Distrib. Comput. (2003) 16: 287-306
Digital Object Identifier (DOI) 10.1007/s00446-003-0094-8

Remote Method Invocation as a First-Class Citizen

Walter Cazzola

DICo - University degli Studi di Milano, Milano, Italy (e-mail: cazzola@dico.unimi.it)

Received: December 2001 / Accepted: April 2003

Abstract. The classical remote method invocation (RMI)
mechanism adopted by several object-based middleware is
‘black box’ in nature, and the RMI functionality, i.e., the RMI
interaction policy and its configuration, is hard-coded into the
application. This RMI nature hinders software development
and reuse, forcing the programmer to focus on communica-
tion details often marginal to the application he is develop-
ing. Extending the RMI behavior with extra functionality is
also a very difficult job, because added code must be scat-
tered among the entities involved in communications.

This situation could be improved by developing the sys-
tem in several separate layers, confining communications and
related matters to specific layers. As demonstrated by recent
work on reflective middleware, reflection represents a power-
ful tool for realizing such a separation and therefore over-
coming the problems referred to above. Such an approach
improves the separation of concerns between the communi-
cation-related algorithms and the functional aspects of an ap-
plication. However, communications and all related concerns
are not managed as a single unit separate from the rest of
the application, which makes their reuse, extension and man-
agement difficult. As a consequence, communications con-
cerns continue to be scattered across the meta-program, com-
munication mechanisms continue to be black-box in nature,
and there is only limited opportunity to adjust communication
policies through configuration interfaces.

In this paper we examine the issues raised above, and pro-
pose a reflective approach especially designed to open up the
Java RMI mechanism. Our proposal consists of a new reflec-
tive model, called multi-channel reification, that reflects on
and reifies communication channels, i.e., it renders commu-
nication channels first-class citizens. This model is designed
both for developing new communication mechanisms and for
extending the behavior of communication mechanisms pro-
vided by the underlying system. Our approach is embodied
in a framework called MChoRM which is described in detail
in this paper.

Correspondence to: Walter Cazzola, c|o DICo, University of Mi-
lano, Via Comelico 39/41, 20135, Milano, Italy. Fax +39-02-503-
16000 (e-mail: cazzola@dico.unimi.it)

Key words: Reflection — Reflective Model — Reflective Mid-
dleware — Java RML.

1 Introduction

The term middleware refers to a set of services that resides
between the application and the operating system and aims to
facilitate the development, deployment, and management of
distributed applications [15]. The main objective of distrib-
uted middleware is to provide a convenient environment for
the realization of distributed computations. Unfortunately, in
many middleware interaction policies between the distributed
objects are hard-coded into the platform itself. Some plat-
forms, e.g., CORBA [39], provide mechanisms, such as in-
terceptors and POA/Servant Manager, for redefining interac-
tion details, but these allow for customization only within the
scope envisaged by their designers. Full adaptability has not
been achieved yet.

Another problem occurs because the monolithic nature of
middleware forces distributed algorithms to be implemented
at the application level. This results in an intertwining of dis-
tributed algorithm code with application code, does not achiev-
ing the separation of concerns [25] between functional and
nonfunctional code. Some programming languages, e.g., Ja-
va [5], disguise remote interactions as local calls, thus ren-
dering their presence transparent to the programmer. How-
ever their management, (i.e., tuning, and synchronizing the
involved objects) is not so transparent and easily maskable to
the programmer. Moreover, distributed algorithms are scat-
tered among several objects, the complexity of these algo-
rithms is augmented by introducing nonfunctional code for
coordinating the work of the involved objects and accessing
to remote data. We can summarize these kinds of problems
with current middleware platforms as follows:

@ interaction policies are hidden from the programmer who
can not customize them (lack of adaptability);

® communication, synchronization, and tuning code is in-
tertwined with application code (lack of separation of con-
cerns);

288

® algorithms are scattered among several objects, thus forc-
ing the programmer to explicitly coordinate their work
(lack of global view).

Global view, adaptability, and separation of concerns are re-
quirements that current middleware do not completely ad-
dress and support. To address such open issues, classic mid-
dleware has been enhanced with concepts from computational
reflection to create reflective middleware [7,15].

The rest of this paper is organized as follows. Section 2
describes the reflective middleware approach and why it fails
to deal with these open issues. Section 3 relates our commu-
nication-oriented reflective model, called the multi-channel
reification model. Sections 4 and 5 are devoted to showing the
applicability of our solution, describing the MCholVl frame-
work based on our model, which opens up the Java RMI
mechanism and its implementation. In section 6, we also show
a few non-trivial applications using the proposed approach.
The final three sections draw conclusions and present some
related and future work.

2 Reflective Middleware
2.1 Computational Reflection.

Computational reflection (or reflection for short) is defined
as the activity performed by an agent when doing compu-
tations about itself [32]. This activity involves two aspects:
introspection and intercession. Bobrow et al. [8] define these
two terms as follows:

Introspection is the ability of a program to observe
and therefore reason about its own state. Intercession
is the ability for a program to modify its own execution
state, or alter its own interpretation or meaning.

Reflection applies quite naturally to the object-oriented para-
digm [17, 19, 32]. Just as objects in the conventional object-
oriented paradigm are representations of real world entities,
objects can themselves be represented by other objects, usu-
ally referred to as meta-objects. Computation done by meta-
objects (meta-computation) is for the purpose of observing
and modifying the objects they represent, called referents.
Meta-computation is often performed by meta-objects by trap-
ping the normal computation of their referents. In other words,
an action of the referent is trapped by the meta-object, which
performs a meta-computation either replacing or encapsulat-
ing the referent’s action. Of course, meta-objects themselves
can be manipulated by meta-meta-objects, and so on. Thus, a
reflective system can be structured in multiple levels, consti-
tuting a reflective tower. Base-level objects (termed base-ob-
Jjects) perform computations on the entities of the application
domain. Objects in the other levels (termed meta-levels) per-
form computations on the objects residing in the lower levels.
The interface between adjacent levels in the reflective tower
is usually termed as meta-object protocol (MOP) [27].
Reification is an essential capability of all reflective mod-
els. Each level of the reflective tower maintains a set of data
structures representing (reifying) lower level computation. Of
course, which aspects are reified depends on the reflective
model (e.g., structure, state and behavior, communication). In

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

any case, the data structures comprising a reification must be
causally connected to the aspect(s) of the system being rei-
fied. All changes to the reification are reflected in the system,
and vice versa. Depending on the reflective model, the causal
connection may operate at compile-, load- or run-time, but in
all cases the meta-object programmer is not concerned about
how the causal connection is achieved.

Transparency [41] is another key feature of all reflective
models. In the context of reflection, transparency refers to the
fact that the objects in each level are completely unaware
of the presence and workings of objects in higher levels. In
other words, each meta-level is added to the base-level with-
out modifying the referent level itself. An important appli-
cation of transparency is in the separation of functional fea-
tures from (possibly several distinct) nonfunctional features.
In a typical approach, objects at the base-level are entrusted
to meet an application’s functional requirements, while those
at the meta-level add nonfunctional properties (e.g., fault tol-
erance, persistence, distribution, and so on). Software sys-
tems can benefit from such an approach for several reasons
(e.g., easy adaptability, separation of concerns, and code sta-
bility). Of course, separation of concerns enhances the sys-
tem’s modifiability. Depending on whether a required mod-
ification to the system involves functional or nonfunctional
properties, functional objects alone or nonfunctional objects
alone may be modified.

2.2 The Reflective Middleware Approach.

A reflective approach, as stated in [9], can be considered as
the glue to stick together distributed and object-based pro-
gramming and to fill gaps in their integration. Reflection pro-
vides a programming environment that exposes the imple-
mentation details of a system, i.e., the interaction policies,
and allows the programmer to manipulate them. Moreover,
a reflective approach permits easy separation of interaction
management code from application code. Due to such con-
siderations many reflective middleware implementations have
been developed. Current research in reflective middleware is
focusing on improving customizability and rendering its use
more transparent. However, most reflective middleware ap-
proaches leave two open issues:

O the system lacks a global view, and
O the independent customization of each individual remote
method invocation or message exchange! is difficult.

The above problems, as stated by Kenneth Birman in his key-
note at Middleware 2000, are very important from the devel-
opment point of view because, their resolution would lead to
an increased reuse of communication-based features and sim-
pler implementations.

Global view. Writing object-based distributed applications in
which several separate entities manage shared information is

! In the rest of this paper, notwithstanding the term hides the re-
turn values intrinsic in the (remote) method invocation, we use the
term message to denote both the (remote) method invocation and
the exchanging of data because this terminology adheres to the ter-
minology previously adopted in the reflection community [19].

Walter Cazzola: Remote Method Invocation as a First-Class Citizen 289

meta—objects

D)
w INT @
© @/@W/

Meta-Level A :

MB

a) meta—object approaches

meta—objects (messages)

5ee @ 7O
Reifiation Q > @ j'v @

Reflection @ Lo @ ;‘

b) message reification approaches

Figure 1. Base- and Meta-Level Communication Graphs. In Fig. a) the communication graph of the base-level is
mimicked in the meta-level, whereas in Fig. b) it is reified in the meta-level.

problematic. In such situations, an algorithm usually intended
to be a sequential and coherent whole must be divided among
several distributed entities. Since no individual entity knows
the entire algorithm, the programmer must write additional
code to synchronize the distributed objects and to keep up-
dated and consistent the shared data. The meta-programmer?
must face similar problems when the application domain of
his meta-program is the communication among base-entities.
Hence, he must write some additional code to keep each rei-
fied aspect of the communication in touch with components
reifying other communication aspects. Such additional code
increases the complexity of the meta-level program and also
increases the chances of coding errors. Moreover, scattering
the algorithm among several objects contrasts with the object-
oriented philosophy, which states that data and the algorithms
managing them should be encapsulated into the same entity.
Since objects do not have a global view of the data they are
managing, we can state that most current reflective middle-
ware platforms lack a global view. The global view relevance
has been explored by Holland in [24]. He has verified how the
intrinsic global view property provided by the contracts [23]
helps in building reusable components. Therefore, in the cur-
rent reflective middleware the potential for object reuse is
compromised®. Moreover, the implementation of many non-
functional communication-oriented properties may benefit by
achieving the global view property. For example, each filter-
driven communication (e.g., encrypted, compressed, and so
on) is implemented in a straightforward manner without du-
plicating the filter and all the related data. Analogously, the
realization of nonfunctional features such as load balancing

% By the term meta-programmer we mean the person who designs
and programs the program at the meta-level (meta-program).

3 According to [6], a component (in our case the realization of a
(non)functional feature) must be self contained to be reusable. That
is, the services the component provides, are mostly realized without
interacting with the other components, i.e., the component is loosely
coupled with the other components.

and reliability, that are based on data owned by the sender or
the receiver (e.g., their status or load, service availability and
so on), would not need to retrieve such data because they are
already encapsulated in the meta-entity enriching the corre-
sponding communication.

Customization of communications. Current reflective middle-
ware platforms only support changes to the mechanisms re-
sponsible for message transfer, neglecting the separate man-
agement of individual messages. To implement different meta-
behaviors, (that is, the behavior of the meta-objects) for a sin-
gle message or for a group of messages, the meta-program-
mer must write a separate meta-program for each type of in-
coming message and then ‘switch’ based on the message type.
Moreover, adapting meta-object to deal with new message
patterns requires manually including code for the related han-
dlers. Unfortunately, this increases the complexity and size of
the meta-program to the detriment of its readability and main-
tainability.

2.3 Communications as Application Domain for Reflection.

In summary, the global view requirement is typically not a-
chieved and customizing each single communication is hard
to achieve. Fundamentally, this is due to the features of the
reflective models embedded in the current reflective middle-
ware. Most reflective models are object-based or limited to
consider the single exchanged message instead of the whole
communication, that is none of these reflective approaches
considers communications as its application domain. In the
rest of this section we examine these approaches explaining
why they are not suitable for performing meta-computations
on communication.

Object-based reification. In these models (basically, derived
from the meta-object model [32]), every object (called refer-
ent) is associated with a meta-object which traps messages

290

sent to its referent and implements the behavior of the in-
vocation. Such models thus focus their efforts on managing
objects rather than interactions. They have been designed for
handling different requirements (i.e., reflecting on various ba-
se-level objects), hence they do not address communication-
oriented nonfunctional requirements. In particular, by adopt-
ing an object-based model to reflect on distributed communi-
cations, the meta-programmer often has to duplicate the base-
level communication graph explicitly at the meta-level (see
Fig. 1.a). Implementing new features for base-level commu-
nications requires that exchanged messages be trapped at the
source, sent to the meta-level, managed and then dispatched
to the meta-entity at the destination. In this manner, the meta-
level is mimicking the corresponding base-level communica-
tion. The problem with this approach is that the meta-pro-
grammer has to introduce synchronization and communica-
tion code in the meta-program, as well as in the base-level
program, increasing its complexity. Therefore, object-based
approaches to reflection-on-communication simply move the
problem, which reflection tries to remedy, of intertwined non-
functional/functional code [25] from the base- to the meta-
level. Simulating a base-level communication at the meta-
level, as advocated in [35], allows performing meta-compu-
tations related to either sending or receiving actions, but not
related to the whole communication or involving information
owned either by the sender or by the receiver without contin-
uously interacting with them. In addition, object-based reifi-
cation approaches directly inherit the problem of lack of a
global view from the object-oriented methodology [18], which
encapsulates computation orthogonally to communication.

Message reification. Problems related to reflect on communi-
cations have already been stressed in the literature [19, 33].
Most researchers agree that to overcome these problems one
must adopt a reflective model specially designed for deal-
ing with communications. Ferber [19] proposed the message
reification approach. This approach consists of reifying each
exchanged message in a meta-entity, as shown in Fig. 1.b.
Messages are reified in the meta-level as long as they exist
in the base-level. Meta-entities reifying messages can easily
extend the semantics of the communication mechanism, but
they do not know senders and receivers of the reified commu-
nication therefore they can not manipulate the communica-
tion aspects related to senders and receivers. Moreover, due
to the ephemeral nature of the message, the meta-program
can carry out meta-computations involving previously com-
puted information only if this information is stored between
two reifications. We term the just described phenomenon as
lack of information continuity. Profiling and load balancing
are examples of nonfunctional requirements that are difficult
to implement without information continuity.

Although the message reification model is more suitable
for enriching the semantics of communication than object-
based approaches, we still think that the message reification
approach is not well-suited for distributed computing. The
message reification model not only lacks information conti-
nuity, but also does not permit interacting with the object in-
volved in the communication, and is limited to point-to-point
communications. Thus, the realization of a reflective middle-
ware that completely supports communications as application
domain for reflection needs further examination.

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

3 Communication Channels as First-Class Citizens

To address the problems described in section 2.2 we have to
design from scratch a reflective approach that reifies and re-
flects on communications directly. This means designing a
reflective model whose domain is not a base-object (as in the
meta-object model) or a message (as in the message reifica-
tion model), but rather an entire communication among base-
objects. That is, we need to encapsulate message exchanges
(not only messages) into a single logical meta-object instead
of scattering the relevant information related to it among sev-
eral meta-objects. Hence, communication channels must be
treated as first-class citizens.

To fulfill this purpose, we have designed a communica-
tion-oriented model of reflection which we call the multi-
channel reification model. This approach is inspired by the
message reification model [19], which is message-oriented
but not communication-oriented. We have extended that ap-
proach by introducing the concept of a communication chan-
nel. As we will show, this extension provides a way to struc-
ture middleware with the global view property.

3.1 Multi-Channel Reification Model.

The multi-channel reification model considers a synchronous
method invocation as a message sent through a logical chan-
nel established among an object requiring a service (in the
following termed as sender), and a set of objects providing
such a service (in the following termed as receivers)*. The
model then supports the reification of such logical channels
into logical objects called multi-channels®. In this way, the
abstract concept of a communication channel is embodied as
an object; i.e., the communication channel becomes a first-
class citizen. Each multi-channel monitors the exchange of
messages and potentially enriches the underlying communi-
cation semantics with new features. Each method call is trap-
ped by the multi-channel when performed, then it is (poten-
tially) imbued with new semantics, and finally it is delivered
to the designated destinations. Multi-channels can be viewed
as interfaces established between objects requiring services
and objects providing such services with the aim of enriching
these services with new communication-related features.

The Kind Concept. The purpose of a multi-channel is to en-
hance the behavior of its associated communication channel
with a single new feature. Each such feature is termed a kind;
examples are verbosity, check-pointing, authentication, load
balancing, and so on. Each message sent from a sender to a
given group of receivers is different and could be character-
ized by different requirements. The kind concept allows the

* We treat senders and receivers as separate entities, but this
choice should not be considered mandatory or restrictive — senders
and receivers can coincide without problems. In this case, the multi-
channel will look like a meta-object able to reflect both on outgoing,
and on ingoing messages.

> Our meta-objects are called multi-channels after the fact that, in
our view, multi-cast is the most general communication model and
all communication can be modeled on top of it by using our notion
of channel.

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

source locus ~.

sender ~

[abstract locus)

Figure 2. Objects and loci involved in a multi-point communication.

programmer to differentiate the management mechanism as-
sociated with each exchanged message. Several multi-chan-
nels can be established among many senders and the same
group of receivers. Each of these multi-channels implements
a different behavior (behavior identified by its kind) and mon-
itoring a different set of exchanged messages. For example,
we could consider a critical system that we want to enhance
so that it checkpoints exchanged messages. In this case, it
is convenient to store information only about methods whose
execution causes state changes, i.e., to partition messages into
two sets: non-modifying and modifying messages. Hence, we
establish two kinds of multi-channels between the same group
of objects: one managing non-modifying messages and the
other managing the modifying messages with enhanced se-
mantics defining the expected checkpointing mechanism.

How Multi-Channels Are Looked-up. Having introduced the
notion of kind, we are in a position to define a multi-channel
as follows:

multi-channel = (kind, receiver;, ..., receiver,,)

That is, each multi-channel is characterized by its kind, and
the set of referents playing the role of receivers. This charac-
terization of the multi-channel is sufficient to allow the run-
time system to determine the multi-channel to which each
message is to be passed. Note that because of the intrinsic
dynamicity of the communication semantics, the sender of
the message is not relevant to the characterization of a multi-
channel. Different senders can hook themselves to the chan-
nel at different times and for different requests.

Reification. Each reification is related to a communication
channel established among the interacting objects, and takes
place when a communication channel is used for the first
time, i.e., when a sender first sends a message to a particular
group of receivers. The new multi-channel is compliant with
the characteristics of the communication it embodies, i.e., its
kind satisfies the requested behavior and its referents are the
receivers of the message, and so on. Each message requir-

Q"

291

receiver;

_ /VQ 0 target loci

receiver;

receivers

ing an already used channel is managed by the multi-channel
which embodies such a communication channel. When the
multi-channel terminates its computation the execution con-
trol returns to the sender originating the meta-computation.
On the basis of the implemented behavior, the multi-chan-
nel may also transfer the execution flow to one (or more)
of its referents in order to execute some base-computations
and to compute the expected result. In summary, when an ob-
ject requests a service to another object the following steps
take place: the exchanged message is transparently trapped
and sent to the multi-channel; the multi-channel reifies the
communication channel that must be used; the multi-channel
delivers the message, in compliance with its behavior, to the
designated receivers, then the multi-channel returns the re-
sult. The efficiency of the context switch between the base-
and the meta-level is addressed in section 7.3

The Loci of Meta-Computations. As depicted in Fig. 2, a com-
munication has a wide area of influence (the gray cone in the
picture) and involves several aspects and components of the
system. By area of influence, we mean both performed ac-
tions, (e.g., data marshaling and unmarshaling, message de-
livery, and so on), and participating entities (sender and re-
ceivers). To determine where and when meta-computations
on communications might be performed, we have to analyze
and partition the area of influence in accordance with where
and when actions necessary to carry out the communication
are performed. Each such partition, which we name a commu-
nication locus, is an abstraction of a part of the logical path
that a message traverses to get to the designated receivers. In
our taxonomy, an area of influence has three kinds of com-
munication loci (numbers refer to the situation depicted in
Fig. 2):

© the sender and the beginning of the communication, named
the source locus,

O the dispatching and delivering of the message to the des-
ignated receivers, named the abstract locus, and

292

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

kind <kind-name>* with ReceiverNameList to MethodNameList KindList |

kind <kind-name> with ReceiverNameList to MethodNamelList

Kinds = kinds KindList'

KindList =

ReceiverNameList = <receiver-name> , ReceiverNameList | <receiver-name>
MethodNameList =

<method-name> , MethodNameList | <method-name>

! Terminals are written using a non-proportional font, whereas non-terminals are written using a proportional font.
¥ Identifiers in brackets represent strings whose meaning is clearly defined by their name.

Grammar 1: Kinds and kind.

® the receivers and the execution of the just-delivered mes-
sage, named the target loci.

These loci represent the reification of the whole com-
munication and of the entities (hidden or not) that imple-
ment a distributed communication. Each multi-channel rep-
resents these loci. It moves the communication mechanism
into the meta-level under the control of the meta-program
and frees the base-level from the responsibility of manag-
ing the communication. For example, messages, which are
marshaled by the sender, are moved into the source locus
where the meta-program can piggyback them with extra data.
To allow meta-programs to customize the semantics of each
communication, the multi-channel performs a specific meta-
computation for each locus extending their standard behav-
ior. Meta-computations performed on source and target loci
are always carried out at the site of the senders and receivers,
respectively. The taxonomy we have adopted derives from re-
quirements of performance, reliability and availability. Locat-
ing part of the meta-program directly at the source and target
loci is convenient for reducing inter-process communications,
while working on the abstract locus allows meta-computa-
tions to be decentralized and the reliability and the availabil-
ity of the provided services to be improved at the meta-level.
For example, the abstract locus can be used to perform check-
pointing, rollbacking, filtering, and so on, that is, to perform
actions related to neither the sender’s nor the receiver’s site.

4 Programming with Channels

We have extended the Java RMI framework to a system called
MCholRM, an acronym for multi-Channel Reification Model,
supporting our model. This section describes the set of ex-
tensions to Java to support our model and a simple API for
meta-programming.

4.1 Base-Level Language Extensions.

For the run-time system to select the right multi-channel to
use, each request for remote service must provide informa-
tion about both the communication channel (the receivers of
the message) and the required behavior (the kind of the com-
munication channel they intend to use). To provide this in-
formation we have introduced in the base-level language a
construct for specifying a link between each method-call, the
receivers of such calls and the behavior that will be used for
carrying out such calls.

4.1.1 Kinds.

The kinds statement binds communication channels to multi-
channels. Each binding expresses which multi-channel is im-
plicitly used to deal with a message sent through a specific
communication channel, in agreement with the characteriza-
tion of multi-channels given in section 3.1. Each binding is
introduced by the kind keyword and expressed through its
components: a set of receivers, the kind and a list of mes-
sages that the related multi-channel must trap and send to the
meta-level. The syntax of the kinds statement is described by
Grammar 1.

Kind-statement bindings are managed by the compiler/in-
terpreter and translated into statements that the run-time sys-
tem uses to reify the related communication channel, to de-
couple the base-entities from the communication loci, and to
route the method calls toward the correct multi-channel. Of
course, this translation is tied to the adopted multi-channel
architecture. More about this is explained in section 5.

The kinds statement has to be inserted in the class defi-
nition of each potentially reflective sender. It contains meta-
information that describes the interface of each instance to-
wards the meta-level. A reflective sender, written in MCholRV,
looks like:

class dummy
kinds
kind verbose with A, B, Z to dummy;
kind normal with A, B, Z to dummys, dummys {
// usual class description

Note that, to improve transparency and to remove meta-infor-
mation from the base-level code, data related to the commu-
nication channel can also be passed to the system at compile-
time through a directive to the compiler.

In the rest of the paper, we denote the kind of a multi-
channel with symbols «». For example, in the above snippet
of code, we inform the run-time system that multi-channels
of kind «verbose» deliver dummy; messages to the given re-
ceivers A, B and Z sent from instances of the class dummy.

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

293

KindDefinition SourceLocusSection AbstractLocusSection TargetLocusSection

#

ClassBodyb =

KindDefinition u= kind: <label>'

SourceLocusSection = source-locus: NormalBody | ¢

AbstractLocusSection 1= abstract-locus: NormalBody |
TargetLocusSection = target-locus: NormalBody | ¢

Expr’ := MethodCall® | FieldAccess® | LocusExpr

LocusExpr := Locusldentifier. MethodCall | LocusIdentifier . FieldName
Locusldentifier BE

source-locus | abstract-locus | target-locus(<ReceiverName>)

¥ To simplify the exposition we have set an order among locus sections.

¥ <label>> represents a string used to identify the kind of meta-behavior.

¢ NormalBody is not further expanded in this paper and represents the body of a Java class.

’ ClassBody and Expr are nonterminals of the Java grammar and need not be further expanded.

° MethodCall, and FieldAccess are nonterminals of the Java grammar, which describe method-calls and access to object attributes,

respectively.

Grammar 2: Multi-channels.

4.2 Meta-Level Programming Language.

We have developed a programming environment that allows
programmers to write classes describing multi-channels ben-
efitting from the global view property. The resulting program-
ming language is derived from Java and permits multi-chan-
nel description through its loci. The extensions to Java are
described by Grammar 2.

4.2.1 Kind Definition.

Each class of multi-channels describes the nonfunctional be-
havior, i.e., the kind, applied to the reified communication
channel. Programmers can specify such a kind through the
keyword kind:.

4.2.2 Locus Sections.

To get the global view property, communication loci have to
transparently interact, allowing the meta-programmer to man-
age the trapped message without worrying about passing it
from one locus to another, and without explicitly coordinat-
ing loci work. Classes describing multi-channels are divided
into three sections, beginning with one of these new quali-
fiers:

e source-locus:
e abstract-locus:
e target-locus:

Each section represents the locus of the communication chan-
nel that it reifies. Each section contains all methods and fields
related to such a locus. These methods are written in standard
Java and they use the API described in section 4.3. It is not
mandatory to write all sections. If a section is omitted, the
corresponding locus either does not perform actions or per-
forms inherited actions when messages pass through it.

4.2.3 Locus Representatives.

Distributed nonfunctional features are often based on data
owned by both the sender and the receivers involved in the
communication. For example, to distribute service requests
equally among two or more servers, the client needs informa-
tion about the load of each server. Hence, loci should coop-
erate with each other to carry out some services. Of course,
meta-programmers should manually coordinate the access to
such services and data. To achieve the global view property,
we have to carry out a high-level and transparent loci coordi-
nation. Each locus has a representative that masks and takes
care of intra-object communications, i.e., it delivers each re-
quest to the corresponding component at the proper moment
instead of having to be specified by the programmer. These
representatives have the same name as the locus they repre-
sent, e.g., abstract-locus for the abstract locus. We use the
dot notation to access their services and data, for example,
target-locus(i).retrieveField(ﬁeld)6.

4.2.4 Multi-Channel Interactions and Relations.

In spite of our extensions to Java, all the advantages of the
object-oriented paradigm are retained. Multi-channels can also
extend existing multi-channels instead of having to be pro-
grammed from scratch. Obviously, the inheritance relation
which binds two multi-channel classes is propagated to their
components. Hence, each locus inherits methods and fields
defined in the corresponding locus section from the parent
multi-channel class.

Multi-channels can interact (through remote method invo-
cations) with other multi-channels (see [3]). Of course these
communications as every other communication can be reified
by multi-channels, thereby providing support for a reflective
tower.

% Please note that the abstract locus knows all its target loci, and
a target locus can easily refer to another locus by taking from the
abstract locus representative the needed information.

294

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

Generic Multi-Channel Introspection

senderStubInterface senderStub(String name)
accessor to a representative of the specified sender.

receiverStubInterface receiverStub(String name)
accessor to a representative of the specified receiver.

retrieves the content of a field of the specified receiver.

Object retrieveReceiverFieldValue(String receiverName, String fieldName)

retrieves the content of a field of the specified sender.

Object retrieveSenderFieldValue(String senderName, String fieldName)

Senders and Receivers Side Introspection and Intercession

Object referent()
accessor to the referent of the stub.

Object retrieveField(String fieldName)
queries for the contents of a specified field of the referent.

Object invoke(String methodName, Object[] args)

invokes a specified method of the referent with the specified arguments.

Table 1. A portion of the API provided by mChaM for carrying out introspection and intercession on senders

and receivers.

Message Introspection and Intercession

String getMethodName ()
retrieves the name of the method called.

String setMethodName (String methodName)

through the name changes the method which will be really activated.

Object inspectArgument(int position)
retrieves the value of a specified actual argument.

Object modifyArgument (int position, Object newValue)

changes the values of a specified actual argument, and returns the old value.

void insertArgument(int position, Object value)
inserts a new argument in the call.

Object removeArgument (int position)
removes from the call a specified argument.

Object getReturnValue()

retrieves the return value, can be used only after the return value has been calculated.

Object setReturnValue(Object newValue)

replaces the return value with a new one, returns the old value, can be used only after the return value has been calculated.

Table 2. A portion of the API provided by mChoM for carrying out introspection and intercession on messages.

Meta-Behavior API

Abstract locus

Object coreMetaBehavior(mChaRMMethodCall msg)

this method embodies the reflective behavior realized by the multi-channel.

Source locus

elaborates the just trapped message on the sender site.

void beforeSenderSideMetaBehavior (mChaRMMethodCall msg)

void afterSenderSideMetaBehavior (mChaRMMethodCall msg)
performs sender side meta-computations on the message, immediately before forwarding it to the abstract locus.

Target loci

elaborates the just received message on the receiver site.

void beforeReceiverSideMetaBehavior (mChaRMMethodCall msg)

void afterReceiverSideMetaBehavior (mChaRMMethodCall msg)
performs receiver side meta-computations on the message, immediately before giving it back to the abstract locus.

Table 3. APIs provided by mChaM for carrying out meta-computation.

4.3 APIs used by Multi-Channels.

We propose a simple API that aims to be sufficient to sup-
port a wide range of multi-channel uses. Our API does not
claim to be exhaustive, we have kept it simple for presenta-
tion purposes. In spite of its simplicity our API is powerful
enough to support sophisticated communication mechanisms
and to show the capabilities of the multi-channel approach.
The prototype implements a more extended API that will be
widened in the near future. Methods are classifiable, accord-
ing to their purpose, into three categories: introspection, in-
tercession, and meta-behavior.

We postpone the description of the classes containing the
methods of the API, which depend on the particular multi-
channel architecture, to section 5 where the multi-channel
structure and its implementation are described.

4.3.1 Introspection and Intercession.

The proposed model is designed for supporting the enhance-
ment of communication semantics, and not for managing the
base-object structure or semantics. For this reason the part
of the API devoted to intercession on multi-channel referents

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

multi—-channel

295

invoke (msg) {
beforeReceiverSideMetaBehavior (msg)

source locus P

beforeSenderSideMetaBehavior (msg)
abstract-locus.coreMetaBehavior (msg)
afterSenderSideMetaBehavior (msg) ;
return msg.getReturnValue();

invoke (msg

afterReceiverSideMetaBehavior (msg)

tInvoke (msg) ;
{ return msg;
}

(target loci)

invoke (msg)

invoke (msg) {

(abstract

locus

beforeReceiverSideMetaBehavior (msg)

Figure 3. Following a method call through the meta-level.

is kept simple and consists of the few methods shown in Ta-
ble 1. Since haphazard intercession might lead to an inconsis-
tent state of involved referents, we constrain the current API
as follows: a multi-channel can only look into the state of its
referents and invoke a method of one of its referents playing
the role of receiver.

The part of the API devoted to carrying out intercession
and introspection on messages dispatched through a multi-
channel is more complete. This part of the API is composed
of the methods in Table 2 and Table 3. These methods repre-
sent the core of the whole mechanism allowing multi-chan-
nels to alter messages that pass through them. The API pro-
vides the meta-programmer methods for looking into the con-
tents of the actual parameters, for modifying their contents,
for piggybacking extra arguments to the method call we are
handling, and so on. Section 6 shows how to use these meth-
ods to implement communication protocols.

4.3.2 Meta-Behavior.

Methods belonging to this category implement the multi-chan-
nel kind and so define how multi-channels must behave. The
meta-programmer must override these methods to build new
kinds of multi-channels.

Methods shown in Table 3 define the meta-computation
that a multi-channel carries out on messages when they tran-
sit through the three loci (see section 3.1). Their arguments
(an instance of class mChaRMMethodCall) represent the ex-
changed message and its components, i.e., the name of the
activated method, the value of the actual arguments of the
method, and its designated receivers.

Methods beforeSenderSideMetaBehavior, before-
ReceiverSideMetaBehavior, afterReceiverSideMe-
taBehavior and afterSenderSideMetaBehavior perform
meta-computations on messages when they are passing through
the source (first and fourth methods) and the target loci (sec-
ond and third methods). They do not return values. Neverthe-
less, they allow the multi-channel to modify the exchanged
message via side-effects performed on their actual arguments.
Their default behavior is to do nothing.

The method coreMetaBehavior coordinates the result
of the multi-channel computations performed on the target
loci and decides how to handle the trapped messages and
where to demand their computation. Its default behavior for-

tInvoke (msg) ;
afterReceiverSideMetaBehavior (msg)
return msg;

wards the messages to the given receivers and returns the last
received value to the caller.

The meta-program is basically defined by the execution
of these five methods. These methods are implicitly activated
by the meta-computation when messages flow through the
meta-level. As depicted in Fig. 3, beforeSenderSideMe-
taBehavior is called when the message is intercepted and
handled at the meta-level in the source locus. The message is
passed to the abstract locus and managed by the coreMeta-
Behavior routine’. When the message gets to a target locus,
it is managed by the beforeReceiverSideMetaBehavior
(it is activated each time the meta-program calls the method
invoke), then it is delegated to the base-level and the return
value is managed by the afterReceiverSideMetaBehav-
ior just before being returned to the abstract locus. Finally,
the return value is again managed by the afterSenderSi-
deMetaBehavior when the abstract locus returns it to the
source locus.

The following example shows how the behavior of a multi-
channel is described: the snippet of code below implements a
multi-channel of kind «verbose». This kind of multi-channel
is designed for tracing a message while it is passing through
the meta-level loci, i.e., it traces when a message leaves the
sender, when it goes through the multi-channel computation,
and when it gets to the designated receivers.

class verboseChannel extends multiChannel {
kind: verbose;
abstract-locus:
public Object coreMetaBehavior (mChaRMMethodCall m) {
System.out.print ("abstract locus: ");
m.printmChaRMMethodCall() ;
return super.corelMetaBehavior (m);

}

source-locus:
public
void beforeSenderSideMetaBehavior (mChaRMMethodCall m) {
System.out.print(
"source locus["+retrieveField("whoAmI")+ \

7 No assumptions are made about the location where the core-
MetaBehavior is performed. Thus, it has to contain only state-
ments whose execution is location-independent. For location-depen-
dent statements the meta-programmer must override beforeSend-
erSideMetaBehavior, afterSenderSideMetaBehavior, be-
foreReceiverSideMetaBehavior or afterReceiverSideMe-
taBehavior routines.

296

GV_mChaRM_MOP
f | mChaRM_MOP

base-level
sources

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

java
packages

| mChaRM

packages

base-level
classes

multi-channel
source

Figure 4. Compiling process.

"]: --> "+m.getMethodName ()+"(");
if (m.hasArgs)
for(int i=0;i<m.actualArguments().length;i++)
System.out.print ((m.actualArguments()) [i]+" ");
System.out.println(")");
3
public
void afterSenderSideMetaBehavior (mChaRMMethodCall m) {
System.out.println(
"source locus["+retrieveField("whoAmI")+ \
"]: <-- "+m.getReturnValue());
¥

target-locus:
public
void beforeReceiveSideMetaBehavior (mChaRMMethodCall m) {
System.out.print(
"target locus["+retrieveField("whoAmI")+ \
"]: --> "+m.getMethodName ()+"(");
if (m.hasArgs())
for(int i=0;i<(m.actualArguments()).length;i++)
System.out.print ((m.actualArguments()) [i]+" ");
System.out.println(").");
3
public
void afterReceiverSideMetaBehavior (mChaRMMethodCall m) {
System.out.println(
"target locus["+retrieveField("whoAmI")+ \
"]: <-- "+m.getReturnValue());

5 mChoRM: Architecture

The multi-channel reification model and the described lan-
guage extensions have been realized by the MChaIVl frame-
work, which is developed in Java. mCholV consists of three
components:

@ a preprocessor dealing with the language extensions,

® aJava package (mnChaRM.multichannel) containing the
skeleton classes needed to develop new multi-channels,
and

® a Java package (mChaRM.mChaRMCollection) collect-
ing multi-channels implementing some sample kinds, e.g.,
«verbose», «validation», «<multi-trig», and so on.

The preprocessor has been realized using Opendava [13].
OpendJava has a compile-time MOP which helps in prototyp-
ing new programming languages. We have written two meta-
objects (mChaRM_MOP and GV_mChaRM_MQOP) which drive the

multi-channel
classes

generated classes

OpendJava compiler (ojc) during the translation of MCholVI
code into pure Java code. The former meta-object expands
the kinds section adapting the generated code to support the
described reflective approach, whereas the latter meta-object
translates multi-channel classes to fit the chosen architecture
requirements. Figure 4 shows how mChdM source code is
compiled into Java bytecode.

Our framework allows programmers to enhance multi-
point communications with new features. Java does not sup-
port multi-point communications, such as broadcast, multi-
cast, or multi-point RMI. Hence, mChaM adopts its own re-
alization of multi-point RMI based on KaRMI [38]. A multi-
point communication can be explicitly started by invoking the
method multiRMI:

Object multiRMI(String methodName, String[]
recsName, Object[] args)

The semantics of multiRMI is very simple. It multicasts a
specified method call to a given set of servers and then gathers
their results and returns the first received value to the caller.

At the moment, mChaRM_MOP adds multiRMI to the base-
level code and also hides the reification/reflection mechanism.
We are already working on decoupling multiRMI from the
MChoM framework to improve the transparency of the re-
flective mechanism (see [12]). We have also kept its imple-
mentation simple because the main purpose of MCNARM is
to render the multi-communication protocol customizable by
the (meta-)programmer, and not to realize an efficient or com-
plete multi-point remote method invocation mechanism for
Java. For simplicity we also use the multiRMI for opening
up the point-to-point RMI. Of course, communications that
do not need to be extended with extra functionality can be
carried out with the traditional communication mechanisms
provided by Java.

The rest of this section describes the architecture chosen
for the multi-channels and how it has been realized. We also
briefly describe Opendava, the developed meta-objects, and
how programs are translated into pure Java.

5.1 Multi-Channel Structure.

To achieve both a good balance among performance, avail-
ability, reliability, and transparency and to comply with the

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

model requirements, we have chosen to design and imple-
ment the multi-channel as a distributed entity, composed of
a central kernel (termed core), if necessary replicated, and as
many stubs as its referents. Each stub is an object associated
with a base-level object running on the same site and in the
same addressing space. Each stub is designed for interfacing
its referent to the multi-channel core, and vice versa. Sender
stubs embody source loci, receiver stubs embody target loci,
and the core encapsulates the functionality of the abstract lo-
cus. A sender stub transparently traps each message directed
to the multi-channel of which it is a part. On the other hand,
receiver stubs actually invoke the method that the multi-chan-
nel is managing. Many stubs may be attached to each base-
level object, one stub for each multi-channel connected to that
object. Stubs also deal with source and target locus meta-
computations and implement the related API methods (see
Table 3).

Both sender and receiver stubs are dynamically attached
to the multi-channel core. Following its characterization (see
section 3.1), the multi-channel knows which of its referents
is playing the role of receiver. During its initialization, the
multi-channel orders its receivers to create a stub that will
be part of the multi-channel. By parsing the kinds section in
the sender, the preprocessor knows which multi-channels the
sender could use during its lifecycle. Thus, clients, once acti-
vated, ask the multi-channel core for a stub to use for hooking
to the multi-channel. To minimize the amount of exchanged
data the core only supplies the name of stub classes to them.
Then senders use such an information and the methods pro-
vided by the Java core reflection library [42] to really create
a stub.

Each stub can be viewed as an extension of its own ref-
erent. It communicates with its referent via a local method
call thereby avoiding problems of communication reliability,
and network partitioning. Sending and receiving actions ap-
pear as if they are moved to the meta-level where they are
managed by using the multi-channel semantics. In this way,
the system’s functional behavior may be held constant while
varying the underlying communication algorithms.

The multi-channel core does not reside in a specific lo-
cation with respect to its referents. Its computation is inde-
pendent of its location and usually depends only on the im-
plemented behavior (for example, if it implements a fault tol-
erant behavior then it will either be located on a failure-re-
sistant machine or replicated on several machines). The core
communicates with stubs via remote method calls. Commu-
nications among multi-channel components are considered as
intra-object communications and are performed by the frame-
work transparently to the programmer.

This architecture guarantees a complete encapsulation of
each aspect and locus involved by the communication. Thus,
every communication protocol can be replaced by a new one
encoded into a multi-channel. Message communications are
managed as follows®:

@ the sender stub of the multi-channel, whose kind matches
the one specified in the call, traps the message;

8 This algorithm fills the gaps left in Fig. 3 and in the descrip-
tion given in the previous section explaining how the multi-channel
hooks to the base-level.

297

A the stub performs the beforeSenderSideMetaBehav-
ior;
® it calls the coreMetaBehavior into the abstract locus
(this call is a remote call);
® the core performs its computation;
@ the core calls the invoke into the target loci (optional
computation);
® the corresponding receiver stubs drive the execution
of the message and return the result to the core;
® the core performs some computations on the result and
returns it to the sender stub;
® the stub performs the afterSenderSideMetaBehavior
on the return message;
@ it returns the result to its referent, as the required call
should have done.

Note that the optional computations in the target loci (sub-
points @ and ® of point @ in the algorithm above) involve
both the beforeReceiverSideMetaBehavior, afterRe-
ceiverSideMetaBehavior, and the execution of the trapped
message by the referents of the target loci.

We mitigate the overhead due to the extra remote method
invocation between the source and abstract loci (point ® in
the algorithm above), without sacrificing the flexibility of the
approach, by entrusting all the remote communications per-
formed by the multi-channel to the efficient RMI mechanism
provided by KaRMI [38]. Moreover, for the sake of efficiency
we have also provided a special kind of multi-channels, called
«compact», which merges the source and abstract locus in a
single component, lying in the same addressing space of the
sender, without compromising the functionality of the source
and abstract loci. Such an architecture slightly contrasts with
the multi-channel characterization described in section 3.1
fixing the sender for each multi-channel, but it provides a very
efficient multi-channel (see section 7.3) that can be used when
the multi-channel will always be used by the same sender.

5.2 Supporting Framework.

Our framework provides the package mChaRM.multichan-
nel containing the classes: senderStub, receiverStub and
channelCore. These classes represent the skeleton of a multi-
channel and must be used by the multi-programmer to derive
new stubs and core classes and therefore new kinds of multi-
channels. These classes provide the basic services common
to every locus. In the rest of this subsection we examine their
implementation.

5.2.1 Stubs.

Stubs represent the basic components of a multi-channel. Both
sender and receiver stubs inherit from a common class, called
stub, which keeps data about the multi-channel identity and
methods for handling these data. The abstract locus, i.e., the
multi-channel core, can perform both introspection and inter-
cession on multi-channel referents by delegating introspec-
tion and intercession to the stubs implementing source and
target loci. Hence, each kind of stub must play the server role.
Sender stubs’ main behavior consists of passing to the multi-
channel core the modified message.

298

Structure and methods, defined for each kind of stub, chan-
ge according to their desired functionality. The main job per-
formed by a sender stub consists of forwarding the (modified)
call to the multi-channel core. The caller implicitly (locally)
invokes the stubBehavior method of the multi-channel it
would like to use. stubBehavior performs a call to before-
SenderSideMetaBehavior and then it passes the modified
information about the original call to its multi-channel core.
The method afterSenderSideMetaBehavior is activated
on the (modified) message, when the core returns the control
to the source locus.

final public Object stubBehavior(mChaRMMethodCall msg) {
beforeSenderSideMetaBehavior(msg); // source locus
meta-computation
// dispatching the message to the abstract locus
DObject res = WholsMyCore().coreMetaBehavior(msg);
msg.setReturnValue (res) ;
afterSenderSideMetaBehavior (msg); // source locus
meta-computation
return msg.getReturnValue();

}

stubBehavior, beforeSenderSideMetaBehavior and af-
terSenderSideMetaBehavior can not be directly invoked
by the meta-program. Both SenderSideMetaBehaviors can
be overridden in classes derived from senderStub to build
new kinds of multi-channels.

The main service provided by each receiver stub is the
method invoke. Its behavior consists of delegating the mes-
sage filtered by the multi-channel to the base-level. The in-
voke, before delegating the message for execution, invokes
the beforeReceiverSideMetaBehavior, and immediately
after it filters the message (containing also its result) invok-
ing the afterReceiverSideMetaBehavior. The modified
message is really delegated to the base-level using the tIn-
voke method.

final public Object invoke(mChaRMMethodCall msg) {
beforeReceiverSideMetaBehavior (msg); // target locus
meta-computation
Object res = tInvoke(msg);
msg.setReturnValue (res) ;
afterReceiverSideMetaBehavior(msg); // target locus
meta-computation
return msg.getReturnValue();

}

The private method tInvoke applies the message using Java
core reflection library [42] features.

5.2.2 Core.

The multi-channel core (described by the class channel-
Core) must be bound to the stubs of its referents when it
begins its execution. To do that, its constructor requires all
related data, i.e., its kind, the name of its known referents,
and the class name of its stubs. The constructor binds the just
created instance with the stubs of the given referents, and ini-
tializes the multi-channel structures.

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

New kinds of multi-channels are developed by extend-
ing the class channelCore. As explained, the behavior of
the multi-channel is determined by the method coreMetaBe-
havior. Every new kind of multi-channel will override this
method. The default behavior of coreMetaBehavior con-
sists of forwarding the trapped message to the specified re-
ceiver stubs for its execution, and of dispatching the result of
the computation of the first receiver back to the callers.

public Object coreMetaBehavior (mChaRMMethodCall msg) {
Object[] result = new Object[(msg.receivers()).length];
// dispatching the message to the target loci
for(int i=0; i<(msg.receivers()).length; i++)
result[i] = (receiverStub((msg.receivers())[il)).invoke(msg);
return result[0];

}

«normal» is the default kind provided by our framework. The
behavior of a multi-channel of this kind simply consists of
realizing a context switch between base- and meta-level and
vice versa, and of delivering the trapped message, without
alterations, to the given receivers. It represents a good starting
point for deriving new communication behaviors.

5.3 mChalVl Preprocessor.

Translation of MCNORM code to pure Java code is carried
out through compile-time reflection. This is implemented by
two meta-objects: mChaRM_M0OP, and GV_mChaRM_MOP, which
drive the OpendJava compiler (ojc) during the translation of
MChaM code into pure Java code.

5.3.1 Opendava.

Opendava [13] is a compile-time MOP for Java. It can be
seen as an advanced macro processor that performs a source-
to-source translation of a set of classes written in an enriched
version of Java into a set of classes written in standard Java.

Translations to be applied to a base class are described
in a meta-class associated, via the instantiates clause with
the base class. The meta-class is written in standard Java by
using a class library that extends the Java reflection API [42]
with classes that reify language constructs.

Macro expansion is managed by meta-objects correspond-
ing to each class (type). This translation is said to be type-
driven. Callee-side translation of class declarations is driven
by the translateDefinition method of the associated me-
ta-objects. As a result, writing a translation is straightforward
because of the object-oriented design of the library.

5.3.2 Meta-Object to Manage the Base-Level.

Opendava, through the meta-object mChaRM_MOP, manages
the extensions to the base-level (see section 4.1). This meta-
object takes care of expanding the kinds clause found in senders
and of adding into both senders and receivers all the necessary
code to support the approach (multiRMI, binds to the stubs,
and so on).

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

mChaRM_MOP knows that it is parsing a sender class when
it detects the keyword kinds. In that case, mChaRM_MOP ren-
ders available to the instances of such a class the mapping ex-
pressed by the kinds clause. This is done, at senders’ creation,
by filling a hashtable, indexed on messages and their poten-
tial receivers, with the kind of the multi-channels that have to
be used for managing such messages. Data stored into such a
hashtable are used by the multiRMI method for intercepting
and passing the message toward the intended multi-channel.

mChaRM_MOP also adds the multiRMI method to each class
it detects to be a sender class. The method multiRMI deliv-
ers a specified message to the designated receivers. It verifies
in the hashtable if a multi-channel has been associated with
such a message. If so, it asks such a multi-channel to deliver
the message by using the related stub. Otherwise, it directly
delivers the message to the given receivers.

Both to sender and receiver classes, the mChaRM_MOP adds
the method attachingStub. This method binds a receiver
stub to the current object during the multi-channel bootstrap.

5.3.3 Meta-Object to Manage the Meta-Level.

As explained in section 4.2, each multi-channel is represented
by a single class, rather than multiple classes. However, a
multi-channel is effectively composed of several objects (see
section 5.1). The meta-object GV_mChaRM_M0OP drives decom-
position of a multi-channel class into the classes describing
its components. Note that this is transparent to the meta-pro-
grammer.

The meta-object GV_mChaRM_MOP creates three classes and
fills each of them with attributes and methods related to the
corresponding locus being described. This job is simplified by
the presence of the qualifiers abstract-locus:, source-locus:,
and target-locus:. They introduce all data (i.e., methods, at-
tributes, and so on) related to the multi-channel components.
Besides, they uniquely identify the membership of each meth-
od and attribute. In fact, each method or attribute under the
aegis of one of these qualifiers belongs to the correspond-
ing locus (e.g., methods under the aegis of target-locus: be-
long to the target locus, hence to the class describing receiver
stubs).

The meta-object GV_mChaRM_MOP implicitly adds to the
newly created classes the code to remotely interconnect the
components of the multi-channel. It also deals with locus ref-
erences. Each access that the meta-programmer considers as
a local access to a method or an attribute of another locus is
transparently transformed into a remote call by the meta-ob-
ject. In this way, the global view property is achieved.

A restricted inheritance relation among multi-channels is
the only limitation due to the fact that we code multi-channels
as a whole and then we split them in separate and distributed
components. In fact, we cannot decide from which class a
component class has to inherit. All the classes inherit from the
same group of classes, i.e., when a multi-channel class inher-
its from another multi-channel class, the classes representing
its components must inherit respectively from the classes of
the components of the parent multi-channel. We are studying
how to relax this constraint about inheritance among multi-
channels.

299

6 Multi-Channels at Work

Our approach aims to experiment with adding complex com-
munication behaviors transparently to the application. Data
compression, efficient data marshaling and unmarshaling, en-
crypted communications, future-based remote method invo-
cation, message checkpointing, and load balancing, are exam-
ples of nonfunctional requirements that can be managed by
multi-channels. At the moment, we have realized a few multi-
channel kinds: «verbose», «validation», «<historical-
validation», «RMP». All are distributed with the mMChaRVI
framework.

This section describes two applications of the multi-chan-
nel reification approach. Both examples show snippets of code
written using the API and the syntax described earlier. The
first example shows how to build a multi-channel and how
the classes describing multi-channels’ referents look like. The
second example is a little more complex and in this simplified
and paper-tailored form tries to show a wide range of features
of MChaM: the use of locus representatives, message ma-
nipulation, locus intercession and so on.

This section does not provide an exhaustive description.
It only tries to explain some details of the multi-channel reifi-
cation approach through simple examples. More detailed and
complex examples can be found either in [11] or in the frame-
work distribution.

6.1 Authorization Policies.

A potential communication extension consists of checking if
a message can or cannot be delivered to a receiver in agree-
ment with a given authorization policy. Each message can be
considered as a service request forwarded from the sender
to a given receiver. In this case, a multi-channel established
between two objects plays the role of judge, verifying if the
sender has the permission for requesting such a service. As
stated in [4] associating the validation phase to the communi-
cation instead of the receiver hinders malicious attacks. The
code reprises the ATM example presented in [4], with cus-
tomers and ATMs. In this example customers can deposit in
and withdraw from ATMs. Basically a multi-channel is es-
tablished between a customer and an ATM that verifies that
only the owner can withdraw from his account. The class ATM
simply defines methods withdraw and deposit.

public class ATM instantiates mChaRM_MOP {
public void deposit(String id, String accNum, int sum) {
// code for depositing the «sum» on the «id»’s account.
+
public void withdraw(String id, String accNum, int sum) {
// code for withdrawing the «¢sum» from the «id»’s account.
}
}

The class customer is more interesting than the class ATM. It
shows how it is possible to use the kind mechanism to monitor
only a subset of all the provided services.

300

public class customer instantiates mChaRM_MOP
kinds
kind validation with ATM; to withdraw {

public static void main(Stringl[] args) {
customer ¢ = new client("Walter");
c.multiRMI("deposit", new String[]{"ATM:"},
new Object[]{"Walter", "#1237", new Integer(1000)});
c.multiRMI("withdraw", new String[]{"ATM;"},
new Object[1{"Walter", "#1237", new Integer(2000)});

Our example requires that anyone can make a deposit, whereas
a withdrawal can be performed only by the owner of the ac-
count. To ensure such a behavior, a multi-channel validat-
ing only the withdrawal messages is enough. Hence, a multi-
channel of kind «validation» is associated with the execu-
tion of the method withdraw (see above for the customer
definition).

class validationChannel extends multiChannel {
kind: validation;

public validationChannel(String permissionFileName) {
// initialize the right table from permissionFileName

}

abstract-locus:
private Hashtable right;
public Object coreMetaBehavior (mChaRMMethodCall msg) {
bool permission =
right.get (key(client, receiversName, methodName)) ;
if (!permission) throw IllegallRequestForAService;
else return super.coreMetaBehavior(msg);

}

Most of the work is performed in the abstract locus. Valida-
tion is an action independent of where it is performed. Thus
we have only redefined the coreMetaBehavior to carry out
the validation phase. In [3, 4], we present examples of multi-
channels dealing with more complex authentication policies
than a simple access matrix, e.g., a policy based on the history
of communications.

6.2 Reliable Multicast Protocol.

Our second example outlines a multi-channel realizing the
reliable multicast protocol by Todd Montgomery [36].
Reliable Multicast Protocol (RMP) is a reliable multicast
transport protocol offering a variety of services of different
quality. Each sender can sequence its packets separately, or
RMP can sequence all the packets sent to a group. RMP also
offers a feature called total ordering, which means that RMP
ensures that every member of the group has received the pack-
ets before passing them to the application. RMP does not re-
quire a special multicast server or group manager. It is based
on a token rotating scheme and on a mix of negative and posi-
tive acknowledgements. The token rotates in the whole recip-
ient group and the token owner acknowledges every packet

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

it has received while it holds the token. The tokens and ac-
knowledgements are usually sent as multicasts. When other
group members discover that they are missing some pack-
ets, they can send negative acknowledgements to the original
sender.

We have realized a multi-channel, whose kind is «<RMP»,
that implements the RMP algorithm by using remote method
invocation rather than message passing as in the original al-
gorithm. This implementation does not claim to have all the
same properties of the original RMP (we concentrate our ef-
forts on the total ordering property) but is sufficient to prove
that MChaM can be used to modify the underlying commu-
nication protocol.

By using a multi-channel, the RMP algorithm is scattered
among the multi-channel components. There are two types
of components involved in the RMP algorithm: the message
sender and its receivers. Target loci play the role of receivers,
acknowledging to each other the receipt of a message, and
waiting for the acknowledgements from each of the other tar-
get loci before delivering the message to the receiver. When a
locus receives an acknowledgement for a message not yet re-
ceived, it asks the abstract locus to send the missing message
again. The target section that implements the RMP protocol
looks as follows:

// Target locus mimics the role of the servers in the RMP algorithm.

target-locus:
private Hashtable acks = new Hashtable();

// It checks if the message has really arrived
// or it is only an ack. If it has not arrived
// it sends a negative ack to the abstract
// locus.
public void pACK(int TS) {
if (acks.get(TS)==null) abstract-locus.nACK(TS, whoAmI);
else acks.put(TS, new Integer(acks.get(TS).intValue()+1));
}

// It %s called on an ack receipt. It waits acks from the
other loci.
private void ackTheMsg(int TS) {
for(int i=1; i<howManyReceivers(); i++)
target-loci (i) .pACK(TS);
}

// Notifies other target loci upon message receipt.
public void beforeReceiverSideMetaBehavior (
mChaRMMethodCall msg) {
int TS = msg.removeArgument (0).intValue();
acks.put (TS, new Integer(1));
ackTheMsg(TS) ;
while (acks.get (TS).intValue () <howManyReceivers());

The abstract locus plays the role of sender, replacing the real
one. It triggers the message propagation and when a target
locus loses a message it sends the missing message again, but
only to the interested locus. The abstract locus section looks
like®:

® We do not explicitly discuss that, because irrelevant for the ex-
planation, but in order to work as expected, multi-channels imple-
menting the reliable multicast protocol have to be multi-threaded.

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

// Abstract locus plays the role of the client in the RMP
algorithm.

abstract-locus:
private int localTS = O; //local message time stamp
private Hashtable messages = new Hashtable();

// If called means that a target locus lost a message.
public void nACK(int TS, String name) {

mChaRMMethodCall msg = messages.get (TS);

target-locus (get (name)) . invoke (msg.name () ,msg.args()) ;

+

// It piggybacks the message with the
// timestamp and forwards it to the target
// loct.

public Object coreMetaBehavior (mChaRMMethodCall msg) {
msg.insertArgument (O, new Integer(++localTS));
messages.put (localTS, msg);
return super.coreMetaBehavior (msg) ;

i

We have implemented a tight collaboration between abstract
and target loci synchronizing the final message execution in a
simple way. This example shows several aspects of MChdM,
e.g., how to manipulate messages (each message is piggy-
backed with a timestamp in order to distinguish them), how
the multi-channel components cooperate, how to reflect on in-
going messages, and so on. This example characterizes many
problems tied to reflect on ingoing messages, and that are
hard to handle by the traditional reflective approaches.

7 Multi-Channel Perspectives

Given that the multi-channel approach maintains all the typi-
cal software development advantages (i.e., separation of con-
cerns, code reuse improvement, transparent extendibility, and
so on) that other reflective approaches offer, we focus on pur-
poses, benefits, and drawbacks peculiar to the multi-channel
approach. In particular, we focus on the gaps left open by
other reflective middleware approaches but filled by our ap-
proach.

7.1 Multi-Channel Purposes.

The multi-channel reification model is especially designed for
modeling and reifying communications. The design principle
is to encapsulate and abstract communication mechanisms,
and to permit modular enhancement of the semantics of com-
munication. A multi-channel can easily extend the commu-
nication semantics to include new features such as tracing
mechanisms, reliability control, fault tolerant behavior and so
on. This approach also provides a framework for testing and
simulating novel communication protocols.

Once communication mechanisms have been encapsulated
into multi-channels, the meta-programmer is able to focus on
enriching or replacing the behavior of the encapsulated mech-
anisms, without considering implementation details. The meta-
programmer need not be concerned with issues such as: how
to pass information from one multi-channel component to an-
other, when and how to serialize and synchronize ingoing

301

messages, and so on. In this way, the development of dis-
tributed systems is simplified, and novel behaviors can be at-
tained by replacing either the current multi-channel or some
of its components.

7.2 Multi-Channel Properties.

Basic properties such as separation of concerns and transpar-
ent extendibility are common to every reflective approach. In
addition, our approach is characterized by a global view of the
communication channel, a finer granularity of reflection and
communication channels modeled by open/closed systems.

Global View. As advocated in [18] and stressed in section 2.2,
object-oriented methodologies (including object-oriented re-
flective methodologies), are inadequate for managing distrib-
uted communications because they do not maintain a global
view of the state of communications.

The multi-channel reification model provides an abstrac-
tion that moves the underlying communication mechanism
into the meta-level. Implementation details of the communi-
cation mechanism are not directly exposed to the meta-pro-
grammer, but its behavior can be easily altered by managing
the multi-channel behavior (see section 6). Multi-channels
encapsulate the communication mechanism and reify all the
aspects of the whole communication (i.e., sender, receivers
and so on) into a single logical entity, i.e., the multi-chan-
nel itself. Multi-channels directly access both state and oper-
ations of each communicating object and the exchanged mes-
sages without coordinating their actions with other meta-enti-
ties. Each meta-program, using specific methods provided by
an API, imbues messages circulating on the communication
channel (trapped by the corresponding multi-channel) with
extra behaviors. Each multi-channel owns all data related to
the reified communication channel and to messages circulat-
ing through it. These data are directly at the meta-program’s
disposal. That is, the multi-channel approach maintains, at
any time, a global view of communications.

Communications As Open/Closed Systems. The proposed ap-
proach moves the communication mechanism into the meta-
level. Each object involved in a reified communication is re-
ally composed of two parts. One runs at the base-level and is
developed by the application programmer. The second part is
the reification of the first, runs at the meta-level — the imple-
mentation of the source and target loci — and is developed by
the meta-programmer. The meta-level part abstracts all mech-
anisms for managing messages either sent by or received from
any other object, and exposes such mechanisms to manipu-
lation and redefinition by the meta-program. Multi-channels
gather data related to messages filtered by them and mon-
itor each communication phase. Hence, each multi-channel
transforms the logical channel it reifies and messages passed
through it in a open/closed system with few if any interactions
with base-level entities or with other meta-entities external
to the multi-channel itself. Such a complete separation im-
proves reusability of novel communication features because

302

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

l [single host l ratio [two hosts [ratio [three hosts ‘
Java RMI 0.86 msec 1.15 msec
KaRMI 0.77 msec 0.89 0.68 msec 0.59
mChdM (KaRMI) 1.85msec | 2.15(2.40) | 1.59 msec | 1.38 (2.33) | 1.37 msec
MChoM (KaRMI+«compact») | 0.93 msec | 1.08 (1.20) | 0.79 msec | 0.69 (1.16)

Table 4. Evaluation of the MChdM performance.

the code implementing the novel feature is part of the multi-
channel code and does not need any other code. The separa-
tion of communication-related features from the rest of the
functional code also simplifies experimenting, testing, and
maintaining (novel) features related to communication chan-
nels. To change the semantics of a communication channel,
i.e., to update the multi-channel associated with a communi-
cation channel, is enough for testing novel features. Multi-
channels can be considered open systems because they are
structured in an inheritance hierarchy and therefore each of
its components can be easily extended and refined. They are
also closed systems because they can be used as-is without
interacting with external entities. This feature allows increas-
ing abstraction and encapsulation of communication, still en-
forcing a global view of the communication state. The well-
known composition problem [37]'° can be limited using multi-
channels, because each multi-channel is a closed system and
encapsulates the whole communication. In addition, the kind
feature permits differentiation of meta-behaviors from behav-
iors’ composition. Thus, it is likely that the meta-programmer
needs to combine multiple meta-entities.

Granularity. We define granularity of reflection [10] as the
smallest aspect (e.g., objects, methods, method calls and so
on) of the base-system that can be reified by two different
meta-entities. The multi-channel reification approach allows
the meta-program to use a different multi-channel to reify
each communication channel used in the base-level. Multi-
channels span across several objects, reifying the communi-
cation channel they use, and filtering only specific message
patterns. Multi-channels have a twofold granularity. From the
point of view of a single object the granularity is at message
level because different messages sent to or from the same ob-
ject can be reified by different multi-channels. On the other
hand, by considering all the objects involved in a communi-
cation, the granularity is at the communication channel level.
This is because two multi-channels with a different kind can
be established among the same group of objects, applying
two different behaviors to messages using them. In general,
a finer granularity improves the flexibility of the model. A
finer granularity allows a more detailed control of the work
of the base-level system, but at the cost of meta-entity pro-
liferation: to observe the base-level system deeply, we need a
greater number of observers (i.e., meta-entities).

19 The composition problem is defined as the behavior conflict we
have to face when we are trying to compose two or more meta-ob-
jects. Two meta-objects can work on the same information or can
offer overlapped services with obvious synchronization problems.

7.3 Performance Evaluation.

Performance is a potential problem of the multi-channel reifi-
cation approach, or of any reflective approach for realizing
middleware. Each reflective mechanism is realized by trap-
ping a call and hijacking it towards the meta-level. Such mech-
anisms introduce additional computation to each communica-
tion. Our approach is no different in that respect. However, it
traps only those calls specified by the kinds clause, thereby
reducing the performance impact. Moreover, transitions be-
tween base- and meta-level are dealt with by local method
calls. Despite this, performance is not as good as expected
because the adopted multi-channel architecture replaces the
single explicit remote method invocation with two implicit
remote method invocations (one from the sender stub to the
core and one from the core to the receiver stub). To limit the
performance impact, we have followed two strategies:

¢ adopting KaRMI [38] for dispatching messages among
multi-channel components instead of standard Java RMI.
KaRMI has proved itself to be more efficient than stan-
dard RMI. Every mChdM application takes advantage
of this strategy;

e providing an alternative multi-channel architecture, called
compact, which merges the source with the abstract locus.
Note that its use sacrifices some of the flexibility of the
approach (see section 5.1).

We have quantified the overhead due to our architecture with
respect to standard Java RMI. Our experiments are related
to point-to-point communications. Experiments with multi-
point communications are not germane because both standard
Java RMI and KaRMI do not directly support this model
of communications. The aim of our experiments consists of
measuring how long MChoM (both standard and compact
architectures), Java RMI and KaRMI take to perform a re-
mote method invocation. Please note that our experiments
were also done using KaRMI to highlight the benefits that
MChaIM has achieved by adopting KaRMI. All the experi-
ments were performed on a network composed of AMD 1800+
PC’s with 512Mb RAM running Linux (kernel version 2.4.8),
jdk vi.4 and KaRMI v1.064.

Message Reification Overhead. The scenario of our exper-
iments is composed of a receiver that returns a dummy mes-
sage of small fixed size (to limit the overhead of marshaling
and unmarshaling the message), and a sender that repeatedly
requests that service. The MChdM implementation involves
two multi-channels of kind «normal» and «compact», which
only trap the message and deliver it to the designated receiver
without performing meta-computations.

Table 4 summarizes the results of our experiments. The
second, fourth, and sixth columns represent how long the method

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

call takes by using a network composed of one, two, or three
(only with mChddM) computers. The third and fifth columns
show the performance ratios between MChoMl or KaRMI
and Java RMI, the performance ratios between mMChoMl and
KaRMI is reported enclosed in parenthesis. As expected, the
mMChaM s slightly slower than the Java RMI framework,
but its compact version, due to the use of KaRMI (cf. the
second row of Table 4), improves the performances of a re-
mote method invocation with respect to the standard Java
RMI framework.

We are improving MChoM’s performance by develop-
ing our efficient group communication [12], parallelizing the
effective dispatching of messages to the receivers, and reengi-
neering the multi-channel architecture by using stream sock-
ets instead of RMIs. Note that the focus of our work is on
flexibility and reusability rather than efficiency.

8 Related Work

At the moment, several reflective middleware projects are un-
der development, i.e., projects that try to mix reflection and
distributed middleware. There are many approaches and as
a result it is almost impossible to consider them all. How-
ever, most efforts focus on improving middleware adaptabil-
ity, flexibility, and separation of concerns. GARF, and CodA

are milestones in the reflective middleware research area, whereas

systems such as: OpenORB, OpenCORBA, and Dynamic-
TAO represent new approaches.

GARF [20,21] lies between the system layer (which sup-
plies the distribution mechanisms) and the application layer.
Its basic purpose consists in wrapping the distribution primi-
tives and supplying a uniform and abstract interface to them.
Hence, GARF does not implement the distribution environ-
ment but it masks each access to it and offers the program-
mer a tool for changing and enriching the basic behavior. The
GARF model is derived from the meta-object model [32]
with some adaptations for communications management. It
links a meta-object, called encapsulator, to the referents. Two
encapsulators communicate via another meta-object, called
mailer. This architecture provides safe communication cus-
tomizability via a built-in library containing several mailers
and encapsulators. As the authors state, mailers can only con-
trol out-going messages, thus an object has to receive the mes-
sage in order to decide whether to take care of it or not. Ad-
ditionally, GARF mimics each communication in the meta-
level, decoupling the communication-related code from the
application code. Unfortunately, each communication is rei-
fied by three separated meta-objects: a mailer and two encap-
sulators. The mailer carries out computations on the trapped
message, while the encapsulators carry out the actual inter-
process communication. Such a decomposition does not per-
mit any of them to have a global view of the whole commu-
nication.

CodA [34,35] provides a distributed framework from scratch.

Distribution is entrusted to the meta-level and each object is
reified by seven meta-objects. Each meta-object manages a
specific distribution aspect (e.g., message queue, sending, and

303

so on). This meta-level factorization simplifies the definition
of new behaviors for specific distribution aspects. Unfortu-
nately, it also jeopardizes the mechanism’s flexibility by se-
lecting which aspects might be managed. Also, it might com-
plicate the meta-program code, which is scattered among sev-
eral meta-objects and might render the composition and coor-
dination of the behavior of so many meta-objects error-prone.
Meta-objects reify and reflect on how an object has to man-
age a message, and not on the specific semantics of message
management and related aspects. Hence, the CodA frame-
work lacks a global view, although the author suggests it is
achieved by communications and cooperation among meta-
entities. However, a simple mechanism to vary the applied
meta-behavior according to the single exchanged message is
not provided.

OpenCORBA [31] implements the CORBA API in Neo-
Classtalk. It reifies various properties of CORBA’s brokers
through explicit meta-classes, allowing customization of some
internal characteristics of the CORBA ORB. Meta-classes
permit the modification and reconfiguration of the ORB mech-
anisms. OpenCORBA is a reflective ORB, which allows the
programmer to dynamically adapt the behavior of the broker.
Two basic aspects of the CORBA software bus have been
reified: the remote invocation mechanism via a proxy, and the
IDL type checking on the server class. The OpenCORBA
IDL compiler generates a proxy class on the client side and a
template class on the server side. The proxy class is associ-
ated with the meta-class ProxyRemote implementing the re-
mote invocation mechanisms; the template class is associated
with the meta-class TypeChecking which implements the
IDL type checking on the server. As defined by the CORBA
specification [39], both the remote invocation mechanism and
type checking are completely independent of the functionali-
ties provided by the server class. Therefore, they can be sep-
arated from the base code and constituted as a class property
that is implemented by meta-classes (respectively ProxyRe-
mote, and TypeChecking). The dynamic adaptability both
of the invocation mechanisms, and of the type checking in
OpenCORBA is achieved by extending default meta-classes
ProxyRemote, and TypeChecking. Adaptability is however
limited to only two communication aspects. The global view
concept is not provided and several communication aspects
(such as brokers, name service, and so on) are not accessible
to (and can not be manipulated by) the meta-program, but it
should be simple to extend the OpenCORBA system in or-
der to open up such aspects.

DynamicTAO [29, 30] extends the TAO [40] system pro-
viding a CORBA compliant Reflective ORB. It allows in-
spection and reconfiguration of its internal engine. It achieves
that by exporting an interface for:

O transferring components across the distributed system,

® loading and unloading modules into the ORB run-time,
and

® inspecting and modifying the ORB configuration state.

Reification in DynamicTAQ is achieved through a collection
of entities known as component configurators. A component
configurator holds the dependencies between a certain com-
ponent and other system components. Each process running

304

the DynamicTAO ORB contains a component configurator
instance called DomainConfigurator, which maintains ref-
erences to instances of the ORB and to servants running in
that process. Each instance of the ORB contains a customized
component configurator called TAOConfigurator.

TAOConfigurator contains hooks to which implementa-
tions of DynamicTAQ strategies (e.g., for security, schedul-
ing and so on) are attached. Hooks work as mounting points
where specific strategy implementations are made available to
the ORB. This architecture permits consistent strategy recon-
figuration. Component implementations are shipped as dy-
namically loadable libraries linked to the ORB process at
run-time. They are organized in categories representing dif-
ferent aspects of the ORB internal engine or different types of
servant components. The Dynamic Service Configura-
tor contains the DomainConfigurator that supplies com-
mon operations for the dynamic configuration of components
at run-time. It delegates some of its functions to specific com-
ponent configurators.

The DynamicTAQ approach is quite different from that
adopted by other reflective middleware. This approach is very
low-level and quite powerful in order to change the strate-
gies the system adopts. Unfortunately, it is neither simple nor
powerful when programmers want to extend the communica-
tion behavior with features not directly related to strategies
already involved in communication, e.g., to introduce a mes-
sage checkpointing policy from scratch.

OpenORB [14, 16] adopts a component-based model of
computation. Its component model supports components with
interfaces, interfaces for continuous media, and the creation
of explicit bindings between compatible interfaces. The meta-
level exposes the actual implementation. This approach makes
it possible to access the meta-level of a meta-level. It supports
per-interface meta-spaces. Several meta-spaces govern all the
aspects of the underlying system. The content of a compo-
nent is represented by two distinct meta-models, namely the
encapsulation and the composition meta-models. The activi-
ties (message arrival, enqueueing, and so on) of the underly-
ing system are represented by the environmental meta-model.
This approach also provides a fine level of control over the
support provided by the middleware platform.

OpenORB provides an interesting and powerful approach
to adaptation and to the development of reflective middle-
ware. Meta-spaces provide a flexible mechanism to reify and
to reflect on any system aspect, but it is component-oriented
and it behaves similarly to object-oriented models in that it
neglects the handling of communications as a whole. Notwith-
standing this fact, their approach provides fine-grained reflec-
tion which permits varying the behavior of a single compo-
nent. Explicit bindings reify communication channels, but not
the involved components. They have a low-level approach,
handling exchanged messages as a stream instead of higher-
level abstractions. So, it is easy to filter or to handle them as
a whole, but is difficult to manage them at a higher level, e.g.,
piggybacking information.

Aspect-Oriented Programming. Aspect-oriented program-
ming (AOP) [28] is an alternative approach to implementing
a separation of concerns. This approach provides the separa-
tion between cross-cutting concerns during development of a

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

system (in our case, cross-cutting concerns are about commu-
nications). The program elements representing the cross-cut-
ting concerns are woven by the compilation process so that the
separate elements do not remain separate at run-time. AOP as
well as compile-time reflection (that is, reflective changes to
the code carried out during compilation, e.g., Opendava per-
forms compile-time reflection) is more efficient than run-time
reflection (that is, changes to the program carried out during
execution, e.g., Java core reflection and MChoRM perform
changes at run-time), but it loses this advantage when meta-
objects’ behavior depends on dynamic information as mes-
sage content. Another point about AOP is that it encapsulates
code that implements cross-cutting concerns in a single mod-
ule and at compile-time the code is woven into the application
code. In contrast, although MChaM also encapsulates cross-
cutting concerns in a single module, we maintain a separation
at all times between the cross-cutting code and the applica-
tion code. One advantage of our approach is that it allows for
dynamic adjustment of communication semantics, unlike an
AOP approach.

Composition Filters [2] has been a forerunner of the
AOP methodology. Aksit et al. provide an actor-based frame-
work [1] that associates an actor description with a set of fil-
ters for ingoing and outgoing messages. These filters man-
age the exchanged messages (altering the overall behavior of
the system), but they do not offer an abstraction mechanism
that permits getting a global view of communication. Further-
more, they neither allow manipulation of the actors’ state nor
offer a mechanism to keep a history of message manipula-
tions.

9 Conclusions and Future Work

The role of reflection in monitoring object communication in
complex distributed applications is a crucial issue. We have
presented a reflective model, called multi-channel reification,
that abstracts and encapsulates inter-object communications
and enables the meta-programmer to enrich and/or replace
the predefined communication semantics. The approach pro-
vides a way to reify the abstract concept of communications
into a logical entity, i.e., communication channels become
first-class citizens. It allows programmers to access commu-
nication details without writing the code necessary to realize
them. The multi-channel approach fills most of the gaps of the
traditional reflective approaches. Its main achievement con-
sists of improving the global view of communication without
compromising encapsulation. The approach also offers a finer
reification/reflection granularity than previous approaches, and
a simplified approach to the development of communication-
oriented software. By allowing an object to hook itself to sev-
eral multi-channels, the multi-channel reification approach a-
chieves a finer granularity than with an object-based approach.
However, we also have to deal with consistency problems.
In fact, some of the multi-channels hooked to a base-object
could decide to carry out intercession on the state of their ref-
erent, and without a careful synchronization of the accesses
the state might become inconsistent or incorrect (due to the
well known race-condition problem). For this reason, we have
limited multi-channel intercession on its referents. In the fu-
ture we are going to introduce a mechanism to implicitly lock

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

and unlock the state of the multi-channel referents and to im-
prove the intercession mechanism of the approach.

The proposed model is realized by a framework, called
MCholRVI, written in Java by means of the language exten-
sion capabilities of the Opendava [13] reflective tool. The
usability of the approach is shown by prototyping some non-
trivial applications [3,4]. A simple API for supporting the
development of meta-programs has also been provided. The

MCholM system can be downloaded from http://www.disi.

unige.it/person/CazzolaW/mChaRM_webpage.html.

In addition to API improvements and bug fixes, we are
analyzing how to improve the performance of our system. As
shown in section 7.3, mChaM is very flexible and facilitates
addition of extra features to communications, but its weak
point is performance. Obviously, we have to pay for flexibil-
ity, but we are sure that performance of the current imple-
mentation can be improved by using Java proxies and apply-
ing code localization. Other future work consists of designing
a composition relation among multi-channel loci in order to
create new kinds of multi-channels by means of existing lo-
cus composition (for example, by composing a future-based
source locus with a reliable multicast protocol). This would
further enhance the reusability and readability of the meta-
level code. Finally, we are planning to extend mMChdM with
a native support for futures [22,26] in order to capture asyn-
chronous as well as synchronous communication models.

Acknowledgements. The author wishes to thank Prof. Massimo An-
cona from the University of Genova and Prof. Francesco Tisato from
the University of Milano Bicocca for having introduced me to re-
flection and middleware; Prof. Shigeru Chiba from Tokyo Institute
of Technology both for his interest in this work and for his valuable
contribution to the ideas presented in this paper; Dr. Ira R. Forman
from IBM research labs at Austin, Frank Morgan and Prof. Hanan
Samet from the University of Maryland and Ian S. Welch from the
University Victoria of Wellington for their inestimable help in ren-
dering this work in English. The author has also to thank Prof. Gor-
don S. Blair, Dr. Geoff Coulson, Dr. Giovanni Lagorio, Prof. Robert
J. Stroud, and Dr. Emiliano Tramontana for their advice and to have
been the proof-readers of previous drafts of this paper. Finally, the
author wishes thank the anonymous reviewers for their useful advice
and comments.

References

1. Gul Agha. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, Cambridge, 1986.

2. Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk Bergmans,
and Akinori Yonezawa. Abstracting Object Interactions Using
Composition Filters. In Proceedings of Object-Based Distrib-
uted Programming (ECOOP’94 Workshop), Lecture Notes in
Computer Science 791, pages 152—-184. Springer-Verlag, July
1994.

3. Massimo Ancona, Walter Cazzola, and Eduardo B. Fernandez.
A History-Dependent Access Control Mechanism Using Re-
flection. In Peter Sewell and Jan Vitek, editors, Proceedings of
Sth ECOOP Workshop on Mobile Object Systems (EWMOS’99),
in 13th European Conference on Object-Oriented Programming
(ECOOP’99), Lisbon, Portugal, on 14th-18th June 1999.

4. Massimo Ancona, Walter Cazzola, and Eduardo B. Fernandez.
Reflective Authorization Systems: Possibilities, Benefits and

10.

12.

13.

14.

15.

17.

18.

. Walter Cazzola.

305

Drawbacks. In Jan Vitek and Christian Jensen, editors, Secure
Internet Programming: Security Issues for Mobile and Distrib-
uted Objects, Lecture Notes in Computer Science 1603, pages
35-49. Springer-Verlag, July 1999.

. Ken Arnold and James Gosling. The Java Programming Lan-

guage. The Java Series ... from the Source. Addison-Wesley,
Reading, Massachusetts, second edition, December 1997.

. Paul Bassett. Framing Software Reuse: Lessons from the Real

World. Prentice Hall, 1996.

. Gordon S. Blair and Roy Campbell. Proceedings of the Work-

shop on Reflective Middleware. Available on-line at http://
www.comp.lancs.ac.uk/computing/RM2000/, April 2000.

. Daniel G. Bobrow, Richard G. Gabriel, and Jon L. White.

CLOS in Context - The Shape of the Design Space. In Andreas
Papcke, editor, Object Oriented Programming: The CLOS Per-
spective, pages 29-61. MIT Press, 1993.

. Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr.

Concurrency and Distribution in Object-Oriented Program-
ming. ACM Computing Surveys, 30(3):291-329, September
1998.

Walter Cazzola. Evaluation of Object-Oriented Reflective
Models. In Proceedings of ECOOP Workshop on Reflective
Object-Oriented Programming and Systems (EWROOPS’98),
in 12th European Conference on Object-Oriented Programming
(ECOOP’98), Brussels, Belgium, on 20th-24th July 1998. Ex-
tended Abstract also published on ECOOP’98 Workshop Read-
ers, S. Demeyer and J. Bosch editors, LNCS 1543, ISBN 3-540-
65460-7 pages 386-387.

Communication-Oriented Reflection: a Way
to Open Up the RMI Mechanism. PhD thesis, Universita degli
Studi di Milano, Milano, Italy, February 2001.

Walter Cazzola, Massimo Ancona, Fabio Canepa, Massimo
Mancini, and Vanja Siccardi. Enhancing Java to Support Ob-
ject Groups. In Proceedings of the Third Conference on Re-
cent Object-Oriented Trends (ROOTS 02), Bergen, Norway, on
17th-19th of April 2002.

Shigeru Chiba, Michiaki Tatsubori, Marc-Olivier Killijian, and
Kozo Itano. OpenJava: A Class-based Macro System for Java.
In Walter Cazzola, Robert J. Stroud, and Francesco Tisato, ed-
itors, Reflection and Software Engineering, Lecture Notes in
Computer Science 1826, pages 119—-135. Springer-Verlag, Hei-
delberg, Germany, June 2000.

Fabio M. Costa, Hector A. Duran, Nikos Parlavantzas, Ka-
tia B. Saikoski, Gordon Blair, and Geoff Coulson. The Role
of Reflective Middleware in Supporting the Engineering of Dy-
namic Applications. In Walter Cazzola, Robert J. Stroud, and
Francesco Tisato, editors, Reflection and Software Engineer-
ing, Lecture Notes in Computer Science 1826, pages 79-99.
Springer-Verlag, Heidelberg, Germany, June 2000.

Geoff Coulson. What is Reflective Middleware? In IEEE Dis-
tributed Systems On-Line, 2000. http://boole.computer.
org/dsonline/middleware/RM.htm.

. Geoff Coulson, Gordon S. Blair, Michael Clarke, and Nikos

Parlavantzas. The Design of a Configurable and Reconfig-
urable Middleware Platform. Distributed Computing Journal,
15(2):109-126, April 2002.

Frangois-Nicola Demers and Jacques Malenfant. Reflection in
Logic, Functional and Object-Oriented Programming: a Short
Comparative Study. In Proceedings of the IJCAI’95 Workshop
on Reflection and Metalevel Architectures and their Applica-
tions in Al, pages 29-38, Montréal, Canada, August 1995.
Mohamed E. Fayad and Rachid Guerraoui. OO Distributed Pro-
gramming Is Not Distributed OO Programming. Communica-
tions of the ACM, 42(4):101-104, April 1999.

http://www.disi.unige.it/person/CazzolaW/mChaRM_webpage.html
http://www.disi.unige.it/person/CazzolaW/mChaRM_webpage.html
http://www.comp.lancs.ac.uk/computing/RM2000/
http://www.comp.lancs.ac.uk/computing/RM2000/
http://boole.computer.org/dsonline/middleware/RM.htm
http://boole.computer.org/dsonline/middleware/RM.htm

306

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Jacques Ferber. Computational Reflection in Class Based Ob-
ject Oriented Languages. In Proceedings of 4™ Conference
on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA’89), volume 24 of Sigplan Notices, pages
317-326. ACM, October 1989.

Benoit Garbinato, Rachid Guerraoui, and Karim R. Mazouni.
Distributed Programming in GARF. In Rachid Guerraoui,
Oscar Nierstrasz, and Michel Riveil, editors, Object-Based
Distributed Programming, LNCS 901, pages 1-32. Springer-
Verlag, 1994.

Rachid Guerraoui, Benoit Garbinato, and Karim R. Mazouni.
GARF: A Tool for Programming Reliable Distributed Applica-
tions. IEEE Concurrency, 5(4), October-December 1997.
Robert H. Halstead Jr. Multilisp: A Language for Concurrent
Symbolic Computation. ACM Transactions on Programming
Languages and Systems, 7(4):501-538, October 1985.

A. Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay.
Contracts: Specifying Behavioral Compositions in Object-Ori-
ented Systems. In Proceedings of Object-Oriented Program-
ming Systems, Languages, and Applications Conference, Spe-
cial Issue of Sigplan Notices, pages 169-180, Ottawa, Canada,
October 1990. ACM Press.

Ian M. Holland. Specifying Reusable Components Using Con-
tracts. In Ole Lehrmann Madsen, editor, LNCS, number 615
in Proceedings of the 6th European Conference on Object-
Oriented Programming (ECOOP’92), pages 287-308, Utrecht,
the Netherlands, July 1992. Springer-Verlag.

Walter Hiirsch and Cristina Videira Lopes. Separation of Con-
cerns. Technical Report NU-CCS-95-03, Northeastern Univer-
sity, Boston, February 1995.

Morry Katz and Daniel Weise. Continuing into the Future: On
the Interaction of Futures and First-Class Continuations. In Pro-
ceedings of the 1990 ACM Conference on Lisp and Functional
Programming, pages 176-184, Nice, France, June 1990. ACM
Press.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, Cambridge, Mas-
sachusetts, 1991.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-Oriented Programming. In /1" European Con-
ference on Object Oriented Programming (ECOOP’97), Lec-
ture Notes in Computer Science 1241, pages 220-242, Helsinki,
Finland, June 1997. Springer-Verlag.

Fabio Kon, Roy Campbell, and Manuel Roman. Design and
Implementation of Runtime Reflection in Communication Mid-
dleware: the DynamicTAO Case. In Proceedings of ICDCS 99
Workshop on Middleware, 1999.

Fabio Kon, Manuel Romén, Ping Liu, Jina Mao, Tomonori Ya-
mane, Luiz Claudio Magalhaes, and Roy H. Campbell. Mon-
itoring, Security, and Dynamic Configuration with the dynam-
icTAO Reflective ORB. In Proceedings of IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware’2000), volume 30, New
York, USA, April 2000.

Thomas Ledoux. OpenCorba: A Reflective Open Broker. In
Pierre Cointe, editor, Proceedings of the 2" International Con-
ference on Reflection’99, LNCS 1616, pages 197-214, Saint-
Malo, France, July 1999. Springer-Verlag.

Pattie Maes. Concepts and Experiments in Computational Re-
flection. In Norman K. Meyrowitz, editor, Proceedings of

Walter Cazzola: Remote Method Invocation as a First-Class Citizen

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

the 2™ Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’87), volume 22 of Sig-
plan Notices, pages 147-156, Orlando, Florida, USA, October
1987. ACM.

Satoshi Matsuoka, Takuo Watanabe, and Akinori Yonezawa.
Hybrid Group Reflective Architecture for Object-Oriented Con-
current Reflective Programming. In Pierre America, editor, Pro-
ceedings of ECOOP’91, pages 231-250, Geneva, Switzerland,
July 1991. Springer-Verlag.

Jeff McAffer. The CodA MOP. In Proceedings of the 8" Con-
ference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’93), Workshop on Object-Oriented
Reflection and Metalevel Architectures, Washington, DC, USA,
1993. ACM.

Jeff McAffer. Meta-Level Programming with CodA. In Walter
Olthoff, editor, Proceedings of the 9" European Conference on
Object-Oriented Programming (ECOOP’95), LNCS 952, pages
190-214. Springer-Verlag, 1995.

Todd Montgomery. RMP - Reliable Multicast Protocol version
2. Document Available from http://research.ivv.nasa.
gov/projects/RMP/index.html, October 1996.

Philippe Mulet, Jacques Malenfant, and Pierre Cointe. To-
wards a Methodology for Explicit Composition of MetaOb-
jects. In Proceedings of the 10™ Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications
(OOPSLA’95), volume 30 of Sigplan Notice, pages 316-330,
Austin, Texas, USA, October 1995. ACM.

Christian Nester, Michael Philippsen, and Bernhard Hau-
macher. A More Efficient RMI for Java. In Proceedings of ACM
1999 Java Grande Conference, pages 152—157, San Francisco,
California, June 1999.

Object Management Group. The Common Object Request
Broker: Architecture and Specification. Technical Report
2001.02.01 Revision V.2.4.2, OMG, February 2001.

Douglas C. Schmidt and Chris Cleeland. Applying Patterns to
Develop Extensible ORB Middleware. IEEE Communications
Magazine Special Issue on Patterns, 37(4), April 1999.

Robert J. Stroud. Transparency and Reflection in Distributed
Systems. ACM Operating System Review, 22:99-103, April
1992.

SUN Microsystems. Java™ Core Reflection API and Specifi-
cation. Technical report, SUN Microsystems, February 1997.

Walter Cazzola is currently an assistant professor at the Department
of Informatics and Communication (DICo) of the Universita degli
Studi di Milano, Italy. Previously, Cazzola was researcher assistant
at the Department of Informatics and Computer Science (DISI) of
the Universita degli Studi di Genova. His research interests include
computational reflection, programming techniques and languages,
and distributed systems. He has written and has served as reviewer of
several technical papers about computational reflection. He has also
taken part of the programme committee of the International Con-
ference Reflection 2001. Cazzola received his Laurea in Computer
Science from the Universita degli Studi di Genova, Italy in 1996;
Ph.D. in Computer Science from the Universita degli Studi di Mi-
lano, Italy in 2001.

http://research.ivv.nasa.gov/projects/RMP/index.html
http://research.ivv.nasa.gov/projects/RMP/index.html

	1 Introduction
	2 Reflective Middleware
	2.1 Computational Reflection.
	2.2 The Reflective Middleware Approach.
	2.3 Communications as Application Domain for Reflection.

	3 Communication Channels as First-Class Citizens
	3.1 Multi-Channel Reification Model.

	4 Programming with Channels
	4.1 Base-Level Language Extensions.
	4.1.1 Kinds.

	4.2 Meta-Level Programming Language.
	4.2.1 Kind Definition.
	4.2.2 Locus Sections.
	4.2.3 Locus Representatives.
	4.2.4 Multi-Channel Interactions and Relations.

	4.3 APIs used by Multi-Channels.
	4.3.1 Introspection and Intercession.
	4.3.2 Meta-Behavior.

	5 mChaRM: Architecture
	5.1 Multi-Channel Structure.
	5.2 Supporting Framework.
	5.2.1 Stubs.
	5.2.2 Core.

	5.3 mChaRM Preprocessor.
	5.3.1 OpenJava.
	5.3.2 Meta-Object to Manage the Base-Level.
	5.3.3 Meta-Object to Manage the Meta-Level.

	6 Multi-Channels at Work
	6.1 Authorization Policies.
	6.2 Reliable Multicast Protocol.

	7 Multi-Channel Perspectives
	7.1 Multi-Channel Purposes.
	7.2 Multi-Channel Properties.
	Global View.
	Communications As Open/Closed Systems.
	Granularity.

	7.3 Performance Evaluation.

	8 Related Work
	9 Conclusions and Future Work

