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a b s t r a c t 

Today software systems play a critical role in society’s infrastructures and many are re- 

quired to provide uninterrupted services in their constantly changing environments. As the 

problem domain and the operational context of such software changes, the software itself 

must be updated accordingly. 

In this paper we propose to support dynamic software updating through language seman- 

tic adaptation; this is done through use of micro-languages that confine the effect of the 

introduced change to specific application features. Micro-languages provide a logical layer 

over a programming language and associate an application feature with the portion of 

the programming language used to implement it. Thus, they permit to update the appli- 

cation feature by updating the underlying programming constructs without affecting the 

behaviour of the other application features. 

Such a linguistic approach provides the benefit of easy addition/removal of application fea- 

tures (with a special focus on non-functional features) to/from a running application by 

separating the implementation of the new feature from the original application, allowing 

for the application to remain unaware of any extensions. The feasibility of this approach is 

demonstrated with two studies; its benefits and drawbacks are also analysed. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Today software applications govern many of our daily activities: from stock trading to traffic control, and in-body inte-

grated insulin release pumps. Many such applications must provide continuous, uninterrupted services, and if interrupted,

could lead to risk to life and safety (e.g., nuclear reactor control software) and substantial financial loss (e.g., software for

stock trading). 

Yet, as operational environment and expectations on such applications evolve, they do need to be maintained and up-

dated. This problem is well-known, with several dynamic software updating (DSU) approaches proposed over the years to

try to solve it, e.g., [1–3] . To date, evolution with DSUs is a two-steps process: i) the source code is modified according to

the evolutionary needs and ii) the changed code is deployed on the running system using code injection, class reloading
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and dynamic/multiple method tables. Yet, these solutions inevitably result in long-term performance decay (e.g., JavAdaptor

[1,4] and DUSC [5] ) or impose limitations on what can or cannot be updated (e.g., JRebel [2] ). 

In spite of all these effort s, software evolution is still work in progress, especially in supporting the application extension

with new non-functional features 1 whose a posteriori design and addition is often cumbersome and could be jeopardized

during application execution. In literature, we find many examples of this kind of evolution, e.g., for persistence [6,7] , par-

allelization [8,9] , optimization [6] and pluggable type systems [10] . 

To fully understand the problem, consider, for example, a sequential application that could be sped up on a multi-core

laptop computer by executing each independent stage of a loop 

2 in parallel on a different core. This parallelization is clearly

a non-functional feature that can fast the goal achievement but its absence does not compromise its feasibility. The paral-

lelization can be supported by manually (or using an IDE) extracting the body of the loops with independent stages into

methods and replacing these loops with the spawning of the corresponding method calls into the available cores. This up-

date must be applied to all the loops which must be parallelised. Several new methods, which have no direct relation to

the application logic, must be introduced into the code. This makes the code more obscure and complex. To complicate the

scenario, let us consider the fact that we would like to pass from a sequential to a parallel version (which is more energy

intensive but quicker) when our laptop is plugged into the mains, and revert back to sequential processing when the laptop

runs on the battery. This is a clearly feasible change that most DSUs can support but it can hardly be automated and a con-

tinuous manual switch from one version to the other could lead to errors, e.g., forgetting to parallelise some of the loops.

Also, though in theory it is feasible to keep two separate versions and swap these at need, in practice it is complicated as

one has to synchronize these versions on the number of already executed stages. Alternatively, we advocate in this paper

that the same evolutionary change can be realised by changing the semantics of the loop construct in such a way that it im-

plements the spawning of the stages on the different cores without any further cluttering of the original code. This change

would affect a single language construct and is less error-prone when passing from one version to the next, as the change

is confined to a single element. 

Little to no support for change through language evolution exists in literature in particular if it should be deployed dur-

ing the application execution. This is mainly due to the fact that language implementations are mostly monolithic and do

not support this fine-grained kind of language adaptation but also because an indiscriminate change to a language construct

implementation would affect any use of such a construct and this is not always desirable (e.g., when parallelising loops in

an application that uses both loops with dependent and independent stages). Therefore, to be effective, such an approach

should be supported through an easily evolvable language implementation. Whereas the classic language implementations

tend to be monolithic and hard to adapt, in the last decade, several modular development frameworks, such as Strate-

goXT/Spoofax [11] , Lisa [12] and Neverlang [13] have been developed. These provide a natural environment for the proposed

software evolution via language adaptation based approach. 

In this paper we propose to move the evolution from the application level to the programming language level to support

the dynamic addition of non-functional features which originally were not designed into the application. The basic idea is

centred around the facts that 

• any application feature is implemented by a subset of the language constructs used to implement that application; 
• application feature behaviour is governed by the semantics of the language constructs used in its implementation; and 

• the non-functional features introduce additional properties to the existing features (i.e., not stand alone behaviour). 

So, changing the semantics of the language constructs used in the implementation of the given feature is directly equiv-

alent to changing the feature itself and provides a simple mechanism to extend it with non-functional features. The obvious

benefit of our proposed approach is that the application source code will be left untouched. Moreover, the same evolution-

ary change can be applied to several code portions through a single implementation, potentially reducing code repetition,

scope for error introduction, and limiting application code complexity. Furthermore, in a recent work Chitchyan et al. [14] in-

troduced the concept of micro-language , which is very well suited for handling the change propagation scoping challenge.

Micro-languages provide a logical overlay over programming languages, supporting grouping of language concepts in accor-

dance with some application features. 

This proposal is supported by a novel DSU framework, called μ-DSU, that supports software evolution and, in particular,

the addition of non-functional features via language evolution and exploits micro-languages to confine the effect of the

language changes to only the intended application features. The paper provides three major contributions 

• a clear definition of micro-languages and their relationship with traditional language terminology ( Section 2 ); 
• the definition of an architecture to support dynamic software updating through changes in the language semantics by

using micro-languages ( Section 3 ); 
• the demonstration of the approach feasibility through the implementation of the μ-DSU framework ( Section 4 ) and show-
casing it with two demonstrative studies ( Section 5 ). 

1 In this paper, with non-functional we denote a functionality that could be removed without compromising the achievement of the main goal of the 

application but that represents a sort of general help to get the goal, such as support for concurrency, sustainability and logging. 
2 A loop with independent stages is a loop whose stages do not rely on the results calculated in the previous stage. 
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Fig. 1. Relationship among programming (pl), its sub- (sl i ) and micro-languages (the striped blots). Dots represent the different language features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With μ-DSU a micro-language can be defined for each evolution-prone application feature. As this application feature

needs to be evolved this is realised through changes to the implementation of its contained language features. The under-

lying language implementation for μ-DSU is such, that, when the application feature must change, its micro-language can

change without side effects on other micro-languages. Thus, the language environment allows each language element to be

updated in a localised fashion, with all the change effects absorbed into the evolving element. μ-DSU is defined on top of

the Neverlang [13] framework for modular language implementation. 

In the following, Section 2 explains what a micro-language is and its relationship with other programming language

concepts. Section 3 shows a generic DSU architecture that exploits language adaptation and micro-languages to support

dynamic software evolution. Section 4 introduces μ-DSU that represents a proof-of-concepts for the feasibility of pro-

posed DSU architecture. Section 5 shows the micro-language approach to dynamic software evolution on two demonstrative

studies. Section 6 discusses benefits and drawbacks of this approach, while Section 7 presents some related work. Finally,

Section 8 concludes the paper. 

2. Introducing micro languages 

A micro-language is a logical grouping of constituents from its host programming language determined by the pro-

grammatic constructs used in a given piece of code (an application feature). Furthermore, a micro-language is a concept

orthogonal to those of language features and sub-languages as it can consist of a number of language features from a num-

ber of sub-languages (as depicted in Fig. 1 ). To illustrate this, we will first present the notions of language features and

sub-languages and then show how a micro-language relates to them. 

2.1. Language features and sub-languages 

From a programming language viewpoint, the minimal meaningful concept or construct of a language is called a language

feature [13] . Examples of language features are the “for” statement, inheritance, or method invocation. As detailed in [13] , a

language component provides the language feature implementation. 

Any given programming language can be viewed as the composition of several sub-languages , where every sub-language

contains a subset of language features of the given (so-called host ) language. For instance, the SQL language hosts such sub-

languages as data definition (which includes, for instance, the create, and drop features), data manipulation (including, for

example, select and insert features), transaction boundaries (including, for example, commit and rollback features), etc. In

[15] , Cazzola and Olivares demonstrated that Javascript can be decomposed into 13 sub-languages. 

Sub-languages provide language features to support one (well-defined) programming aspect (e.g., setting transaction

boundaries in SQL, or dealing with exceptions in Javascript). Yet, to do so they often rely on the presence of other lan-

guage features provided by other sub-languages (such as creation of a table as a transaction in SQL, or object in Javascript).

Therefore, a sub-language needs to be composed with other sub-languages in order to have all its host language features us-

able. Thus, programming languages could be composed of sub-languages. In either case, a sub-language contains (a number

of) language feature(s) that supports one (or more) well-defined aspect(s) of programming. Fig. 1 depicts the relationship

between language features (the red dots) and a possible set of sub-languages (sl i ) of a hypothetical programming language

(pl); note that each sub-language restricts the programming language limiting the number of included language features. 
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Listing 1. Factorial in Javascript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Application features and micro-languages 

A software application can be described in term of its functionality, often called application features . 3 From the application

viewpoint, it is irrelevant which language features from which sub-languages are used to implement an application feature.

It is rather common to have several language features used in the implementation of a specific application feature, and

these language features do not have to belong to a single sub-language. Sub-languages support a single programming aspect

but many programming aspects could be required for the implementation of a given application feature. 

As an example, let us consider the Javascript implementation for the factorial function (shown in Listing 1 ). This small

piece of code uses—among others—a less equal operator, a conditional statement and a function definition (all language

features) belonging to boolean expression, control flow and functional sub-languages, respectively. It is evident that this

implementation of the factorial application feature relies on (at least) three sub-languages (out of 13 reported in [15] ), and

each involved sub-language also contains many more language features than those used to implement the factorial. For

instance, the boolean expression sub-language also contains all the other comparison operators, not used in this example. 

We define a micro-language as the set of language features involved in the implementation of a specific application feature . A

micro-language is (normally) orthogonal to any sub-language provided by the host programming language. Should we wish

to define a micro-language for factorial calculation in Javascript, it would have to utilise language features from at least the

above-noted sub-languages. 

A micro-language is a logical definition aimed to align an application feature with the language features used in its im-

plementation. Different application features are bound to different micro-languages that could overlap. Two micro-languages

μl 1 and μl 2 —associated with the application features af 1 and af 2 , respectively—overlap when there exists a language feature

lf that is used to implement both af 1 and af 2 and therefore it belongs to both μl 1 and μl 2 . 

Since a micro-language selectively encapsulates the relevant language features from across relevant sub-languages, a 

single micro-language will rarely ever be also a usable programming language or be able to construct a full application.

Instead, a set of micro-languages will be required to represent the various features of the complete application. Note that

the union of such a set of micro-languages represents a full coverage of all language features provided by the host language.

Out of one host programming language, a myriad of different micro-languages could be defined, each crossing sub-

language boundaries of the host language. It is important to note that micro-languages do not require any specific inter-

preters/compilers and they do not have to be composed or interfere with each other but only provide a logical overlay

on the used programming language that relates part of it to the application features. In Fig. 1 , some micro-languages are

highlighted by striped blots. 

2.3. An Illustrative decomposition in micro-languages 

Let us demonstrate the notion of a micro-language with an example for a state machine governing the controller for an

automatic vacuum cleaner [14] . The behaviour of any electrical household appliance can be easily modelled with a state-

machine: it has some feasible states (e.g., on, off, etc.) and some transitions that, under given events (e.g., clicks on a button),

move the appliance from one feasible state to another. In our case, the default behaviour simply turns the vacuum cleaner

on and off when the switch is turned to “on”/ “off” respectively—as depicted in Fig. 2 (a). 

The code snippet in Listing 2 (a) shows the implementation for the default behaviour of the vacuum cleaner (leaving out

the code for moving the vacuum cleaner that it is not relevant to the discussion). At least, two application features are

implemented: i) the turning on of the vacuum cleaner and ii) the turning off of the vacuum cleaner. These two application

features are bound to two micro-languages denoted by μton and μtoff, respectively. Turn on for the vacuum cleaner consists

of changing the off state into the on state when a click event occurs. Looking at the language: 

• the definition of a particular state is governed by the state initialization language feature identified by the states dec-

laration statement; 
• the initialization of the on state is governed by the turning on language feature identified by the turn-on operation; 
• the transition from one state to another is governed by the transition definition language feature identified by the
transitions declaration statement. 

3 Czarnecki and Eisenecker [16] defines an application feature as «a distinguishable characteristic of a concept (e.g., system, component, and so on) that 

is relevant to some stakeholder of the concept. »
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Fig. 2. Vacuum cleaner’s default behaviour. 

Listing 2. Vacuum cleaner’s code. 

 

 

 

 

 

 

Similar considerations apply to the turning off application feature with the only difference that the state to be defined is

off and this is governed by the turning off language feature. Thus, the language features describing the two micro-languages

are: 

μton = { turning on, state initialization, transition definition } 

μtoff = { turning off, state initialization, transition definition } 

From this example we see that: 

• micro-languages differ from the language used to implement the behaviour of the vacuum cleaner 
• a micro-language could be unusable, e.g., neither μton nor μtoff include the language features necessary to define the

available or specific events without which it is impossible to define a working state machine. 
• micro-languages can overlap. 

Thus, to re-cap: micro-languages overlay a logical structure on the host language ; each of them defines and governs the

behaviour of a given application feature and straddles several sub-languages from those provided by the host language. 

3. Evolution via micro-languages 

An application feature is bound to the set of language features needed to implement it that are grouped by a micro-

language. Thus, any change that should affect an application feature can be governed and deployed through changes to the

respective micro-language. 
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Fig. 3. Architecture for micro-language based adaptation of a running application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Driving the adaptation 

Fig. 3 graphically overviews the architecture of a DSU framework that would adapt running applications through the

adaptation of micro-languages. A modular language development framework (marked with ❶ in Fig. 3 ) lays the founda-

tion for this architecture and furnishes the necessary mechanism to deal with the micro-language adaptation. The modular

language interpreter of the chosen language (marked with ❷ in Fig. 3 )—e.g., that of the state machine language used in

Sect. 2.3 —runs the application that should be evolved (marked with ❻ in Fig. 3 )—e.g., the vacuum cleaner control applica-

tion. Each micro-language will correspond to one application feature. Currently the application features are provided by the

application developer and it is represented by a set of coordinates (code lines and element description) to the application

source code. A way to automatically elicit from the application analysis both the application features and the language fea-

tures used in its implementation—and therefore the micro-language associated to the application feature—is currently under

investigation. This activity is represented by the component marked with ❺ in Fig. 3 . 

The evolution of an application feature is implemented through the evolution of the corresponding micro-language. Each

change to a language feature in the micro-language affects the application feature behaviour. The adaptation process is

event-driven; the event manager component (marked with ❸ in Fig. 3 ) waits for the (application specific and user-defined)

update event s whose occurrence will trigger the adaptation process. The event manager component deals both with the

update events it is to monitor and with the associations between these events and the application features (and hence

also the micro-languages) interested in the occurring events. The relationship between occurring events and changes to

the application features along with micro-languages, provides the system with the context information necessary to limit

the effect of the micro-language adaptation. For instance, in the vacuum cleaner example, the inactivity of the running

appliance is the event that triggers the adaptation, thereby affecting the turning on application feature. The micro-language

adapter component (marked with ❹ in Fig. 3 ) is in charge of the adaptation process. 

The change at language level, if not limited, will affect the behaviour of the whole application. This can be a useful trait

in cases where the required change is general: it has the obvious benefit of a limited adaptation instead of looking for, and

individually changing each part of the relevant application features. On the other hand, often an adaptation is desired for a

specific, localised, case and such a change should affect only a few application features. Thus, the language adaptation-based

framework has to support both system wide and selectively targeted exchange of language features; both types of changes

should be done without forcing a regeneration of the interpreter or a mandatory stopping and restarting of the running

application. Let us demonstrate these two adaptation scopes using the vacuum cleaner example presented in Section 2.3 .

The two micro-languages μton and μtoff share the state initialization language feature implemented by the State slice. A 

system wide change at the interpreter-level to the state initialization language feature would affect both micro-languages and

the associated application features. Instead, a selective exchange of language features would permit a fine-grain control of

the adaptation process. It would permit to subordinate how a language feature ( state initialization in our case) is interpreted

according to the belonging to a specific micro-language. The association of an application feature to its AST permits to

directly inject such a semantic action only in the nodes relevant to the μton micro-language and to avoid any interference

with the same type of nodes that are associated to the μtoff micro-language. This is possible because the application feature

to adapt is represented by a specific AST portion; the association with a micro-language permits to identify such an AST

portion and to limit the effect of the adaptation only to that portion, granting both a fine-grain control and a context-

dependent language adaptation. Therefore, given the context, the adapter will not modify the interpreter, but instead will

operate directly on the AST by modifying the semantic actions that should be executed when specific nodes of the tree are

visited. Details about how this should work are explained in Section 4 . 

3.2. Evolution of micro-language semantics 

Let us consider the scenario where the requirements are evolved in the vacuum cleaner example presented in Section 2.3 .

The new version of the system requirements pay more attention to reduction of energy waste. Now the requirement for
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switching the system on/off is updated to stating that (for safety and to reduce energy waste) the controller should switch

the vacuum cleaner off when it is not in productive use (e.g., when it is accidentally switched on by a toddler). By definition,

when in productive use the vacuum cleaner should be in motion; if it is not in motion for 10 seconds, it is considered not

in use. 

Supporting the behaviour of “turning the vacuum cleaner off when inactive for a given period” at the code-level would

require ( Fig. 2 (b)) addition of new: 

• state stand-by used when the appliance is on but inactive, 
• event time-elapsed which is triggered when the specified number of seconds have elapsed without any activity, 
• transition from the stand-by state to off state when the time-elapsed event occurs, and 

• events handling activity/inactivity of the vacuum cleaner. 

Although such code-level adaptation is quite simple and general, it is also very invasive and thus not advisable if it is to

be applied to a large set of various types of electronic appliances. The adapted code is shown in Listing 2 (b). 

When using the micro-languages, instead of modifying the controller program with condition checks for motion monitor-

ing (as per Listing 2 (b)), we can change the semantics of some of the language constructs. We call such adaptation seamless 4 .

In this example the meaning of being in the on state can be changed by re-defining the semantics of the turning on lan-

guage feature. In short, the turn-on operation will not only turn on the appliance but also store the timestamp of when it

is turned on. Seamlessly adapted controller behaviour is represented by the state machine in Fig. 2 (c) where two (internal)

events: activity and time_elapsed are added, as well as transitions (dashed in the figure to note the fact that they are

a sort of a side effect of the changes to the language semantics) from the state on to the state on (guarded by activity )
and to state off (guarded by time_elapsed ). The former event will reset the stored time as a consequence of some

activity, while the latter will check the current time against the stored time to detect if it is time to turn the appliance off

due to prolonged inactivity. 

Such a seamless adaptation is enabled by changing the implementation of the μton micro-language and will leave the

controller code unchanged. Therefore, any program written in this language will remain unaltered, yet will incorporate the

new behaviour. Moreover, a micro-language provides a context in which the language feature is used; and this context

can be used to limit the effect of the change to a specific occurrence of the language feature. Furthermore, if the host

programming language is based on a framework for modular language development [12,13,17] , adapting a micro-language is

only a matter of plugging/unplugging a few language features and in some cases this can be done without regenerating the

interpreter. 

As shown, language adaptation via micro-languages can ease the application’s adaptation. Here the adaptation is moved

from the application to the language implementation. 

4. μ-DSU: implementation details 

As a proof-of-concept, the architecture in Fig. 3 has been implemented into the μ-DSU framework over Neverlang [13] . 

To provide an usable micro-languages-based approach to software evolution, we must provide an operational environ-

ment for it. Modular language development frameworks [11–13,18] emphasise the separation of language features as plug-

gable and composable units (slices in Neverlang) and they represent a perfect fit when the composition can occur during

the application interpretation such as in Neverlang [19,20] . 

Note that the micro-language concept does not have a direct match in any modular language development framework

but it can be defined within the framework concepts. In the Neverlang parlance, a micro-language is a logical cluster of

some of the slices used in the interpreter for the host language. 

4.1. Neverlang in a nutshell 

The Neverlang [13,21–23] framework is built around the language feature concept. Language components, called slice s,

embodying the language features are developed as separate units that can be compiled and tested independently, enabling

developers to share and reuse the same units across different language implementations. Here the development base unit

is the module ( Listing 3 ). A module may contain a syntax definition and/or a semantic role . A role defines actions that

should be executed when some syntax is recognized, as prescribed by the syntax-directed translation technique [24] . Syntax

definitions and semantic roles are tied together using slices . Let us see the Neverlang realization of the State module for

the vacuum cleaner example shown in Listing 3 . Here the module StateModule declares a reference syntax for the state

concept (lines 2–4) and actions are attached to the nonterminals on the right of the production (line 7). Semantic actions

are attached to nonterminals by referring to their position in the grammar or through a label: numbering starts with 0

from the top left to the bottom right 5 , so the first State on line 3 is referred to as 0, StateName as 1, and the Expr
is referred as 2. The slice State declares in line 12 that we will be using this syntax (which is the concrete syntax )
4 This is in contrast to an explicit adaptation that introduces new syntax and forces an application change. This is not further discussed for clarity. 
5 Neverlang also permits to label a production and refer nonterminals via an offset from such a label, e.g., $STATE[0] is the head of the STATE 

production. 
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Listing 3. Slice the syntax and semantics for the state concept. 

Fig. 4. A sample page displayed according to 3 of the possible profiles. 

Listing 4. JavaScript snippet of the view application feature. 

 

 

 

 

 

 

 

in our language, with those particular semantics (line 13). Finally, the language descriptor indicates (lines 17–18) which

slices are to be composed together to generate the language interpreter. Composition in Neverlang is, therefore, twofold:

(1) between modules, which yields slices, and (2) between slices, which yields a language implementation. The composition

result is independent of the order of specified slices. The grammars are merged to generate the complete language parser.

Semantic actions are performed with respect to the parse tree of the input program; roles are executed in the order specified

in the roles clause of the language descriptor. Please see [13] for further details. 

4.2. μ-DSU over Neverlang 

The Neverlang [13] framework permits changes to the interpreted language without regenerating its parser [25] . Changes

can be introduced during the interpretation of the application both at system-wide level and localised on the application
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Table 1 

Summary of the μDA DSL. 

Context Definition 

[endemic] slice «id 1 » [, « id 2 », ...] : «slc »; 
To bind the (endemic) slice «slc » to a name «id 1 »; if multiple names are provided they are all aliases for the same (endemic) slice. 

production « id 1 » [, «id 2 », ...] : «rule » from module «mod » ; 
To bind a rule «rule » from a module «mod » to a name «id 1 »; if multiple names are provided they all refer to the same rule. 

nt « id 1 » [, «id 2 », ...] : «rule » from module «mod » ; 

To unpack into «id 1 », «id 2 », ..., «id n » the first n nonterminals in «rule » from the module «mod ». 

action «id » : «nonterminal » from module «mod » role «name » ; 

To bind the action associated to the «nonterminal » from the module «mod » to the name «id ». 

Matching Expressions 

«id »[[ «cond 1 (attr 1 ») [, «cond 2 (attr 2 ) », ...]]] 
Matches the PT node identified by «id » when its (specified) attributes ( «attr i ») verify some conditions ( «cond i () »). 

The conditions are predicates that compares the current value of the attribute against a constant; if 
no condition is given the node is matched by name. 

«id 1 » [[ «cond(attr) »]] < «id 2 »[[ «cond(attr) »]]] [ | «id » ] 

Matches a path on the PT where the node «id 1 » is the parent of the node «id 2 ». As before conditions on the node attributes can be given and the 

filter operator (|) permits to bind the result to the desired node otherwise it will be the parent. 

«id 1 » [[ «cond(attr) »]] � «id 2 »[[ «cond(attr) »]]] [ | «id » ] 

Matches a path on the PT where the node «id 2 » can be reached from the node «id 1 ». As before, it is possible to express conditions on the node 

attributes and a filter operator. 

Manipulation Operations 

add action «id 1 » [ to «id 2 »] in role «name » ; 

To add the action «id 1 » to the node «id 2 » in the PT for the role «name »; if the target node is omitted the one matched is used. 

remove action «id 1 » [ from «id 2 »] in role «name » ; 

To remove the action «id 1 » from the node «id 2 » in the PT for the role «name »; if the target node is omitted the one matched is used. 

set specialized action «id 1 » [ to «id 2 »] in role «name » ; 

To set the specialized action for the nonterminal «id 2 » to «id 1 » in the role «name »; if the target node is omitted the one matched is used. 

System-Wide Manipulation Operations 

replace slice «id 1 » with «id 2 » ; 

To replace the slice «id 1 » with slice «id 2 ». 

redo [ from «node »] [ in role «name »] ; 
To restart the visit of the role «name » from a given node «node » as expressed in the context; the visit restarts from the root of the current role 

when «node » and «name » are omitted respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

parse tree (PT) [20,26] . These Neverlang’s characteristics allow μ-DSU to support dynamic language adaptation in two ways:

(i) by replacing language components and (ii) by directly modifying how the language feature is interpreted. The former

simply consists of replacing a language component (a slice in Neverlang parlance) affecting every use of such a language

feature. The latter permits to programmatically modify—according to the micro-language definitions—a language feature

locally to a single use of such a feature by altering its behaviour according to the context provided by the PT [20] . 

Adaptation rules for the micro-languages are expressed through a dedicated micro-dynamic adaptation domain specific

language (DSL): μDA. μ-DSU implements a micro-language adapter (component ❹ in Fig. 3 ), which executes rules written

in μDA, and interacts with the interpreter (component ❷ in Fig. 3 ) written in Neverlang (component ❶ in Fig. 3 ) during

the application execution. The event manager runs a script that registers the set of possible events and the adaptation

scripts that need to be activated in case of a given event occurrence. The event register script has to be maintained by

the application developer. The event manager component (component ❸ in Fig. 3 ) notifies the adapter about the events for

which specific micro-languages have registered interest. The adapter triggers the respective scripts to deploy the required

adaptations for each event per each micro-language. 

A generic μDA script has two sections. The first section defines the context for the script, where the PT nodes are

described in term of their original productions or in terms of the nonterminal these nodes define; these definitions are

bound to names so that they can be referenced through these names elsewhere in the script (the set of constructs used

in the context definition is shown in Tab. 1 ). Each context mirrors a micro-language associated to the given application

feature and all the elements of the language features of that micro-language are accessible in the script’s context (e.g., see

Listing 8 (a) lines 1–2). In the context section the actions that should be injected are also defined (e.g., see Listing 8 (a) line

4). The code to be injected is written in Neverlang slices which serve as containers for new, replacement adaptation actions.

In the case of localised manipulations, the second section declares a set of adaptation clauses to be applied to a specific

portion of the PT. A sample structure of such clauses is shown below: 
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Fig. 5. Selective for adaptation. 

Listing 5. Three versions of the implementation for the print language feature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The matching expression resembles an AspectJ’s pointcut [27] that match against paths of the PT’s application. The

matching expressions—described in Table 1 —permit to identify a node by its kind (as defined in the context section), by

the values of its attributes and by node’s relative position in the PT (e.g., if it is a parent of another node). Upon the re-

quest from the event manager to the adapter (see Fig. 3 ), the expression is matched against the whole PT. According to the

Neverlang’s architecture for dynamic adaptation [20] , an agent—whose body is composed of the corresponding manipula-

tion operations—is attached to the matched node and its code will be executed immediately before the next visit of the

node that will occur during the interpretation and after that removed. The supported manipulation operations permit to

add/remove an action to/from a node with respect to a specific role 6 . In the case of a system-wide adaptation, the manipu-

lation is independent of the PT but it directly affects the slices definitions. Therefore no match against the PT is needed and

the manipulation operations are simply introduced by the keyword system-wide . At the moment, only the slice replace-

ment and the restarting of the PT visit are supported. Table 1 summarises the whole set of operations belonging to μDA;

examples of its use are showed in Section 5 . 

The μ-DSU implementation of the event manager is quite simple and its behaviour is governed by bash scripts. The man-

ager is a process that waits for external events or from the Neverlang virtual machine. Each event blocks the interpretation

of the application. If the event does not require an adaptation the event manager immediately acknowledges the event and

the interpretation resumes. Where adaptation is required, the event and its matching contexts (from the registry script)

are passed to the micro-language adapter. When the adapter completes the execution of the adaptation scripts, it notifies

the Neverlang virtual machine and the interpretation is resumed from the point of the previous suspension, but using the

adapted interpreter. 

5. Demonstrative studies 

In this section, we showcase feasibility of μ-DSU through two demonstrative studies. 7 In the first study, we show how

an HTML viewer application seamlessly adapts its configuration to the accessibility needs of the current user. This study

showcases a system-wide change, where the change of the evolving micro-language does not create an interference with

other micro-languages. The introduced non-functional feature is the accessibility support. In the second study, we speed up

the Mandelbrot set drawing by parallelising its computational engine. This study shows a case of local adaptation, where

the evolving language features in one micro-language is also part of another micro-language that should stay untouched,
6 Neverlang supports several user-defined roles that correspond to consecutive visits of the PT and at each visit, a different action can be executed. 
7 The demonstration of both studies is shown in the movie: http://cazzola.di.unimi.it/%C2%B5- dsu/%C2%B5- dsu- demo.mp4 . 

http://cazzola.di.unimi.it/%C2%B5-dsu/%C2%B5-dsu-demo.mp4
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Table 2 

The language features added to Neverlang.JS. 

Language feature Description 

print Expr prints Expr to screen 

set font size Expr sets the font size to Expr points 

set font color Expr sets the font colour to Expr 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

so the change must be localised. The introduced non-functional feature is optimization. Together these studies demonstrate

the main characteristics of our approach. 

5.1. System-wide adaptation 

Consider the benefits of having an HTML viewer that adapts page visualization to the conditions of the user’s eyesight.

For non-impaired users, the viewer would render the page as specified by the underlying HTML code. For users suffering

from colour-blindness green and red colours would be substituted; for long-sighted users, a larger font would be used;

for blind users, the displayed text would also be read aloud. In several occasions this kind of application would need dy-

namic adaptations, e.g., digital information booth at a convention where several people with different eyesight needs will

continuously alternate or a mobile device that can be passed to a friend with different needs. 

As a proof-of-concept, a simple HTML viewer has been developed and μ-DSU is used to dynamically adapt such a

viewer to the current user’s eyesight. This example demonstrates how micro-languages ease a posteriori development and

deployment of application variants according to dynamically changed needs either neglected at design time—e.g., due to

higher expenses—or newly identified. The viewer has been written in Neverlang.JS [15] : a Neverlang implementation of the

Javascript interpreter. Neverlang.JS has been extended with three language features (summarised in Table 2 ) that help to

illustrate and simplify the definition of micro-languages. 

Central to the HTML viewer is the application feature of show text on screen (AF show 

) responsible for the HTML text

visualization. AF show 

is implemented by the function view() ( Listing 4 ) and uses the language features summarised in

Table 2 . Thus, these three language features effectively capture a micro-language for the AF show 

application feature: 

μshow 

= { set font color, set font size, print } 
The original application does not consider any accessibility issue. The initial AF show 

application feature simply parses the

HTML element which extracts the colour, size and text from it; then, the colour and size font properties are set according

to the parsed values and finally the text is printed. The slice implementing the original behaviour of the print language

feature of the μshow 

micro-language is shown in Listing 5 (a). As it becomes necessary to support visually impaired users

we change the way that AF show 

visualises the HTML text by changing the semantics for the language element of the μshow

micro-language. Listing 5 (b) shows the implementation for the print language feature of μshow 

intended for the long-

sighted users. The semantic action, among other things, extracts the current size setting which is then multiplied by 3 to

increase the size of the visualised text. Similarly, Listing 5 (c) shows the implementation of the print for blind users. Besides

printing the text, this slice also reads it aloud using a specific library to read text. Note that the module does not define any

syntax. In fact, the slice construct permits to reuse the original print syntax defined in Listing 5 (a) and to link it to the

semantic action for blind users. To save space and since it will not add anything to the discussion, the slice for colour-blind

users is not shown. 

To support any of the visually impaired users, we simply integrate the relevant changes to the given micro-language

in the interpreter by replacing the appropriate modules on need. The original application code never changes, i.e., the ap-

plication is unaware of the evolving requirements. Moreover, the change is confined in one point—the implementation of

the print feature—that eases its management. Fig. 4 shows HTML page screenshots visualised with the slices for normal,

long-sighted, and colour-blind users (the case of blindness is not shown for obvious reasons). 

Let us detail how the process explained in Section 3.1 and summarised in Fig. 3 is applied to this demonstrative study. To

allow for runtime adaptation based on user’s (dis)ability, (separately from the viewer application) user profiles are associated

with their log-in accounts. Let us assume that the user profile change is identified according to the fingerprint/login id

provided by the new user when starting to look at the viewer that is already in use. Note, the profile changes at system level

not at the application level; the application still behaves as usual. The profile change is the event that triggers the adaptation

of the application. When the user profile changes, the event manager notifies the adapter component about the new profile

and the concerned context which in our case is the AF show 

application feature. Finally, according to the new profile, the

slices associated with the language features in the μshow 

micro-language are replaced with the version corresponding to the

visual impairment of the current user. In this case, the change will affect all uses of the changed language features since the

same kind of accessibility support is needed for the whole application. Notice that when, in response to a profile change

event, we switch slices in the interpreter or we inject semantic actions into the syntax tree, the original application code

never changes, i.e., the application remains unaware of the supported adaptation. 

Listing 6 (b) shows the μDA script for swapping the current slice for the print language feature with the one needed

when the user’s profile change from healthy to blind . Notice that, the change is driven by the context definition (the
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Listing 6. Scripts for the HTML viewer management. 

Listing 7. Javascript for the Mandelbrot set calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

new and old names) that is provided by the association between the μshow 

micro-language and the AF show 

application

feature. The micro-language provides information about which language features (slice in the Neverlang parlance) should be

affected by the change whereas the application feature describes where such language features are used limiting, de facto,

the effect of the change. Listing 6 (a) shows the script that drives the adaptation by executing the μDA script in Listing 6 (b)

(line 5) when the event occurs (i.e., when the user profile changes). 

5.2. Localised adaptation 

The second demonstrative study considers the calculation and pictorial drawing of the Mandelbrot set, aiming to speed

up the set calculation by parallelising the computation cycles [9,28,29] . As discussed below, we define micro-languages for

the application features and the parallelising change is supported through these micro-language change. 

Listing 7 shows a traditional Javascript implementation of the Mandelbrot set calculation algorithm. Several application

features can be identified in this code, such as: AF calc that calculates the values of a point (covering the while statement

at line 8 with its body), AF cols that cycles on the columns of the final picture (the nested for at line 5 with its body but

excluding the calculation of the point) and AF rows that cycles on the rows of the final picture (the for statement at line 4).

Micro-languages bound to AF calc , AF cols , and AF rows (with the language features denoted by their syntactic symbols) are 

μcalc = { while, = , - , + , * , > , && } 
μcols = { for, = , - , / , < , ++ } 
μrows = { for, = , < , ++ } 

As can be noticed above, these three micro-languages are largely overlapped, so a change to one of the language features

(e.g., to for or = ) will also affect the other application features if performed system-wide. 

The two nested for loops in Listing 7 clearly have independent stages (the values of each point are calculated fully

independently) and so could be both parallelised. This could be easily done by replacing the slice for the for statement

with one with a parallel implementation and immediately all the occurrences of the for would be parallelised (similar

to the system-wide adaptation of the print language feature in the previous study ( Section 5.1 )). But a more interesting



W. Cazzola et al. / Computer Languages, Systems & Structures 51 (2018) 71–89 83 

Listing 8. μDA’s scripts to toggle for and parfor . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

case is to see if the change could be localised to only one occurrence of the for statement—let’s say, the nested occurrence

which is used by the AF cols —application feature leaving the other occurrence unchanged. 

Fig. 5 (a) visualises a portion of the PT for the Mandelbrot set calculation showed in Listing 7 ; the nodes representing for
statements are purple coloured. This PT is rooted at the node for the first for statement (line 4). This for statement has

four parameters: initialization, condition, increment, and body, all of which are referred to by the node’s children. For sake

of simplicity, in Fig. 5 (a) we draw only two children of this node: the node on the left represents the first three parameters

and the tree on the right represents the body of the for statement. The body of the for statement is a sequence of

statements so its first node represent the sequence operator (the ; ) 8 . The second for statement (line 5) is represented by

the left sub-tree of the sequence operator. The rest of the tree is irrelevant for this discussion and not further considered. 

Looking at the PT gives an at-a-glance view of the relations between different statements during the interpretation. It

is evident that there is a path in the tree from the node of the first for to the second one. Similarly, the definition of

the application feature for AF cols and therefore the belonging to the μcols micro-language provide the same information.

Note that an application feature is demarcated as a set of code lines/statements. In Fig. 5 (a), the μcols micro-language is

represented with a striped bloat. The effect of substituting any occurrence of the for language feature with a parallel

for is illustrated in Fig. 5 (b). In this case, all nodes representing for occurrences (the purple ones) are replaced by nodes

representing parallel for occurrences (the light green ones). Instead to get the desired evolution ( Fig. 5 (c)) with only the

second occurrence of the for language feature replaced we have to exploit the context information provided by the μcols

micro-language as done in the μDA scripts reported in Listing 8 where the << operator (line 6) is used to capture the

second for occurrence. 

The whole experiment binds the speed up/slow down of the Mandelbrot set calculation to the presence/absence of a

stable power source. When the laptop runs on the battery it uses only one core to save the battery and the sequential

implementation for the for statement is used. When the laptop is plugged into the mains, more cores can be used and

the sequential for is replaced with the version that executes the loop stages in parallel on more cores. The event manager

monitors the battery and toggles between the two scenarios (script in Listing 9 ). Two μDA scripts are used ( Listings 8 (a) and

8 (b)) to deal with the toggle of the language features. Both rely on the context information that comes from the micro-

language μcols . The nonterminals (the head in particular) of the production for the for statement are retrieved and used to

search the PT for its occurrences. Similarly, the action to inject updated code is retrieved from a given slice and used where

necessary, in accordance with the path matching operators. The only real difference between the two scripts is the action

to be injected, toggling between the sequential and parallelised scenarios. 

To informally evaluate the effectiveness of our run-time adaptation solution, we get the program to calculate a Mandel-

brot set of 300 × 300 points, that is, the external for loops 300 times. We run the application in 3 batches of 100 runs

each, starting with an unplugged (i.e., single core) state. As the application is running, we plug in the laptop, thus triggering

adaptation to multi-core calculation. In the first batch of runs, the laptop was plugged in between the 0th and the 75th

lap of the external loop and we obtained a speed up of 44.32% on average. In the second batch of runs, the laptop was

plugged in between the 76th and the 150th lap of the external loop and the achieved speed up is 31.32% on average. In the
8 This is true also when the body is a single statement because Neverlang.JS, for sake of simplicity, does not have the simplification rule for this case. 
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Listing 9. Event manager script to deal with power source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

last batch of runs, the laptop was plugged in between the 151st and the 225th lap of the external loop and a speed up of

20.65% on average was achieved. Plugging the laptop after the 225th lap has been considered insignificant from the point of

view of the speed up. As expected, the sooner the parallel implementation of the for statement was used in the running

application, the larger was the achieved speed up. 

6. Discussion 

Micro-languages are enablers for dynamic software evolution. Here we discuss the strengths and weaknesses of this

approach and we provide an initial evaluation of its benefits. 

6.1. Modularity through micro-languages 

By definition, a micro-language is conceptually aligned with an application feature and so directly encapsulates the fea-

ture concern. Hence, the adaptation of an application feature implies a very localised update to the related micro-language

and, to (all or some) occurrences of the corresponding language features. In many cases, the update would affect only a

few semantic actions. Furthermore, the modular approach that associates an application feature with a micro-language both

limits the effect of the change precisely to the relevant application feature, and confines the required verification/validation

for the new code to that single feature. This allows for better scoped and effective verification/validation, with no need to

consider the scope of the whole application. 

It is also notable that this approach also separates the syntactic definition of control flow of the program from the seman-

tics of the executed computation. For instance, in the above presented examples the same given print syntactic statement

results in different visualizations of the HTML page, and the given for structure of the Mandelbrot set algorithm results in

different com putation sequences. Thus, a new modularity construct for concern separation at the application feature level is

provided. 

In short, micro-languages foster modularity as: i) they are built from language features that are modularly implemented;

ii) each language feature provides a clear composition interface that allows limiting the ripple effects [30] of changes; and

iii) a language feature can be implemented and validated separately of the application that will use it. 

6.2. Composability of micro-languages 

While the modularity support of the micro-languages is clear and beneficial, it cannot work without adequate compo-

sition support. In this approach composition is carried out through micro-language definition and interpretation at event

occurrences. Here: (i) each micro-language relates to the events that are relevant to it; (ii) each micro-language defines

what will be executed by re-defining the meaning of the language features available in the given language. The composition

is the most challenging part of the implementation and it strongly depends on good tool support for correctness checks,

usability, and general acceptance. Being a rather novel proposal, at present, this approach has little to offer in terms of

development tool support. This can be particularly difficult to handle when the adaptation effects need to be limited by

the context provided by the micro-languages. In the absence of good tool support, a misalignment between the application
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Table 3 

Number of line of code changed for adaptation. 

a pplication-level m icro-language 

a daptation v ariants l anguage feat. a pplicat. feat. 

HTML viewer 26 215 57 0 

Battery 12 64 48 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

features and the micro-languages could occur and it could have devastating effects with undesired application adaptations

due to an unmarked overlapping of micro-languages. Furthermore, a change at language level could introduce new potential

vulnerabilities and security risks—a topic that has yet to be investigated. 

6.3. On the ease and cost of adapting application features 

In order to validate the potential utility of our approach, we must discuss if the effort needed for dynamically adapt-

ing a given application through micro-languages is less than that needed for adapting that same application code without

the help of micro-languages. For this discussion point, we conducted a simplistic evaluation experiment that draws on the

demonstrative examples presented in Sect. 5 . It involves five artefacts using different versions of the HTML viewer presented

in Section 5.1 : the plain viewer, viewer that supports three types of visually impaired users (both versions presented in

Section 5.1 ), viewer that dims the laptop’s screen when the battery’s charge goes below 50% 

9 , and two additional equivalent

implementations of the HTML viewer except with adaptations for the mentioned visually impaired support and dimming

carried out by changing only the application level code (i.e., no change at the language level for the last two implementa-

tions) but still on the same variant of Neverlang.JS to keep the implementations comparable. 

As a rough approximation for effort, we calculate the number of lines of application code as well as lines of language-

level code needed for adaptations in each noted version. To minimise skill-dependency all examples were developed by

an experienced Neverlang developer. To recap, we have a common basis (the plain HTML viewer) and two versions of

comparable adaptations realised with and without micro-languages support. Table 3 shows the observed results in terms

of lines of code (LOC) needed for these adaptations. The data for versions without/with micro-language support is shown

on the left/right of the table respectively. The LOCs provided for the micro-languages-based adaptation include changes

needed to modify the language and to adapt the application. The LOCs in the case without micro-languages implementation

show changes needed to support the dynamic adaptation and those needed to implement the variants. 

We observe that there is a general reduction in the needed LOCs when micro-languages are used; the reduction is more

evident at the application-level as expected . The first row is for the accessibility adaptation; the second one for the dimming

support. An average of 19 (26 and 12 respectively) LOCs was needed to provide a minimal structure for dynamic adaptivity

without micro-languages. Moreover, about 215 LOCs were necessary to implement four different behaviours of the print
language feature from Table 2 . On the other hand, given an adaptivity framework as described in Fig. 3 , adaptation through

micro-languages would require no additional LOCs by the application programmer. Instead, the behavioural variants have

to be implemented by the language programmer and we observe that about 57 LOCs were necessary to implement the

statements from Table 2 and to program the adapter for micro-languages. The main difference is that with micro-languages

the adaptation is confined to one point (the print statement implementation) and this is transparently adapted (we change

the semantic of the statement not its syntax). Whereas without micro-languages, to smoothly support the change the print
statement has been replaced by a call to the function implementing the behaviour variability and to change each occurrence

of the print statement represents an extra cost in terms of changed LOCs. The dimming adaptation is more contained in

terms of modifications, we have only one variant instead of three as for long-sighted, colour-blind, and blind impediments.

This explains the lower modified LOCs (64 for the application features and 48 for the language features). Please note that

also using a pure Javascript implementation—i.e., without a print statement—for the adaptation at the application level

the entity of the change would be of the same extent since we have still to adapt all the calls to the API used to print. 

Thus, from our simplistic experiments, we conclude that our adaptation support has promise for reduction of code size

and improved localization of change, and modularity. It also proposes a new way of programming and composition, which

cannot be accomplished without good tool support. 

6.4. Limitations and open challenges 

Several aspects of the proposed DSU approach are still challenging: (i) the definition of the existing application features

and their association to micro-languages, and (ii) the use of program data—such as method and class names—to refine the

area of influence of a language feature change. 

Currently, which piece of code is part of an application feature is manually defined whereas the identification of the

language features used to implement such a language feature—that is, the definition of the corresponding micro-language—

is delegated to a variant of the language parser that recognized the used language constructs. A manual identification of
9 This draws on the events used in the Mandelbrot example but acts on a different language facet to dim the screen when the laptop is unplugged. 
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the application features is a tedious and error-prone task and it is hardly maintainable: any change to the program will

imply a reclassification of the code in application features that, if not done, would undermine the correctness of the μ-

DSU work. Automation of this task is, therefore, desirable and is part of on-going investigations. The easiest way should

consist of asking the developer to decorate the code with meta-data about the piece of code that belongs to a particular

application feature; similarly to what was done in [31,32] . This approach would help with the maintenance issue but it

still requires some manual identification with all the problems this entails. Some more automated approaches to concern

mining are under consideration, such as associating an application feature with: each method as in [33] , to all modules that

calls the same method as in [34] , code elements (methods, fields, ...) that present some naming similarities as in [35] or

code fragments identical at the AST-level and widely reused as in [36] . All these techniques are automated but focus on

crosscutting application features whereas we need to identify any application feature. 

Völter [37] defined the concepts of linguistic and in-language abstractions to denote the language elements—our language

features—and program ones—class, field and method names and definitions—respectively. Both are abstractions that can 

represent update points. μ-DSU focuses on linguistic abstractions but we are aware that some kind of adaptations—such

as corrective adaptation—could be more easily achieved by addressing them at program level or at least having some in-

language abstractions at disposal. As μ-DSU is a dynamic software update framework, the program is available during its

interpretation under the form of PT and the single program data (not the data used by it) as method names would be

available through PT attributes. Therefore, in μ-DSU, language adaptation is just the matter of either replacing a slice or

injecting a semantic action at a specific node of the PT whereas a method change corresponds to a PT rewriting. Both

approaches are feasible and supported by Neverlang as explained in [20] and [26] , respectively. Nonetheless, we consider

the support of changes at in-language abstractions too complex with respect to the support provided by other DSUs (that

do not support changes at linguistic abstractions as μ-DSU does) and we are still investigating how to limit this complexity

before introducing in-language abstractions in μ-DSU. 

7. Related work 

Significant research has been done in the area of adaptive systems. The work here can be categorized as either archi-

tectural [38,39] or linguistic [40,41] , or a combination of both [42] . Architectural approaches adapt an application by either

adding, removing, or substituting one of its components. Traditional DSUs (such as JavAdaptor [1,4] , DUSC [5] , Rubah [3] and

JRebel [2] ) are a variant of architectural approaches where evolution is not just a matter of system reconfiguration but also

supports changes in the code. Such DSUs suffer from performance decay (due to indirections introduced bytable forwarding

and object proxies) [1,5] , limited program adaptation (no class re-positioning [2] , either limited—UpgradeJ [43] —or no sup-

port for schema changes—HotSwap [44] ), misalignment between design and executable code [31,45] and a general difficulty

in maintaining the evolved code [46,47] . 

On the other hand, linguistic approaches support changes to both the application code and its behaviour. The idea to sup-

port evolution through ad hoc language constructs was first introduced in [48] . This idea is not orthogonal to the general

DSUs approach, rather it allows to get the same evolution, with a better focus on the introduction of non-functional features.

Today we have three types of mainstream linguistic approaches: aspect-oriented programming [49] (AOP), reflection/meta-

programming [50] and context-oriented programming [51] (COP). Both AOP and reflection provide mechanisms to inject new

code into an application yet keep the new code separate from the original one. AOP supports a complete decoupling of

the new code (the crosscutting concerns) from the rest of the application code. Very few AO languages—such as CaesarJ

[52] and AspectJ’s load-time weaving [27] —have any (limited) support for dynamic weaving at all, to update a running sys-

tem. Despite AOP’s poor support for dynamic updating, a few DSUs were developed on top of it [53–55] . As an interesting

by-product, μ-DSU—and in particular the adaptation engine provided by Neverlang [20] —could be used as a mechanism

to implement dynamic aspect-oriented weaving at the language-level. Meta-programming approaches rely on the reflec- 

tive features of the programming language and its runtime system. Reflection is used to observe and adapt the underlying

program [56] . Chisel [57] , PKUAS [58] and mChaRM [59] are examples of frameworks that use Java’s reflection facilities to

support software adaptation. COP introduces specific language-level abstractions for behavioural variations. Here the context 

becomes a first-class construct of a programming language [51,60,61] . The system then dynamically selects the appropriate

behaviour or a combination of behaviours based on contextual information and selection conditions. The paradigm allows

one to separate context-dependent crosscutting concerns. One drawback of this approach is that the computation and co-

ordination aspects are often interleaved and behavioural variations must often be explicitly activated [62] . Moreover, the

adaptation is implemented on a per-application basis. Mixins [63,64] and traits [65] are other linguistic approaches to soft-

ware adaptation and evolution; these approaches allow to extend a class with extra methods and override/enrich already

present methods. Matriona [66] is a framework that uses mixins to support dynamic adaptation. 

All these approaches enable solutions bound to the adaptation mechanisms provided by the language itself and they can

hardly be ported to different programming languages and execution environments. They require adaptation to be explicitly

implemented by the application developer in the application space itself. In support of this, Keeney et al. [57] argue that “the

software user, the developer, the designer and indeed the application logic itself all possess invaluable intelligence to gear how

software should adapt itself to changing requirements and changing context”. However, although highly valuable, we believe

that this intelligence is rarely possessed by all the involved actors and thus it requires frequent collaboration between them,

which goes against the principle of removing complexity from the lives of users and developers. On the other hand, as
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described in our approach, moving the adaptation to the level of micro-languages limits the complexity to a small group

of developers which already possesses enough skills to handle the intricacy of complex systems. Furthermore, possible new

behaviours affect a small subset of a language and the adaptation through micro-languages provides technical sustainability

for free to all applications built upon them. 

Kollár and Forgáč [67] investigated the possibility of adapting a programming language interpreter during its execution.

The proposed approach is based on AST rewriting—as implemented by Truffle [68] —and code injection at the PT nodes. Their

proposal shares with μ-DSU the idea of working on the PT but commonalities end there: μ-DSU does not inject code but

uses agents [20] that are dynamically hooked either before or after the PT node. Moreover, μ-DSU confines the effect of

the language change to a specific application feature thanks to the micro-languages and, thanks to μDA, it provides an easy

way to specify the needed adaptation whereas the approach proposed by Kollár and Forgáč does not foresee any facility to

deal with these aspects. 

Research on modular language development and evolution is also related to our work. Languages evolve too [69,70] and

mechanisms to support their evolution are needed as well. Wassermann and Forgáč [71] survey all possible techniques

to adapt domain specific languages implementation. μ-DSU enables grammar-based adaptation —in Wassermann and Forgáč’s

parlance—made dynamic thanks to the Neverlang’s parser, called DEXTER [25] . It permits to add and remove a grammar rule

from an existing parser without regenerating it and therefore recompiling it. This is one of the key concepts that support

language adaptation during the program execution. In the literature, it is possible to find parsers with similar properties as

Tatoo’s [72] and Silver’s [18] even if, in these cases, parser extensibility is limited to rules addition and not to their removal.

Modular language development frameworks although not directly related to software evolution, are enablers for micro-

languages adaptation and as such they can represent a valid substitute to Neverlang in the application of the presented

idea. Examples of modular language development frameworks are: Lisa [12] , StrategoXT/Spoofax [11] , Monticore [73] , Jas-

tAdd [74] , MPS [75] and Silver [18] . Some of these are comparatively analysed in [13,76] . They all provide some mechanisms

for modularising/composing a language, e.g., via inheritance in Lisa and Monticore, term rewriting in Spoofax and MPS and

AST manipulation in JastAdd and MPS. Silver represents the closest approach to Neverlang, even if it is based on functional

programming and pure attribute grammars. These characteristics enable all these frameworks to support software evolution

via micro-languages. Yet, to our knowledge, none of them supports separate compilation and dynamic AST manipulation.

Therefore any micro-language extension will imply recompiling the whole interpreter hindering the possibility of deploying

adaptations at runtime. Tatoo [72,77] focuses on grammars composition de facto enabling separate compilations but it does

not support the modularization and composition of the language semantics: it could be integrated with any other mod-

ular language development framework to get the needed semantics support. More in general, any language development

framework, such as Xtext [78] , could provide micro-languages support to DSU, but modular development frameworks are

preferable since they provide a finer change granularity and so are more flexible. Also approaches that enable language mod-

ularity through interpreters compositions—such as those approaches that use either bridge interfaces [79] or language boxes

[80] —can be enablers for the micro-language support to DSU when the composed interpreters either have been developed

by using modular language development framework or can be modularly modified. 

8. Conclusions 

This paper presents an approach to dynamic software updating through language semantics adaptation, using the novel

concept of a micro-language. Essentially, micro-languages are a new, additional tool for modularising implementation of ap-

plication features which: (i) aligns the application features with the programming language implementing it; (ii) separates

the syntactic definition of control flow of the program from the semantics of the executed computation; (iii) provides a

new runtime composition mechanism for programs, thus expanding the toolset available for programming run-time adapta-

tion. The approach has been implemented in the μ-DSU framework on top of the Neverlang modular language development

environment. Amongst the tasks that we will address in the immediate future are automation of application feature recov-

ery along with identification of their associated micro-languages. This will extend the present work to deal with emergent

and changing application features that would force the adaptation of the application. We will also develop a richer adapta-

tion language, to substitute μDA, based on path temporal logic concepts. Further evaluation that also considers proficiency,

security and efficiency aspects of this approach are currently underway. 
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