running it
in a different address space may make programs too inefficient
for most applications. Thus, more efficient protection mecha-
nisms, not performing a complete context switching, should be
designed. Hardware capability systems appear promising for
this purpose.
Moreover, the existence of such a protection makes more un-
derstandable, to malicious users, where to address attacks to
the fortress and easier to discover Achille’s heels.
Future developments are represented by complete workflow au-
thorizations combining specific sequences of service requests:

38



they require that the meta-entities controlling the activated
server objects, interact with each other for discriminating le-
gal sequences from illegal ones. More complex authorization
schemes may require the introduction of meta-meta-levels, i.e.,
to raise the reflective tower and the system complexity.
Finally, some prototyping of the proposed architecture and
practical experiments will improve the understanding of the
role played by reflection in the implementation of authoriza-
tion systems of high assurance. In particular, its possible use
to control the actions of downloaded content would be of high
practical interest.

Acknowledgment
We are most grateful to the anonymous referees whose advice
stimulated further deepening on the topic.

References
[1] M. Ancona, W. Cazzola, G. Dodero, and V. Gianuzzi.

Channel Reification: a Reflective Approach to Fault-
Tolerant Software Development. In OOPSLA’95 (poster
section), page 137, Austin, Texas, USA, on 15th-19th
Oct. 1995. ACM. Available at http://homes.dico.
unimi.it/˜cazzola/references.html.

[2] M. Ancona, W. Cazzola, G. Dodero, and V. Gianuzzi.
Channel Reification: A Reflective Model for Distributed
Computation. In R. Jenevein and M. S. Obaidat, editors,
Proceedings of IEEE International Performance Com-
puting, and Communication Conference (IPCCC’98),
98CH36191, pages 32–36, Phoenix, Arizona, USA, on
16th-18th Feb. 1998. IEEE.

[3] W. E. Boebert and R. Y. Kain. A Pratical Alternative
to Hierarchical Integrity Policies. In Proceedings of 8th
National Computing Security Conference, Gaithersburg,
Oct. 1985.

[4] H. Custer. Inside Windows NT. Microsoft Press, Red-
mond, WA, 1993.

[5] F.-N. Demers and J. Malenfant. Reflection in Logic,
Functional and Object-Oriented Programming: a Short
Comparative Study. In Proceedings of the IJCAI’95
Workshop on Reflection and Metalevel Architectures and
their Applications in AI, pages 29–38, Montréal, Canada,
Aug. 1995.

[6] J. Ferber. Computational Reflection in Class Based Object
Oriented Languages. In Proceedings of 4th Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’89), volume 24 of Sigplan No-
tices, pages 317–326. ACM, Oct. 1989.

[7] E. B. Fernandez and J. C. Hawkins. Determining Role
Rights from Use Cases. In Proceedings of the 2nd ACM
Workshop on Role Based Access Control (RBAC’97),
pages 121–125, Nov. 1997.

[8] E. B. Fernandez, M. M. Larrondo-Petrie, and E. Gudes. A
Method-Based Authorization Model for Object-Oriented
Databases. In Proceedings of the OOPSLA’93 Workshop
on Security in Object-Oriented Systems, pages 70–79.
ACM, 1993.

[9] E. B. Fernandez, R. C. Summers, and C. Wood. Database
Security and Integrity. Addison-Wesley, Reading, Mas-
sachusetts, 1981.

[10] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protec-
tion in Operating Systems. Communication of the ACM,
19(8):461–471, Aug. 1976.

[11] T. Jaeger, N. Islam, R. Anand, A. Prakash, and J. Liedtke.
Flexible Control of Downloaded Executable Content.
http://www.ibm.com/Java/education/flexcontrol, 1997.

[12] B. W. Lampson. Protection. Operating System Review,
8(1):18–34, Jan. 1974. Reprint.

[13] P. Maes. Concepts and Experiments in Computational Re-
flection. In N. K. Meyrowitz, editor, Proceedings of the
2nd Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’87), vol-
ume 22 of Sigplan Notices, pages 147–156, Orlando,
Florida, USA, Oct. 1987. ACM.

[14] E. Menze, F. Reynolds, and F. Travostino. Program-
ming with System Resources in Support of Real-Time
Distributed Applications. In Proceedings of the 1996
IEEE Workshop on Object-Oriented Real-Time Depend-
able Systems, pages 36–45, Laguna Beach, Ca, Feb. 1996.
IEEE.

[15] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. IEEE
Computer, 29(2):38–47, Feb. 1996.

[16] S. Sonntag, H. Härtig, O. Kowalski, W. Kühnhauser, and
W. Lux. Adaptability Using Reflection. In Proceedings
of the 27th Annual Hawaii International Conference on
System Sciences, pages 383–392, 1994.

[17] O. Spatscheck and L. L. Peterson. Escort: A Path-Based
OS Security Architecture. Technical Report TR-97-17,
Department of Computer Science, The University of Ari-
zona, Tucson, AZ 85721, Nov. 1997.

[18] R. J. Stroud. Transparency and Reflection in Distributed
Systems. ACM Operating System Review, 22:99–103,
Apr. 1992.

39

http://homes.dico.unimi.it/~cazzola/references.html
http://homes.dico.unimi.it/~cazzola/references.html

	1 Introduction
	2 Background on Reflection and Security
	3 How We Model Security With Reflection
	4 Evaluation
	5 Conclusions

