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a b s t r a c t

Recent advances in tooling and modern programming languages have progressively
brought back the practice of developing domain-specific languages as a means to improve
software development. Consequently, the problem of making composition between lan-
guages easier by emphasizing code reuse and componentized programming is a topic of
increasing interest in research. In fact, it is not uncommon for different languages to share
common features, and, because in the same project different DSLs may coexist to model
concepts from different problem areas, it is interesting to study ways to develop modular,
extensible languages. Earlier work has shown that traits can be used to modularize the
semantics of a language implementation; a lot of attention is often spent on embedded
DSLs; even when external DSLs are discussed, the main focus is on modularizing the
semantics. In this paper we will show a complete trait-based approach to modularize not
only the semantics but also the syntax of external DSLs, thereby simplifying extension and
therefore evolution of a language implementation. We show the benefits of implementing
these techniques using the Scala programming language.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the practice of developing domain-specific languages (DSL) to deal with domain-specific problems
has started to regain interest among researchers and practitioners as demonstrated by surveys and books [1,2] and a
more recent study about research trends and applications of DSLs [3]. Support tooling is becoming more and more
powerful, flexible and convenient, with the introduction of new frameworks and platforms; modern API design is
progressively converging to a style that resembles an embedded language, to the point where the very distinction
between a DSL and a general purpose language (GPL) is becoming thinner; a style that Martin Fowler and Eric Evans
dubbed fluent interface [4], and that languages such as Scala [5], Smalltalk, Ruby and Groovy actively promote the
flexible parser and syntax of such languages allow users to even omit some punctuation, making it simple to simulate
the embedding of a foreign language. For instance, Listing 1 shows a Scala internal DSL (punctuation that can be
omitted has been dimmed).
.
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Listing 1. A state machine language as a Scala embedded DSL

However, language embedding as a fluent interface has still to obey to the host language limitations; inevitably, external
DSLs provide an unrivaled level of syntactic flexibility (for instance, compare the state machine in Listing 1 with the
equivalent written in an external DSL and reported in Listing 3), at the cost of requiring developers to write their own
parsing routines, and to implement the semantics of each single construct. Nevertheless, modern libraries and languages
today provide programmers with tools that make developing their own external DSL within their reach. For instance, parser
combinator libraries [6–8] make it possible to define an executable parser in such a way that the code that describes it
closely resemble the structure and looks of its formal grammar. We are getting closer and closer to a full componentization
of language implementations, where domain specific languages could be implemented as the combination of features
concretized as reusable assets.

Modular language development is a research branch that investigates tools and techniques to componentize the design
and implementation of languages, with particular attention to DSLs, where each feature may be easy to represent as a
distinct code unit, making a language implementation very close to a combination of a selection of such components,
realizing a form of feature-oriented language composition [9–12]. In general a language implementation can be described by
(i) a parser for a concrete syntax, yielding (ii) an abstract syntax tree that puts in relation the concrete syntax of an input
programwith an abstract syntax representation, and (iii) the semantics that can be associated with the nodes of the abstract
syntax tree [13,14]. These three parts of a language can be decomposed into a collection of language components [9,15], that
is, a sort of bundle that includes the syntax, and the semantics of that construct; the semantics may be represented as a
sequence of evaluation phases (e.g., type checking and evaluation) that pertain to that particular construct (Fig. 1). A language
component can be shared and distributed as a whole across different language implementations, possibly as a binary, pre-
compiled package; the final objective is to provide the features of the language as self-contained bundle of components that
can be just combined together. The contribution of this work is to synthesize a collection of patterns and techniques that can
be used to implement language components, using traits, lightweight entities of code reuse that are often contrasted to
single and multiple inheritance [16,17], and that have been already shown (e.g., [18,19,12]) to be especially good to achieve
language componentization. To this end, we will show how to

� separate the syntactic concern from the construction of the abstract representation of the language;
� separate the abstract representation of the language from the implementation of its semantics;
� modularize the implementation of the semantics in distinct phases;
� decouple the abstract representation from the semantics of each phase, possibly expressing dependencies between

phases.

We will use traits to componentize the parser implementation in such a way that the code resembles a grammar, thereby
making it easier to understand and develop, and to implement the interpreter pattern separating different concerns of the
semantics of the language constructs.

The benefit of representing language concepts through traits is an improved modularization, thereby simplifying code
sharing across language implementations. Moreover, since traits in most languages can be written as separate code units,
employing them in the modularization of a language makes it possible to compile each language component separately and
independently from the others, allowing them to be shared as binary assets, that, nevertheless, can still be combined
together post-compilation.
Fig. 1. A language component.
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The approach that we present has been influenced by many sources of inspiration: first of all, Scala's parser combinator
library bundles traits with predefined combinators for commonly used literals and regex patterns, that users can mix-in to
their classes; then, our experience with the implementation of the Neverlang framework [15,20–22] for componentized
language development, with which the trait-based model that we will present shares a few commonalities; finally, the
previous work on modularizing the semantics of an interpreter (e.g., [12,18,19]). The objective of this work is to present a
complete solution, including syntax and semantic composition, to realize the implementation of language components. The
final goal will be, in the future, to be able to implement languages in a feature-oriented way, possibly using feature modeling
techniques to present the variability in a language family; such an experience has been already carried out—see [9,23,24]—
using our own programming language framework, that provides first-class support for language components (known as
slices); in this work we want to show that, although a dedicated tool simplifies a componentized model of language
development, a similar degree of code reuse can be reached by employing constructs and features that are already available
in many modern GPLs.

For this work we chose to use Scala's trait implementation, since it completes Schärli's original prototype [16] with the
additional guarantees of correctness that a static type system provides. Nevertheless, the approach should be portable to any
language that supports trait-like composition and a library for parser combinators, such as Smalltalk, Ruby, and Groovy.

A simple state machine DSL: As our running example we will use a simple State Machine language similar to the one from
Tratt's paper [25] (see Listing 2). Similar to Tratt, we will also show how to extend the basic state machine DSL with guards
and action language; but in our case the extended DSL will be the result of composing together traits from the basic state
machine language and a separate action language.

Listing 2. State machine DSL grammar.

Listing 3. Door state machine for the grammar in Listing 2.

The rest of this paper is structured as follows. Section 2 describes the background. Then the paper is divided into two
parts: in Section 3 we will draw a parallel between grammars and traits and we will show that it is possible to modularize a
parser implementation in the same way we will partition the set of rules of a formal grammar. In this section we will use
Scala's traits and its parser combinator library. In Section 4 we will show how to implement the semantics of our DSLs using
traits to decouple the semantic implementation of the interpreter from the abstract representation of language concepts.
Section 5 expands the running example of state machines in a full case study, by extending the basic state machine language
with support for an action language and guard expressions. Section 6 compares our solution to some related work, and in
Section 7 we draw our conclusions.
2. Background

We will give a few details on the technical background that is required to understand the rest of this paper. We first
briefly recap formal grammars, then we define the concept of trait as found in [16,17], and finally we describe the pecu-
liarities of Scala's trait implementation, with respect to the features we will use here.
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2.1. Formal grammars

In the following we will assume that the reader has some confidence with language theory, refer to a book on the topic
for general definitions (e.g., [26]). In short, a formal grammar is a tuple G¼ 〈Σ;N; P; S〉, where Σ is an alphabet of terminal
symbols, N is an alphabet of nonterminal symbols, P is a set of production rules and SAN is the start symbol. A production rule
(or simply a production) is written as A-ω where AAN, and ωAðΣ [ NÞ�, with ðΣ [ NÞ� being the transitive closure of set
Σ [ N with respect to symbol juxtaposition. The generated language L(G) of a grammar is the set of all the words that can be
derived from a starting nonterminal S for the grammar G. A language for a grammar G is said to be empty if LðGÞ ¼∅ and,
conversely, non-empty when it contains at least one sentence. In other words, there exists at least one sentence (or word, or
program), that can be expressed using the language represented by G. In the following, we will assume grammars that
generate non-empty languages, and, for simplicity, we will make the assumption that our grammars do not contain the
empty word ε.1

Listing 4. A trait-based parser for grammar in Listing 2.

2.2. Parser combinators

A parser can be seen as a function that takes a stream of characters as input and produces a parse tree. Higher-order
functions known as combinators can be composed together to construct grammar structures such as sequencing, repetitions,
1 As is well-known this is not a real limitation since any context-free grammar with ε can be transformed without losing any information in a grammar
without any empty word. This only affects the grammar size.



W. Cazzola, E. Vacchi / Computer Languages, Systems & Structures 45 (2016) 16–3420
optionality and choice. If the host language supports infix operator notation, then a grammar rule written using parser
combinators resembles an EBNF production. The biggest advantage of parsing with combinators is improved composability;
larger parsers are generated by taking simple, primitive parser and composing them functionally. There are many object-
oriented frameworks for parser combinators, for instance jParsec2 and Scala parser combinators [7]. All implementations
use the host language to build an object model of parsers.

Scala's parser combinator library provides a hierarchy of traits, the base trait Parsers provides the basic combinators,
and its descendants provide utility combinators, like pre-defined tokenizers; e.g., JavaTokenParsers defines combinator
for Java-style identifiers, numbers, string literals, etc. Each combinator is represented as an instance of a Parser[T], a
function Input ) ParseResult½T�. Parser[T] provides methods that combine the Parser[T] on which they are
invoked with the combinator that they are given as an argument. For instance p.~(q) is the sequence combinator, p.* is
the repetition combinator, etc. The ^^ attaches an action to the combinator it is invoked onto. Because of Scala's ability to
emulate infix operators through methods, combined with implicit conversions (e.g., a quoted identifier such as "state" is
implicitly converted into the combinator literal(''state'')), Scala's parser combinators closely resemble the EBNF repre-
sentation of the syntax of the language. Listing 4, that we will describe with more detail in Section 3, shows the parser
combinators that implement the grammar in Listing 2.

2.3. Traits

Formally, a trait [16,17] is a function t:N-B�, mapping the set N of method names into the set B� of method bodies; the
set B� includes the undefined method (?) and the overspecified method (>) that represent required methods and conflicting
methods, respectively. A trait is free of conflicts if, for each method name nAN it must always be the case that tðnÞa> .
Traits are composed of the sum operation þ : T � T -T ; given two traits t1; t2AT the sum trait t ¼ t1þt2 is the respective
union of all the provided and required methods in t1 and t2. In case of conflict, it is possible to provide a method dictionary d
with an alternative definition of the conflicting methods in t; this is defined as a function d▹t:N-B�:

ðd▹tÞðlÞ9
tðlÞ dðlÞ ¼ ?
dðlÞ otherwise

(

where a method dictionary is again, a mapping d:N-B�.
Traits in Scala: Although there is sometimes debate about whether Scala's traits do really follow closely Schärli's original

formulation [16], but Schärli compared Scala's trait implementation with his work [27]; the main differences are that they
are modeled as a “special form of an abstract class” [28] that does not encapsulate state; they cannot only be composed but
can also be inherited; they support generics; they do not support aliasing and exclusion. Otherwise, Scala's trait imple-
mentation is pretty close to the original definition, while the main limitations can be ascribed to the fact that Scala is a
statically typed language whereas Smalltalk (the original implementation target) is a dynamic language. For instance, when
two traits provide different, alternative, conflicting implementations of the same member, Scala is able to resolve auto-
matically the conflict, by considering the order of composition of the traits (this is one way to tackle the diamond problem)
otherwise the conflict has to be resolved manually; for more details, see [28]. Being Scala's traits statically typed, mixing in a
trait with another requires to pay extra care to the type signatures of the members; however, besides methods Scala's traits
include abstract type definitions to require that a concrete implementation provides a valid definition of a type at the moment
of instantiation. For instance, in Listing 4 each trait provides the definition of concrete members (e.g., statemachine), it
requires the definition of abstract members (e.g., body) and it declares abstract return types for its abstract members (e.g.,
TBody).

For a given trait t, in Scala it is not possible to override members of twith anymethod dictionary d. For instance, arbitrary
redefinitions of a concrete member's return type are clearly forbidden: in particular, overriding methods may be contra-
variant in their arguments and covariant in their return types. For instance, let t(n), with nAN be a function f :A-B for two
arbitrary sets A, B, and let d be a dictionary of overriding members for t: we can define t0 ¼ t▹d if and only if d(n) is a function
g:A0-B0 and both A0+A and B0DB.
3. Trait-based grammar modularization

A parser is usually defined as a single, self-contained entity, but reasoning by analogy with language grammar, a parser
may be easily componentized. A grammar can be partitioned into a collection of interdependent sets of productions. Using
parser combinators and traits, we provide a construction method to represent such sets and their dependencies as plug-
gable, shareable and reusable components. The resulting traits implement parser components that can be easily combined
together, unplugged for language restriction, and shared with other languages for extension (Section 5). Similar results could
be achieved by using inheritance [29] but sacrificing some flexibility when the language does not support multiple
inheritance.
2 jparsec.codehaus.org

http://jparsec.codehaus.org


Table 1
Analogies between traits and sets of productions.

Traits Production Sets

A trait t provides the set of methods fnAN ∣tðNÞa ?g Pk provides a set of rewrite rules for the nonterminals XApðPkÞ
A trait t requires the set of methods fnAA ∣tðNÞ ¼ ?g For all XArðPkÞ, it requires that there exist X-ωAPj, with PjAP
For all pairs of traits ti ; tjAT it is possible to define the sum tiþtj; in

case of conflicts in t ¼ tiþtj a function d▹t: A-B� must be pro-
vided to resolve them

For all pairs Pk ; PjAP it is possible to define the union set Pk [ Pj . In grammars
there is no notion of conflict, but two productions with the same left-hand
side represent an alternate choice in a derivation step. For instance, consider
some derivation γ ) γ0 with γ ¼ αAβ, and suppose that A-ω;A-ω0AP, then γ0

might be either αωβ or αω0β. This follows from the definition of derivation
step and does not require an explicit resolution

Assuming that there are no conflicts, the composition of tiþtj is
equivalent to the flattened trait t that contains all of the methods
defined either in ti or tj

The union Pj [ Pk is the collection of the productions either in Pj or in Pk; in
other words, the set Pj [ Pk � fpAPj3pAPkg.
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For a given grammar G¼ 〈Σ;N; P; S〉, the set of its productions P can be thought of as a collection of disjoint sets of rules
P0; P1;…; Pn�1 such that P � P0 [ P1 [ … [ Pn�1, each of which may represent a different syntactic feature of the language.
In other words, for a set of productions P, we can define an n-size partition P¼ fP0; P1;…; Pn�1g, and each set PkAP would
represent a different syntactic feature or concern of a language.

Example. Consider the state machine grammar in Listing 2. Productions have been grouped into logical sets of features:
(i) the container for the body of the state machine, specifying an initial state, (ii) the body of the state machine, as a sequence
of states plus a sequence of transitions, (iii) the definition of a simple state as an identifier, and (iv) the definition of a simple
transition as pair of state identifiers, plus a name.

Now, let G be a grammar such that LðGÞa∅. Then there is at least some wALðGÞ and consequently there must be some
sequence of derivations

S ) γ ) γ1 ) γ2 ) ⋯ ) γm ) w:

By the definition of derivation, we write γ ) γ0 if and only if there are α; β;ωAðΣ [ NÞ�, AAN such that
ðγ ¼ αAβÞ4 ðA-ωAPÞ4 ðγ0 ¼ αωβÞ. Thus, for each derivation step there must be some rule A-ωAP. In particular, if we
consider a set P of n40 partitions of P, then, by definition of partition, there is exactly one PiAP such that 0r ion and
A-ωAPi. Then, for each partition Pk of productions, we can define a set rðPkÞDN of required nonterminals and a set
pðPkÞDN of provided nonterminals. Then, for j¼ 0;1;…;m, with m¼ jPkj, each production is of the form:

Xj0-Xj1Xj2⋯Xjnj

where nj is the number of right-hand symbols in the j-th production (thus njþ1 is the number of symbols of that
production).

� The provide set pðPkÞ is the set of all the left-hand nonterminals of all the productions in Pk:

pðPkÞ ¼ fXj0∣j¼ 0;1;…;mg;

� The require set is the set of all the right-hand nonterminals of all the productions in Pk, that are not also in pðPkÞ:
rðPkÞ ¼ fXji∣j¼ 0;1;…;m; 0o irnj; Xji =2pðPkÞg

For instance, the set fBody-State�Transition�g in Listing 2 provides Body and requires State and Transition.
Grammar composition: Because of the definition of partition, it is clear that any grammar G¼ 〈Σ;N; P; S〉 can be seen as the

union P0 [ P1 [ ⋯ [ Pn�1. But also, for each language with a grammar G, it is always possible to define a grammar
G0 ¼ 〈Σ;N; P0; S0〉 where S0AN and P0 is

P0 ¼ ⋃
Pi AP0 � P

Pi:

In other words, every grammar G0 can be seen as the union of a collection of sets of productions P0, which is itself a subset of
a universe of sets of productions P, with some axiom S0AN (not necessarily such that S¼ S0), and it is easy to see that
LðG0ÞDLðGÞ for all P0 � P. In particular, in order to guarantee that LðG0Þa∅, we might want to pose the following restrictions:

S0ApðPkÞ; PkAP0 ð1Þ

XArðPkÞ; PkAP0⟹(PjAP0:XApðPkÞ ð2Þ
That is, the axiom for G0 is a provided nonterminal for some set PkAP0. Moreover, for each required nonterminal X in a
production set Pk there must exist a set of rules Pj such that it provides X. Notice that (2) is a strong requirement: in fact,
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although for each set P0 for which (1) and (2) hold, it will be LðGÞa∅, it is easy to see that there might be cases when
LðGÞa∅ even when (2) is not satisfied.3 For instance consider the sets:

P0 ¼ fS-xg; P1 ¼ fA-Bg
then grammar G¼ 〈Σ;N; P0 [ P1; S〉 generates a non-empty language, although there is BArðPkÞ and B=2pðP0Þ;B=2pðP1Þ.

In the following we propose a construction method to represent a production set Pk as a trait tk and we show how the
union operation Pk [ Pj, for Pk; PjAP relates to the trait composition tkþtj. We will see that, with this method, such
restrictions play an important role.

3.1. Trait construction

If we consider a partition P of the set P of productions of a grammar G, each set of the partition shares many com-
monalities with a trait; for brevity we summarize them in Table 1. A recursive descent parser would implement each pro-
duction of a grammar as a function, and one way to implement such functions is to employ parser combinators (Section 2.2).
A grouping of these functions could represent a set of productions in a partition, with all of its dependencies (that is, its
require set). Traits may represent this grouping, thereby implementing a modular parser for a given grammar G.

Let be PkAP, then the trait tkAT is defined as follows:

� XArðPkÞ⟹XAN, with tðXÞ ¼ ? , that is, each required nonterminal X is a required method of t.
� XApðPkÞ⟹XAN and it will be tðXÞa ?; in particular, let pjAPk be the j-th rule in Pk of the form X-ω, such that:

pj ¼ X-Xj1Xj2⋯Xjnj

then the body of the method named X is a function of all the right-hand nonterminals of all the productions with left-
hand X; and in particular, using the notation in [31], the method named X will be:

tðXÞ ¼ X11�X22�⋯�X1n1

[X21�X22�⋯�X2n2

[ ⋮
[Xm1�Xm2�⋯�Xmnm

where “�” denotes the parser combinator for sequence, “[” denotes the parser combinator for alternative choice (union),
and each XijAN when it is a nonterminal (that is, it is also XijAN); if XijAΣþ , then it is represented using the parser
combinator that matches the character sequence Xij. Finally, assuming EBNF grammars, the grammar formalism will also
include the quantifiers ‘?’, ‘n’ and ‘þ ’. In this case, for each quantifier in the grammar, there will be an equivalent
combinator in the method body.

Listing 5. Composition of the traits and type refinement.

Example. We previously showed (Listing 2) the grammar for our simple state machine language. In Listing 4 we translated
the four sets of production sets into traits: StateMachine, State, Transition and the Body of a StateMachine. Scala's
traits require to (i) declare the undefined members, and (ii) declare the return types of these members. Abstract types make
it possible to declare and use a type that will be defined only when the trait will be mixed-in to a concrete class. This feature
will particularly come in handy when we will later introduce the semantics of the language implementation. As a con-
vention, abstract types in our code will always start with T. The composition of the first version of the language (parser-
only) is shown in Listing 5. At this stage, we finally have to define the abstract types TBody as a list of States and a list of
TTransitions where TState is defined as a String and TTransition as a triplet of Strings.4 Notice how we also
3 For a more extensive discussion on the extension and restriction of grammars and parsers, see also [30].
4 This strange type signature is the result of how Scala represents the return type of the “	” parser combinator; we will not discuss these details here;

for more information see [5].
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compose the library-provided JavaTokenParser trait, which provides a definition for ident: a parser combinator that
matches an identifier, and returns it as a String.

Conflicts: Suppose that some grammar provides an alternative definition for some concepts. For instance, in the previous
example there might be the rules:

Transition-ShortTransition;

ShortTransition-Ident } : } Ident}½}Ident}�}

and some trait t would represent them. Now, suppose that the grammar has been partitioned as such:

Pk ¼ fTransition-ShortTransitiong
Pj ¼ fTransition-SimpleTransitiong

then we would have two traits tk; tj with two alternatives, conflicting definitions of Transition. This conflict can be
resolved by providing a resolution (the function d▹t in Section 2.3); this can be done at the moment of the composition by
overriding the method transition:

where “j” is the alternative combinator.
4. Trait-based semantics composition

In a typical interpreter or compiler implementation, the concrete syntax of a language is mapped onto an abstract
representation, the abstract syntax tree (AST). In a functional programming language, we would usually define an eval

(AstNode) function that would pattern match on the type of these nodes. In Scala we could write:

This solution has the limit to centralize the implementation of the semantics of our interpreter in the code of such function,
thus making the interpreter less modular and configurable, especially with respect to data type extensions: adding a new
type of Transition requires to modify the actual body of the eval function. In an object-oriented context, the usual
solution to the problem is to delegate the role of pattern matching to polymorphism. In the interpreter pattern a language
construct is represented as an AstNode type with an abstract evalmethod. Each AstNode subtype defines a concrete eval

method that implements the semantics only for that specific subtype. This, on the one hand, makes it easier to add new
node types to the language implementation, but each concrete AstNode subtype is then forced to comply with the interface
of the base type. On the other hand, we could compose the semantics onto the nodes using traits. The object-oriented
approach, in terms of required lines of code, is indeed more verbose than the functional version, but it leads to an
Fig. 2. AST node composition.
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implementation that is more configurable. For instance, different traits may provide an implementation of a different eva-
luation phase, and these traits could be independently shared and distributed among different language implementations.

In this section we show how to realize amodular interpreter using traits. The key idea is to represent the bare AST node as
a pure data structure and then inject the methods implementing the semantics, thereby decoupling the semantics that these
methods implement from the abstract data representation. Note that the construction of each AST node and its compo-
sition with the traits that implement its semantics (the evaluation phases) can be delegated to a factory method (Fig. 2). In
Section 6 we will describe how this technique compares to the related work [12,18,19].

Listing 6. State machine AST with evaluation and, optionally, verification (optional parts are in violet).

4.1. A modular interpreter pattern

In the interpreter pattern, the collection of the AST node types is represented as a collection of classes c0; c1;…; cm; an
instance of one of these classes represents a typed node; each node class cj implements an eval method; if a node of type c0

is supposed to be a child of a node of type c, then the eval method of c is supposed to invoke the eval method of its child
c0. Using traits, we can decouple the representation of the semantics of the evaluation from the representation of the nodes,
by factoring out the eval method into a trait t. Thus, each node c may mix-in a trait t with a method eval, implementing
the semantics for a particular evaluation strategy of the node c. Using traits, it is possible to configure each node with a
different evaluation strategy, independently. Moreover, assuming that the semantics of a language may be represented by
several phases, i.e., visits of the AST, and that, in the interpreter pattern, such phases could be represented by different
methods, for each class node c it is possible to compose many traits, each implementing a different phase. In other words, let
c be a class representing an AST node, and let t0; t1;…; tn�1 be a sequence of n evaluation phases, represented as traits,
respectively, providing the methods eval0;eval1;…;evaln�1. The AST node can be then composed using the trait com-
position operation “þ”:

t0þt1þ⋯þtn�1

� Each trait tk may require members of c. For instance, if c declares a member n, then it might be that tkðnÞ ¼ ? . The
members of c that each tk may require represent values in the AST node class, prevalently children of that AST node. In a
statically typed context, traits would also impose constraints on the typing of such children.
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� A trait tk may also depend on a particular evaluation phase, by requiring a method evalj, effectively imposing that a trait tj
such that tjðevaljÞa ? will be eventually mixed-in to c.

The evaluation of each AST node will then consist in invoking in sequence the evalk methods that have been composed
onto the node object instance.

Example. In Listing 6 we present the AST types that we use in the state machine language. The AST classes are not
required to expose methods to evaluate the language semantics. Instead, the semantics can be implemented separately in
traits that will be mixed-in at construction-time. A state machine might be compiled, interpreted, verified for correctness (e.g.,
check that all states and transitions are reachable), etc. All these concerns can be easily represented as separate traits. The
semantics of the nodes can then be composed onto the AST nodes at construction time. For instance, if we assume that the
evaluation of StateMachine is implemented by the SMEval trait, and the verification is in the SMVerify trait, then we
might write:

The evaluation of the abstract tree is then similar to the application of a standard interpreter pattern, by invoking the evalk

method, for each implemented phase; alternatively a main phase might be defined that invokes in sequence the required
phases.

Each trait will have visibility only to the members of the node that are relevant to the particular evaluation phase that they
implement, by requiring a member to be available (e.g., transitions, see Listing 6). A trait may also declare dependency on
a particular evaluation phase: this can be primarily expressed using abstract member declarations (e.g., verify) and, in
Scala, possibly using explicitly typed self-references (commonly referred to as the cake pattern [28]): traits may specify that
their self-type should be an instance of a particular trait. For instance, if trait SMEval were to declare its willing to depend
on a verification phase (in violet, in Listing 6), it may require the verify: Boolean method and/or declare the self-type
SMVerify. In the first case the trait is only requiring that a member verify with that signature will be available at
construction time, while the self-type requires that exactly a particular interface has been composed onto the base class at
construction time. Because the state machine is inconsistent when verify is false, the eval method may return an
Option that is None when the verification step has failed. In the online version of this example5 we implemented an error
reporting mechanism using the Either monad.
4.2. AST configuration

Now, only one detail has been left aside, namely, how the parser should construct the node instances, by composing the
phase-specific traits to the semantic-agnostic AST representation. We can impose that each trait that yields an AST node
requires a factory method for that node to be present. For instance, if the method n should return an AST node of type N, then
t0 should require a factory method newN that returns a new node instance of type N. In the previous section, we showed a
construction to represent a partition P of the production set P of a grammar G as a collection of traits. Using abstract types,
type refinements and abstract members we were able to represent the parser as a collection of components, that could be
recomposed at will. At this point, we would like to refine the implementation so that the parser returns AST nodes instead of
a parse tree. However, in Scala it is not possible to extend the previous traits and arbitrarily override their members, changing
their return and argument types (Section 2.3): like in Java, argument types can be contravariant and return types can be
covariant. Nevertheless, it is possible to substitute a trait t with a refined trait t0 that includes alternative member imple-
mentations, with the desired signatures.

In general, if t is a trait with a member n, R is the return type of the method n, and we want to override it with a member
with return type R0, incompatible with R, then we can define a new t0 such that its method n is a function that returns a value
of type R. In our case, the method n for which we would like to change the return type will require an adequate factory
method to be present.
5 neverlang.di.unimi.it/tblc.tgz.

http://neverlang.di.unimi.it/tblc.tgz
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Listing 7. Snippet from the new version of the state machine language, where the parser yields an AST. In blue, the factory
method.

Example. The method sm.lang.Transitiontransition yields a Parser[TTransition] (Listing 4), and it is defined
in terms of the parser simpleTransitionwith type 	[	[String, String], String], that is, a triplet of Strings. Now
consider the function Transition in Listing 7. We can define the new trait AstTransition with a different transition
method defined as the combination of simpleTransition with a function that returns a Transition node. The function is
defined as a factory method, whose implementation is provided by the trait AstFactory (Listing 7). By applying the same
pattern, we are also able to attach a function to the statemachine method to return a Parser[StateMachine].

4.3. Semantic dependencies

The factory method mechanism can be generalized to express further semantic dependencies. For instance a method may
require that a specific service is available to the language implementation, such as a support library providing utility
functions, or a data structure containing shared state information. Suppose that a method n in a trait t uses a method n0

defined by some interface i0. Then, t may require that a valid instance of i0 is available to t by declaring a member m in t such
that m returns one such instance of i0. For instance, consider again our state machine example, and suppose that some phase
CodeGen defines a method def compile(File):Boolean; that compiles the state machine to disk and returns a boolean
that indicates if the operation succeeded. The trait CodeGen may then require a member def fsLibProvider: FsLib for
some interface FsLib that declares methods for file system interaction. The desired FsLib instance could then be provided
by a concrete implementation of the fsLibProvider method, possibly defined in a different trait (similar to what we saw
for the AstFactory), that would act as a singleton provider.
5. Case study

The main point of a DSL is to describe the solution of a domain problem concisely, and the purpose of componentizing a
language implementation is to reuse part of its features in different language implementations. This is particularly useful
when put in the perspective of evolving a DSL implementation. In the previous sections we introduced the state machine
DSL as our running example. In Section 3 we showed that, given a partition over the grammar of a language, it is possible to
componentize the parser for that language if we represent as traits the sets of that partition, and we gave instructions to
realize this representation. Such a modularization of the parser makes it possible to atomically extend and restrict the syntax
of a language implementation, by mixing-in or excluding traits from the language implementation. Likewise, the trait-based
interpreter pattern presented in Section 4, makes it simpler to extend a language implementation with new data types, and
new evaluation phases. In this section we will expand further on our running example, making it our case study. We will take
the state machine DSL and evolve it by plugging in a new feature, borrowing part of its implementation from a distinct
language: we will substitute the simple transitions of the running example with an alternative implementation, with
support for guards and actions. This example is an adaptation from [25], but, in contrast to this work, in our case the
language for guards and actions is implemented as a standalone language. We want to show that using our approach, it is
easy to plug the trait-based implementation of the syntax and the semantics of this separate language into the initial state
machine language, and to substitute part of the original implementation with new components. The advantage of this
approach is that all of the extensions and updates that we apply to the original implementation, do not require to actually
act on its code; rather, each new feature is implemented as a separate component. In Fig. 3 we show the situation of the
state machine language so far, and the extension that we will describe in this section. The part on the left, in the grey box,
represents the components that have been already described, while the part on the right will be presented in this section. In
Fig. 4, we show the state chart for the vending machine that we will use as an example usage of the extended state machine



Fig. 4. Vending Machine state machine.

Fig. 3. Relations between components in the State Machine case study. The constructs relation indicates usage of a factory method.
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language (code in Listing 8). For the sake of clarity, we have not included the complete source code for this example in this
paper, but it is available from the online version.
Listing 8. Code for the Vending Machine in Fig. 4. Code for drinks is omitted, since it mirrors the candies side.
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Listing 9. Part of the Action Language AST and Traits for Action Language Evaluation. In blue, the factory methods.

5.1. Action language

Executable UML models include the specification of an action language [32] that can be used for many purposes, such as
expressing actions and guards in a state machine model. In this example, let us suppose that we already have an imple-
mentation of a suitable language for this purpose, that is a simple, imperative programming language with support for
variables and assignment statements. The parser and the AST types for this language may come as a bundle of self-contained
components that may be reused within other DSLs. In Listing 9 we show the data types for a part of this language. The
semantics of a suitable interpreter could be implemented with the same technique that we employed in the previous
sections, using traits to represent features of the language as components. As in typical small programming languages, the
evaluation of an expression language requires the definition of some Env type, representing the environment; two base
traits (EvalExpr[T] and EvalStmt, Listing 9) represent the contract for the behavior of expressions and statements of the
language. An expression such as Sum would yield a result of some type T, a boolean expression such as Eq would be a
comparison between objects of type T yielding a truth value, and a statement (such as variable assignment) would produce
a change in the environment. The environment may be represented as a map env:String-Int, that is, a binding between
variable names and their current value. For instance, the VarDef statement assigns (e.g., x :¼1 þ y) the result of an
(integer) expression to a variable identifier. Each trait represents only one small aspect of the semantics of the language, and
each trait may require only those members of the node that are required for that particular piece of semantics. The com-
position of semantics onto the AST nodes happens using the factory method technique described in Section 4.2.



W. Cazzola, E. Vacchi / Computer Languages, Systems & Structures 45 (2016) 16–34 29
Listing 10. Guarded Transition trait. In red, the syntactic dependencies (nonterminals of the grammar); in blue, the semantic
dependencies (factory methods for the AST nodes).

5.2. Guards and actions

In Fig. 4 and Listing 8 we are showing the state chart of a vending machine. The machine vends drinks and candies,
depending on an initial choice, which is an integer value—that is, 1 for candies, 2 for drinks, and 0 for neither. Once a candy
or a drink has been vended, the machine resets the choice to 0, and it goes back to the initial waiting state, unless both
candies and drinks are unavailable, in which case the machine goes to the empty state. The example requires us to introduce
the concepts of variable, guard and action to transitions: the guard is a boolean expression that causes a transition to fire only
when it evaluates to true, an action is a sequence of statements of the action language that are executed when a transition
fires, and a variable is an identifier that is associated with an integer value. In Fig. 3 we show the relations between the new
guarded transition components, the affected components of the original state machine implementation, and the traits of the
action language that are plugged into the guarded transition components to implement the guards and action concerns.
These components substitute the transition-related components of the running example (e.g., GuardedTransition), and
bridge the basic state machine language with the components from the action language (e.g., BoolExpr and Stmt).

Syntax Guarded transitions may optionally specify a guard and an action (Fig. 4), thus it subsumes SimpleTransition

(Listing 4). Because of the modular implementation, it is possible to unplug the old component from the parser imple-
mentation and introduce the new GuardedTransitionSyntax trait (Listing 10), which extends SimpleTransition. This
trait requires a valid definition of the TAction and TGuard abstract types: these types can be concretized so that the action
language that we described in the previous section can be plugged in. For instance we can introduce the ActionLang trait,
containing the full implementation of the action language for simplicity; of course, each component may be also introduced
individually. In Fig. 3 we only show the BoolExpr and Stmt data types, with the related traits. At this point, the parser
would be able to recognize the full description of a transition with guards. Let us then generate the new data types with their
semantics.

Semantics: We need to define the GuardedTransition data type (Listing 10); this AST node differs from Transition

data type found in the basic state machine (Listing 6), in that it optionally contains a guard and an action. Had we defined the
interpreter using pattern matching (see Section 4), we would have had to rewrite the eval(AstNode) function. Using the
trait-based approach we can implement the new GuardedTransitionEval (see Listing 11) separately and mix it in the
new language implementation, leaving the other parts of the language untouched. For instance, a new GuardAstFactory

should be provided so that the new GuardedTransition node type will mix-in the new trait:

The semantics for guard and action is implemented, respectively, by the EvalExpr[Boolean] and EvalStmt traits (Fig. 3)
from the action language, which provides eval(env:Env), where Env represents an environment. Thus, the Guarded-

TransitionEval trait should be able to invoke these methods with suitable arguments. We can express the dependency
on this concept using a semantic dependency (Section 4.3). The GuardedTransitionEval trait will require a method
envProvider of type EnvDef (Listing 11). The EnvDef interface includes methods to retrieve and update an instance of
type Env. The eval method of the new transition type retrieves the env instance with envProvider.env and passes it
down to the guard, implemented as an Option[StmtEval] and the action (represented as an Option[EvalExpr

[Boolean]]): once the computation of the action has been performed, it then updates env instance. Using this technique
the only part of the code that changed is the junction point between the state machine language and the action language;
that is, only the traits that pertain to the guarded transition component. The interface of the StateMachine node has not
changed, and the composed evaluation trait is still the same, with the same eval method. The guarded transition
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Listing 11. Evaluating a transition with guards.

implementation only relies on the presence of an EnvProvider instance. This provider can be initialized to drive the
execution of the state machine. In the vending machine example, the wait state is the initial state. The eval method of the
guarded transition fires the next transition and executes the corresponding optional action when a specified guard evaluates
to true (or unconditionally if no guard is specified). For instance, by initializing the envProvider as follows:

The final state will be empty (Fig. 4), and the environment will result in choice↦0;candies↦0;drinks↦0.
6. Evaluation and comparison with related work

Many component-based language development frameworks have been proposed over the years (e.g., [11,33–35]). These
frameworks emphasize the separation of the concepts of a language as pluggable and composable units, but do not rely on a
particular host language; rather, they provide a programmable platform to implement external DSLs; some of them, even
provide IDEs and generate IDEs for the implemented languages. For this work we took inspiration from Neverlang
[15,20,21], where each unit usually represents a syntactic feature of the language (a keyword, or a construct) along with the
implementation of its semantics. These units are called modules and slices. Modules declare the syntax of a feature, that is a
portion of a grammar of the language in BNF, and may provide the definition of several roles, i.e., the implementation of an
evaluation phase, with respect to that part of the syntax. All the roles together represent the semantics of the construct. A
slice then selects the syntax definition and the semantic roles and composes them together. The composition of all the slices
yields the full implementation of a language interpreter or compiler. Modules and slices can be compiled separately and
distributed in pre-compiled form. The final objective is being able to represent a language as a selection of heterogeneous
pre-packaged features [9,23,24]. In the approach that we presented, syntax definitions are represented as grammar-like
traits using parser combinators (Section 3), roles are represented by the evaluation phases encoded by traits, and slices can
be roughly seen as the equivalent of factory methods (Section 4.2) that describe the configuration of an AST node. In
Neverlang, a slice may also describe the mapping between the concrete syntax and the abstract syntax (in fact, in a
Neverlang DSL, the two may often overlap, making the mapping implicit). With this work we wanted to show that the
Neverlang model of modular language implementation can be easily reproduced and implemented and used within other
frameworks achieving the same degree of language decomposition and language component reusability.

In general, the problem of componentizing GPLs and DSLs is a long-standing issue that over the years has been explored far
and wide. In the functional domain, many authors have described techniques to represent interpreters for programming
languages in a modular way. We have compared the proposed technique with some of work that can be found in the literature.
Since most work focuses on the implementation of the semantics of a language, rather than the syntax definition, we will
assume that in every case it is possible to write a parser using parser combinators, following the technique described in



Table 2
Comparison between features in the host language, by technique. More requirements mean that the technique may be harder to implement in simpler
programming languages.

Technique Traits Higher-order polymorphism Pattern matching Member shadowing Monads

Modular interpreter (Section 4) ✓

Monad transformers ✓ ✓ ✓

Object algebras ✓ ✓

Modular visitor ✓ ✓

TraitsþMember shadowing ✓ ✓
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Section 3. We will therefore focus on the modular implementation of the semantics of a DSL. In particular, we will consider the
case of the action language that we used in state machine DSL, with particular attention to the expression part, since it is small
but it is known to be challenging enough, and most works address the implementation of an expression language as a running
example. In order for the comparison to be as fair as possible, we considered the Scala implementation of each technique.

Monad transformers: Wadler's original paper on monads [13] in Haskell describes a way to represent an interpreter for a
simple expression language in a purely functional context. Within this context, monads are useful to represent stateful com-
putations or computations that may fail. Liang et al. [14] showed howmonad transformers can be employed in Haskell as building
blocks of an interpreter. Both Wadler's and Liang et al.'s approaches minimize the amount of code that is required to extend the
interpreter with new logic. Later, Grabmüller [36] wrote a step-by-step tutorial that describes the technique for modern-day
Haskell. These techniques at a first glance might look opposed to the work we have presented, but they are actually orthogonal.
Being Scala a hybrid between an object-oriented and a functional programming language, many functional patterns can be easily
translated into Scala. For instance, Debasish Gosh, author of the book DSLs in action [37], has adapted Liang et al.'s technique for
Scala using the Scalaz library.6 The code at the GitHub repository7 is a full implementation of an expression language using Liang
et al.'s technique. Monad transformers make it easier to separate evaluation phases (Section 4). Using monad transformers it is
possible to compose the function with new behavior, while respecting the original type signature of the function. However, the
composition of the new behavior actually requires to reformulate the implementation of the function from scratch. Moreover,
employing pattern matching has the downside of limiting extensibility on the side of data type cases.

Modular visitor and object algebras: Oliveira et al. have proposed [12,19] solutions to the expression problem [38] in two
forms. The first is an extensible visitor pattern where both the dimensions of data-type and evaluation phase extensibility are
considered. The visitor pattern is generally regarded as the object-oriented rendition of pattern matching; it has therefore
the same downsides of pattern matching in functional programming languages, that is, it is possible to add new language
processors, but not to extend the data types. This rendition of the technique uses traits for composing the semantics. In
object algebras, the semantics of language constructs can be built up using trait composition, and instance creation can be
abstracted using factories. The technique implements an extension of the factory-based mechanism that we presented in
Section 4 to compose behavior of the language interpreter. Instead of explicitly invoking the constructor of the corre-
sponding instance, the authors describe combinators to compose the traits. These traits can be defined inline, through
anonymous classes, or defined separately to improve reuse, similar to what we described in Section 4. The most important
feature of this technique is the use of combinators to abstract the composition of the behavior of the interpreter. Without
these combinators, the technique is similar to the one we describe: on the other hand, relying on combinators raises the bar
of the language requirements, making it less easy to implement in simpler programming languages. For instance, lack of
higher-kinded types would rule out Java as an implementation language.

Trait-based composition through shadowing: The technique described by Zenger and Odersky [18] combines trait compo-
sition with member shadowing, a feature of the Scala programming language which makes it possible to hide members of a
class or trait from the inheritors. This feature is different from overriding since it involves inner type definitions such as inner
classes and inner traits, for which speaking of overriding would be incorrect. The usage of this peculiar feature of the Scala
programming language makes the technique quite tailored to the choice of the programming language, limiting its use.

Summary: Overall, there are quite a few works that deal with the problem of language extensibility, some of which use
traits. Traits guarantee a better reuse of features, and make it possible to better modularize the implementation both along
the dimension of language constructs and that of evaluation phases. Besides monad transformers, which in their purest
form do not use trait-based composition, but pattern matching, all the other techniques that we evaluated are on par with
the features they provide in terms of reusability and composition (Table 3), because the basic objectives of separate com-
pilation and composability are the same. There are however differences in the requirements that each of these features
imposes on the host language in order to support them. Most of the techniques rely on features of the host language that are
often unavailable in most mainstream programming languages (Table 2) such as higher-order polymorphism and pattern
matching. This makes adopting these techniques, in part or completely, less practical: some programming languages are not
even powerful enough to express them.
6 debasishg.blogspot.it/2011/07/monad-transformers-in-scala.html.
7 github.com/debasishg/monad-trans.

http://debasishg.blogspot.it/2011/07/monad-transformers-in-scala.html
http://github.com/debasishg/monad-trans
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On the other hand, even though we chose Scala for our implementation, the technique that we describe should be easily
portable to any language, provided (i) that it supports traits (either as a library, or as a native construct) and (ii) that there is
a parser combinator library. These are not really restrictive constraints, as today many mainstream programming languages
are implementing traits or trait-like constructs. For instance, even Java 8 has introduced default implementations for
members of an interface, which makes them quite close to traits, and there are combinator libraries that would be suitable
for the same purpose. In this work we chose to use Scala's trait implementation because a static type system can be used to
guarantee that the composition of the language is correct at compile time; nonetheless, the original implementation of traits
[27] was developed for Squeak Smalltalk. Thus, similar results can be achieved using Smalltalk, equipped with a parsing
library such as PetitParser [8]. Other dynamic languages, such as Python, Ruby, Perl and JavaScript support parser combi-
nators through libraries, and traits or trait-like constructs natively or as add-ons; thus, even in such cases, the same
technique can be implemented.

This work is geared towards the modularization of a language implementation over two dimensions: the syntactic
dimension and the semantic dimension. With respect to the first dimension, our approach makes it possible to define
modular parser implementations, by reasoning only on the structure of the language grammar. In particular, in our work we
are giving guidelines on how to componentize a grammar, and how the specification of the parser, in the form of a trait-
based grammar decomposition, may then construct the abstract representation of the interpreter through composition of
factory methods. In Section 5 we showed that this approach simplifies the extension of the syntax of the language, possibly
reusing components from different languages.

From the semantic standpoint, our approach has a number of benefits, but it does involve quite a bit of boilerplate. In
particular, for every data type, it is necessary to define a trait for each evaluation phase and a factory method to configure the
composition between the AST data types and the traits that implement their evaluation phases. Nevertheless boilerplate is a
necessary evil to address the modularity concern: a bit of boilerplate is in fact required in all of the other techniques. Of
course, in a comparison that involved only the count of lines of code, pattern-matching would win hands down: in this case,
an evaluation function would just need to specify the case matches for each data type. On the other hand, the known
problem of this approach is that the pattern matching approach is harder to extend with new data types (e.g., see [18]). The
challenge is to find an approach where (i) the AST implementation should be extensible with new subtypes (ii) it is possible
to add new processing phases, (iii) existing code is not modified or duplicated, (iv) it is possible to compile each extension
separately and (v) to combine together independently developed extensions. However, much of the required boilerplate
could be auto-generated using naming conventions. For instance, for each AST data type T the trait for the evaluation phase
might be called TEval. On the other hand, the conciseness that is lost with this approach is traded for a much greater extent
of extensibility and reuse: separate compilations and reuse make it possible to mechanize language composition, to the
point where a language implementation may be reduced to configuring a selection of components (cf. [9,23,24]).

Looking instead at Erdweg et al.'s taxonomy in [10], the proposed approach clearly supports language extensions and
restrictions. Self-extension and unification are not considered even if feasible in this work because, in our view, they do not
represent the common case for language evolution. The unification consists of merging two languages in one so that ele-
ments of the first are integrated to those of the other and vice versa; no host language is present. In our approach the
unification of two languages decomposed as suggested consists only on adjusting some grammar rules so that the final
grammar result fully connected; all the language features are at the end at the same level and interpreted by the same
interpreter. This approach is quite different from some recent approaches (such as [39,40]) to language unifications that let
every original language element be interpreted by the original interpreter and only their interactions are dealt with
separately. Self-extension or language embedding occurs when a language is embedded into another by simply using the
language constructs already available (such as [41,42]); the advantage of this approach is that the original interpreter
remains unchanged. This basically is what our approach proposes in order to achieve language extension.
7. Conclusions

DSL development is an aspect that modern GPLs have been emphasizing more and more. In this work, we exploited well-
known patterns, techniques and constructs to implement external DSLs with a high degree of flexibility and modularity. The
final objective is being able to implement DSLs by combining components together, maximizing code reuse and minimizing
duplication. The approach revolves around the use of traits both for the realization of the parser of the DSL and for the
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implementation of the semantics of the interpreter, and because of the guarantees of correctness that static typing provides,
we chose to employ Scala's trait implementation. Nevertheless, the assumptions and reasoning we made to pursue our
results in Scala should make our approach reproducible in other mainstream programming languages that provide trait-like
composition capabilities. Our final objective is to be able to pursue a model of componentization that simplifies the
implementation of feature-oriented programming languages, possibly using variability modeling techniques to present
choices to end users, following up to our previous experiences on the subject matter [9,23,24].
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