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Reuse in programming language development is an open research problem. Many authors
have proposed frameworks for modular language development. These frameworks focus
on maximizing code reuse, providing primitives for componentizing language implemen-
tations. There is also an open debate on combining feature-orientation with modular
language development. Feature-oriented programming is a vision of computer program-
ming in which features can be implemented separately, and then combined to build a
variety of software products. However, even though feature-orientation and modular
programming are strongly connected, modular language development frameworks are not
usually meant primarily for feature-oriented language definition. In this paper we present
a model of language development that puts feature implementation at the center, and
describe its implementation in the Neverlang framework. The model has been evaluated
through several languages implementations: in this paper, a state machine language is
used as a means of comparison with other frameworks, and a JavaScript interpreter
implementation is used to further illustrate the benefits that our model provides.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of extending programming languages through new constructs has never lost interest in the industry and in
the research community. Modern general purpose programming languages are multiparadigm, progressively converging
towards a hybrid between object-orientation and functional programming. Languages from both the communities cross-
pollinate each other with features. Languages that were born with pure object-orientation in mind nowadays tend to
include functional constructs. This tendency to contamination between different programming styles can be read as the
symptom of a need for more flexibility.

Traditionally, the design and implementation of a programming language is more of a top-down activity, where most of
the time is spent on the design of a consistent set of features; extensibility of the compiler, although desirable, is not a strict
requirement. But when today people speak about language development, they often mean developing a new programming
language with specific requirements in mind. We could even dare to say that problem-tailored programming language
development is more of a bottom-up activity, because, in some sense, the language specification rises from the problem that
the developers are trying to solve. Intuitively, a top-down design phase is still important, because it is important that the
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language consists of a coherent set of features; but in a domain-specific language (DSL [1–3]), this phase can be often
reduced to a minimum: even more so, if it were possible to implement new languages using off-the-shelf components.

A technique to implement languages is embedding; this technique is part of the idiom of many modern programming
languages such as Scala, Ruby, and Groovy which, in some sense, are following the lead of veterans such as LISP, the
“programmable programming language” [4], and Smalltalk. Embedded DSLs [5] are really just a byproduct of choosing a
particular API design style that Fowler and Evans dubbed a fluent interface [6]. Fluent APIs are often used to embed query
languages within the body of a general purpose programming language (cf. Spring Data's Query DSL [7]) or to describe
graphical user interfaces (cf. JavaFX's APIs [8]).1 This technique has clear benefits: first of all it is easy to implement; second,
it guarantees a high-degree of code reuse, because an embedded language is just a library. The main limit is that the
expressivity of the language is inevitably dictated by the host programming language. External DSLs, on the other hand, are
instead usually developed using dedicated toolsets, and work as stand-alone programming languages. The traditional route
to external DSL development is to implement the front-end through parser generators such as good old yacc, ANTLR [11] or,
more recently, parser combinators [12,13], and then implementing the semantics of the language. For this purpose, the
variety of techniques ranges from attribute grammars [14,15] to simple syntax-directed translation [16] to term-rewriting
[17]. The object of our research of the last few years has been geared towards realizing techniques and tools to implement
componentized language implementations with the final “grand vision” of a world where general-purpose and domain-
specific programming languages can be realized by composing together linguistic features the same way we combine
together the pieces of a puzzle. And, just like each piece of a puzzle lives and exists on its own, each linguistic feature should
be something that we can describe and implement in isolation and separately.

In fact, empiric evidence shows that many general-purpose languages share similar syntax and similar semantics for the
same concepts: for instance, C-like programming languages such as Cþþ , Java, and C# etc. all share a similar syntax for for
loops, if branches, variable declarations, etc. The ultimate goal is to maximize reuse of syntactic and semantic definitions
across different language implementations to the point where end users may be even able to generate a language
implementation by picking features from a curated list: programming languages à la carte.

Contribution: Most of our experience in feature-oriented definition of programming languages have been carried out
using our own framework, called Neverlang. Our contribution with this work is
1.
1

an abstract model for feature-oriented language implementation,

2.
 a description of our implementation of this model in Neverlang,

3.
 showing that the model can be supported by most of the existing tools for modular language implementation,

4.
 showing that the native implementation of this model strengthens the benefits of a modular language implementation.

Organization: Section 2 gives a brief overview of the background information. Section 3 presents the abstract model.
Section 4 introduces the Neverlang implementation of this model. Section 5 presents a full example (a state machine
language). Section 6 is devoted to evaluate the model in a variety of contexts: the state machine language is re-implemented
in other frameworks to show how the model can be reproduced; the benefits of using this model are then showed by
describing the experience of extending Neverlang's JavaScript implementation neverlang.js; a DESK language implementa-
tion is briefly given to exemplify the expressive power of the Neverlang framework; finally, this section describes the
experience of modeling variability in programming language family, by automatically mining data from a collection of pre-
implemented features. Finally, Section 7 briefly discusses related work and Section 8 draws the conclusions and describes
the future work.

2. Background

A context-free grammar is a formal grammar where production rules are written as A-ω where A is a nonterminal, and
ω is a word of terminals and nonterminal.s. The generated language L(G) of a grammar G is the set of all the words that can
be derived from G. L(G) is empty if LðGÞ ¼∅ and, conversely, non-empty when it contains at least one word. In the following
we will assume grammars that generate non-empty languages, and, although it is allowed in Neverlang, for simplicity, we
will make the assumption that our grammars do not contain the empty word ε.

A syntax-directed definition [16] (SDD) is a technique to implement the semantics of context-free languages, in terms of
their grammar. Attribute grammars [14] are a formalism introduced by Knuth to represent SDDs by associating information
with a language construct by attaching attributes to the grammar symbols representing the construct. Attribute grammars
specify the values of the attributes by associating semantic rules with the grammar productions. Syntax-directed translation
schemes (SDTs) are sometimes described as complementary notation to attribute grammars. A syntax-directed translation
scheme is a context-free grammar with program fragments embedded within production bodies, called semantic actions,
with the purpose of translating an input program written in a given language into a target language; that is, SDTs are usually
employed to implement compilers. Any SDT can be implemented by first building the parse tree that represents the input
program, and then performing the actions in a left-to-right depth-first order, that is, during a preorder traversal [16].
Literature has also shown how to support true language embedding through library-based, possibly type-driven language preprocessing [9,10].
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Typically, SDTs are implemented during parsing, without building a parse tree. In this case, two important classes of
grammars are [16]
�
 L-Attributed Grammars, a class of attribute grammars that can be incorporated in top-down parsing.

�
 S-Attributed Grammars, a class of attribute grammars that can be incorporated in both top-down parsing and bottom-up

parsing. Any S-attributed grammar is also an L-attributed grammar.

However, L-attributed and S-attributed grammars are rather limited classes, and many interesting although simple
languages cannot be defined using this translation scheme. The main benefit of implementing L-attributed and
S-attributed grammars is that the evaluation order of the semantic rules is known a priori, because they impose constraints
on the way semantic rules are defined. In fact, in attribute grammarswe distinguish between the set of synthesized attributes,
expressed only in terms of the attributes of the children of a nonterminal symbol, and inherited attributes, expressed in
terms of the attributes of their ancestors or siblings. The S in S-Attributed grammars stands for synthesized: this class allows
only synthesized attributes to be defined. It is the class that traditional parser generators such as yacc support. In
L-attributed grammars, the inherited attributes can be evaluated in one single left-to-right pass.

By relaxing the constraints on attribute evaluation, the attribute grammar formalism becomes more general but also it
leaves space for computations that may not terminate. In order to give guarantees on the evaluation of the attributes,
attribute grammar implementations compute different kinds of dependency graphs [14,15] between attributes and impose
different sets of constraints; at the very least, each attribute should be well-defined: that is, for each node, an attribute
should either be a constant expression or it should be defined in terms of other well-defined attributes on its parent or its
siblings. Further constraints may be imposed to give more guarantees. For instance, one notable class is that of Absolutely
Noncircular Grammars, which includes both L-Attributed and S-Attributed grammars and it has been shown to be powerful
enough to represent many nontrivial programming languages [15]. It is therefore advisable that an attribute grammar
implementation supports at least absolutely noncircular grammars.

A strict implementation of an attribute grammar is usually pure: that is, attributes should be defined in terms of other
attributes, and the evaluation of such attributes should not produce side-effects. This gives a greater deal of flexibility to
attribute grammar implementations that may employ a number of techniques to optimize attribute evaluation such as
memoization (cf. [18]). However, many implementations allow side-effects with varying degrees of control. When arbitrary,
possibly side-effectful computations are allowed to take place within semantic definitions, then we speak more broadly of
semantic actions. In such cases, automatic caching and memoization of attributes may not be supported, but implementa-
tions may overcome this limitation by giving users more control on which attributes are evaluated at a time (as we will see
in Section 4 this is the case for Neverlang).

Syntax-directed translation through attribute definition is not the only technique to implement languages, though; for
instance, languages can also be described in terms of program transformations; the Stratego [19] language implements this
technique, rewriting terms that initially represent the parse tree up until the final representation of a compiled program is
reached.

In order to stress the generality of the approach, Section 3 describes a conceptual model of feature-oriented language
definition without making explicit references to a particular model of language processing. In this model, evaluation phases
of the language are modularized in terms of language constructs, in order to represent a language implementation in terms
of its constructs. In Section 4 we will then delve into the details of our own implementation of this model; in our case the
processing model can be modeled after SDDs, as a modular rendition of the visitor pattern.
3. Feature-oriented language composition

Frameworks for modular language implementation (e.g., [19–23]) make componentized development front and center,
by providing facilities to simplify the implementation of a language in modules that can be shared and reused. But the
modularization of a language is not merely a matter of convenience: modular software implementation has been known to
be good from the dawn of computer science (e.g., [24]) for a number of reasons; among the others, component isolation,
which also enables work to be carried out in parallel by different teams of programmers; modular reasoning, which make it
possible to concentrate on the implementation of the component of a system to be developed independently from the
others. To a certain extent this is possible for language implementation as well, and it is very apparent in the development of
DSLs, where it is easier to map features of the language onto concepts of the problem domain. Our final objective aims at
representing a language as a collection of independent features that can be easily used in conjunction, but that should be
possible to implement without knowledge of one another (cf. composable extensions in Van Wyk et al. [23]). As seen in
Section 2, the earliest literature already established that languages can be described in terms of their syntax. It has also been
shown (e.g., [25,26]) that such definitions can be logically partitioned into distinct processing or evaluation phases. During
each phase the input program is subsequently analyzed and transformed up to the final phase, when it is finally executed, in
the case of an interpreter, or code is generated, in the case of a compiler. For instance, at the time of writing, Scala 2.11's
compiler scalac performs 25 compilation phases on each input program. This section gives an overview of the concepts
behind modular language development, in order to stress the generality of the approach.



Fig. 1. A language implementation can be broken down over two dimensions: the dimension of syntactic constructs and the dimension of evaluation
phases. Dependencies are represented as arrows from required to provided features. Dependencies may go beyond their phase and depend on other phases.
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3.1. Conceptual model

A syntax definition of a language may be broken down with respect to language constructs. For instance, a looping construct
may be defined and reasoned upon independently from a conditional branch, even though they still depend on a notion of truth
value. All of these parts of a language together form a complete language implementation; thus, the modularization of both
syntax and semantics is pivotal in the componentization of a language implementation. There are at least two dimensions over
which a language implementation can be broken down: the dimension of the processing phases, which, more broadly, includes
the syntax analysis of the input program, and the dimension of the syntactic constructs (Fig. 1), which logically partitions a
language implementation with respect to the constructs that it contains. We call feature of a language an abstract concept or
construct, with its semantics; in some sense, then, the features of a language are the points at the intersections between the two
dimensions. The implementation of a feature is what we call a language component [27,28].

Language components: Modular language implementation approaches enforce separation between processing phases and
concepts. The dimension of processing phases represents the separation between linguistic concerns [29] that may crosscut or
tangle, such as type-checking, code-generation, and so on. This kind of modularization suggests that componentization may
be achieved by grouping together, as a self-contained bundle:
1.
2

bloc
the syntax definition of a construct, such as the keywords that introduce it, and

2.
 the sections of the evaluation phases that relate to the syntax definition, implementing only the semantics that is relevant

to that construct, in terms of properties of the feature. For instance, the concept of truth valuemay be seen as a property of
the looping construct feature.

By creating a bundle of these smaller bricks, the syntax definition and the sequence of the relevant parts of the processing
phases, we obtain a language component (Fig. 1): a higher-level unit of composition that represents the implementation of a
concrete feature of our language. These components can be shared across language implementations, and substituted to
define variants of the same language: for instance, a different implementation of the semantics may be given for the same
syntactic construct. For example, consider a simple imperative language with a Java-like while loop construct2:
The canonical syntax definition for a Java-like while loop would not include braces, and it would be in terms of a 〈statement〉 which might possibly be a
k. For the sake of conciseness and clarity we chose to imagine that a while loop is always followed by a braced block.



Table 1
Summary of the informal definitions in this section.

Linguistic feature A concept or an abstract construct of the language
Syntax definition Definition of the syntax for a language construct. A syntax definition may be defined in terms of other syntax definitions

using placeholders
Syntactic placeholder A part of a syntax definition that is not defined in place. It constitutes a reference to a class of syntax definitions
Evaluation phase Definition of the semantics of the language with respect to a particular concern (e.g., type-checking and code-generation) in

terms of properties of a feature
Semantic property A facet of an evaluation phase that is bound to the implementation of a feature
Language component A self-contained component that implements a feature of the language by putting in relation a syntax definition with the

relevant parts of the evaluation phases. In this sense, we can say that a language component provides the implementation of a
feature. The language component may also require other language features to work

Dependency A feature that is required by a component, and that it is not defined within that same component. A dependency in a language
is unsatisfied if there is a component that requires a feature that no components provide. A dependency may be syntactic if it is
expressed within a syntax definition by placeholders, or semantic if it is expressed in an evaluation phase by properties

Globally scoped
component

A component that implements a concern that should be available to any language component

Language
implementation

A collection of language components where every dependency is satisfied
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The placeholders in angle brackets represent parts of the syntax that are not defined locally, because they represent concepts
that are logically distinct, albeit related.

Definition 1. A placeholder is a part of a syntax definition that is not defined in place.

A language is usually processed through several phases, such as type checking to verify the correctness of the construct
and code generation to output compiled code. Initially, we assumed that it is possible to modularize phases by breaking them
down with respect to the syntax definitions that pertain to a given language construct; thus, we can componentize these
phases with respect to the given looping constructs:
The example contains some bold-face words; these represent properties of the language that are being evaluated during
the evaluation phase. The type-checking phase evaluates a property named type�of. This property is bound to a
placeholder named 〈loop� condition〉. The code-gen phase compiles the input language to object code; thus it expects to
evaluate a property named compiled�code�for. The semantics of a phase can be given in terms of such properties.

Definition 2. A property is a facet of a feature in an evaluation phase.

Definition 3. An evaluation phase is a definition of a linguistic concern in terms of the properties of a feature.

A bundle of such phases together with the syntax definition of the while loop yields language component. A descriptor for
one such component may be:
Such a bundle can be shared across different language implementations with similar requirements in terms of features and
processing phases, maximizing reuse of the feature, and minimizing code duplication. For instance, a different bundle, may reuse
the same syntax, with variated semantics, to implement an alternate version of the same language. Different bundles may still
share the implementation of some phases. New phases can be deployed by just extending or repackaging the bundle. For instance,
the language component for the interpreter of the while loop may reuse the syntax and the type-checking phases, but it
would trade the code-gen phase for an evaluation phase, where the programwould be actually executed. The same semantics
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may also apply even if the introducing keywords were different. For instance, in a Pascal-like language they would be 5while

〈loop�condition〉 do begin 〈loop�body〉 end5 .

Definition 4. A language component is a self-contained bundle that implements a feature of a language by putting in relation
a syntax definition with the related parts of a series of evaluation phases. A language component may be shared across
different language implementations. Syntax definitions and evaluation phases may be shared across different language
components.

A language implementation can be therefore described by a set of language components, and the evaluation of a program
written in this language corresponds to the ordered execution of the evaluation phases. This realizes a model of language
implementation à la carte.

Dependencies between components: In the previous example, the while loop syntax definition includes placeholders, and
processing phases includes properties. Placeholders represent in some sense features that the component requires, but it does
not provide in itself. Similarly, properties represent facets of the feature that the language processor should be able to
evaluate. The while component provides syntax and semantics for the looping construct, but it implicitly relies on the
definition of some parts of the syntax to be available (presumably in other components). The semantic phases implicitly
expected that some properties were defined with respect to a given feature. For instance, the type-checking phase was
trying to query a type-of property that was expected to be defined on the feature represented by the 〈loop� condition〉
placeholder. This implicitly introduces a notion of required and provided feature in a language implementation.

Definition 5. A component requires a feature if it contains a placeholder in its syntax definition, or it relies on the definition
of a property that relates to a different feature A component provides the feature it implements.

In the previous example the while-loop component provided an implementation for a looping construct (the while loop),
and required the concepts of loop condition and loop body. The type-checking phase required that the loop condition could be
evaluated to a boolean type, and the code-gen phase required that the condition and the body were compilable down to machine
code, so that the result of their compilation could be combined into the compilation of the loop construct itself. In a certain sense,
the set of provided and required properties and placeholders define the interface (in a OOP-sense) of the language component.
A complete language implementation should satisfy each requirement with the implementation of a feature.

Definition 6. A language implementation is a collection of language components where all the dependencies are satisfied.

Definition 7. The dependencies of a language component are satisfied in a language implementation, if, for all the required
features of the component, there exists a component in the language implementation that provides that feature.

More than one component may satisfy the same requirement: if this does not introduce a contradiction, that is, two
components provide a feature that is logically contradicting the other, then the two components represent an alternative
choice in the language implementation. Therefore, imposing that a complete language implementation requires all of its
requirements to be satisfied, does not prevent further language extensions. For the case of the while loop, a language
implementation must include the language component that satisfies all the requirements that the while loop has on the
loop condition and loop body (e.g., the property type-of and compiled-code-for that the component expects to be able
to query). Of course, the loop body may be implemented by several kinds of statements (e.g., function invocation, variable
assignment, and variable increment): each statement is not logically in conflict with the other, although they may appear in
the same position in a programwritten using our language. On the other hand, different, alternative implementation for the
loop condition may or may not be acceptable, depending on the language designer's choice; for instance, the C programming
language expects the loop condition to be a numeric value, treating it as true if non-zero, and false otherwise. Another
programming language (e.g., Java) may have similar syntax but enforce the existence of a boolean type.

Dependencies may occur within the same evaluation phase, or across different evaluation phases. In the first case, a language
component depends on another because the implementation of an evaluation phase is distributed across different language
components. In the second case, an evaluation phase depends on a value that is computed within a different evaluation phase: this is
reflected in a dependency between components, because evaluation phases are distributed across them. Depending on the way
phases are evaluated, dependencies across phases may also impose an ordering relation on the evaluation phases (cf. [25] on
attribute grammars), because a property in a phase may be only referred to within the same phase or a subsequent phase.

Globally scoped components: In a language implementation components may also need to invoke support functions (e.g.,
I/O, math or graphic libraries) and ancillary data-structures (e.g., symbol tables and function tables). These implement
features of the language that do not have a direct representation in the syntax of the language; thus a modular language
framework should include a form of component that encapsulates and provides support code to other language components.
Similarly to the other language components, globally scoped components should be easy to swap with alternate
implementations, provided that the substitute component implements the same functions and structures (in OOP-terms,
it implements the same interface). For instance, a thread-based model of tasks execution could be swapped with a
distributed execution model without changing the syntax of the language (cf. the Linda-Python language in [30]), by
swapping the component that implements the task execution model.

Composition model: Each component provides and (optionally) requires the implementation of a feature. Composition between
components is therefore consequence of satisfying the constraints that are implied by such dependencies. Let us now see which
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forms of language composition apply to the model that we have described so far. In order to better discuss languages and language
implementation frameworks, Erdweg et al. [9] have isolated and described five forms of language composition.
�
 Language extension is the property of a framework to define reusable components that may extend a base language,
independently from the choice of this base language.
�
 Language restriction is the property of a framework to restrict a language implementation to a subset of its features.

�
 Language unification is the property of a framework to merge together the implementation of two languages by the

(optional) help of glue code only.

�
 Extension composition describes the ability of a framework to compose together extensions (which may only implement

subsets of a language).

�
 Self-extension is the property of a programming language that make it possible to extend itself reflectively.
A language extension may be a new syntactic feature for a base programming language. For instance, Java 8 introduced
lambda expressions; these were mapped onto the more general case of functional interfaces (single-member interfaces)

[31, Section 9.8]. Language extensions are often defined in terms of desugaring towards the base language. Language restriction
may be useful in education: Erdwed et al. suggest to forbidding monads and type classes in a beginner's course on Haskell. In
language unification, as opposed to restriction and extension, where a dominant language exists, the composed languages are
composed in an “unbiased manner” [9], and the two languages can interact: one example of this kind of composition may be
HTML and JavaScript. Finally, self-extensible programming languages are those where a language may be embedded within a
host language, through support from the host language itself. Lisp may be regarded as one such language.

Our model supports the following forms of composition:
Language extension: In our model a language implementation corresponds to a collection of language components such
that all their requirements are satisfied. An extension to one such language is a collection of language components that
provides additional implementation that other components require (e.g., in the while example, additional implementa-
tions of the 〈loop� body〉 place-holder).

Language restriction: Erdweg et al. [9] present language restriction as a useful functionality (e.g., in the education area)
that can be easily simulated using language extension alone, by deploying an extension to the validation phase of the
language that rejects any program using “restricted” constructs. Even though the model that we present may very well
implement language restriction in the same way, by redefining phases of the existing components, our model supports
“real” language restriction by unplugging components from the language: in fact, being a language a set of components,
in our model a restriction is a subset of the original collection where the restricted feature is not present.

Language unification: In general, because a language is a set of components, language unificationwould be the union of two sets
of such components, plus, if needed, glue code, that is, code that “bridges” components that otherwise would not go well
together. For instance, in our example, the while loop required a 〈loop� condition〉. Another language (e.g., an expression
language) may provide a component for a 〈boolean� expression〉. The name of the placeholders does not match: glue code
would be that code that adapts a 〈boolean� expression〉 to satisfy the requirements of a 〈loop� condition〉 in the while loop.
These requirements may be purely syntactic, for instance the placeholders may have different names; but these requirements
may be also semantic, for instance the semantic properties of 〈boolean� expression〉may be different from those required by the
while loop component. The language framework should provide ways to adapt language components to suit these situations.
The glue code might be implemented as additional components, or as directives that developers would configure.

Extension composition: In our model, the unit of reuse is the language component, which may implement language extensions or
parts of a base language, depending on the point of view. It follows that extensions may compose. Erdweg et al. themselves do
notice that if a framework supports language unification, then it also supports extension composition, which is the case.

Self-extension: This property does not apply here but only because this is a property of the programming language and not
of the framework with which the language is being implemented. As noticed by Mernik in [22], the model itself does not
prevent from implementing a self-extensible programming language Table 1.

4. Neverlang

In a typical interpreter or compiler implementation, each construct of the language is mapped onto an abstract representation
often called an abstract syntax tree (AST), over which different language processors or evaluators dispatch the execution of
procedures that implement the semantics of that construct. During the visit of this tree, a language evaluator or language processor
maps each of its nodes onto the semantics of the constructs that the node represents, depending on its type. In the case of an
interpreter the input program will then be executed, while, in the case of a compiler, the input program will be translated into a
target language. As we saw in the previous sections, the semantics of a construct may be implemented as several separate phases;
multiple phases enable to better modularize the implementation of the semantics of each construct. Nevertheless, for better
modularity, even the definition of each construct would better be isolated from the definition of other constructs.

However, the evolution of a language implementation involves both the dimension of constructs (that may be
represented by distinct data types) and the dimension of evaluation phases (data type processor): neither functional nor
object-oriented programming languages can fully address the problem. In functional programming it is easy to vary the set of
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phase evaluators that pattern match on the different cases of a data type (e.g., all the types of loops, or all the types of
statement). On the other hand, it is harder to variate the number of cases in a data type definition. The situation is known as
the expression problem, after the term coined by Philip Wadler [32].

It has been shown that a modular implementation of the visitor and interpreter patterns [33–35] can be achieved using
constructs such as traits [36] to decouple the data type representation from the logic that implements the semantics of a
construct, while still retaining all the good properties of object oriented programming, that is, the ability to extend the data
type with new sub-types. Our rendition of the model in Section 3 can be seen as an implementation of a modular visitor
pattern, which is the underlying execution model of the Neverlang framework.
4.1. The Neverlang framework
Listing 1. Complete EBNF grammar of the Neverlang language.



In Section 3, high-level descriptions for syntax definitions and evaluation phases were discussed. In Neverlang, the syntax

of the language is given as a formal grammar, and the semantics of the language is given as a syntax-directed definition
(Section 2), in terms of attributes attached to the nonterminals of this grammar. In Neverlang, an evaluation phase is called a
role; a role implements the semantics of the language with respect to the syntax definition of the language constructs. Both
roles and syntax definitions are declared inside modules. Language components (Section 3) are defined by a construct
called slice, which relates syntax definitions to roles imported from modules; globally scoped components are called
endemic slices; endemic slices may provide libraries or globally accessible data-structures such as symbol tables. A
construct called language declares the collection of slices that composes a language and the order in which roles should
be executed. The syntactic definitions generate a syntax tree, which is then visited. Each visit constitutes an evaluation phase.
Contrary to a traditional visitor pattern implementation, though, Neverlang's visitor is extensible both on the dimension
of processing phases and on the dimension of new language constructs. In fact, slices compose semantics from different
modules, making it possible to define new roles (processing phases) for the same linguistic construct; but slices can
be added, removed or replaced to a language implementation at any time: therefore, the language can evolve in any
direction.

In the following paragraphs we will present modules, roles and slices using the Neverlang language syntax: a DSL
that simplifies the implementation of these constructs in a convenient, uniform way. The Neverlang language is a DSL
that compiles down Neverlang source files to Java and JVM-compatible source-code. The nlgc compiler is self-hosted
and will be described in Section 4.1.1. The generated source code will be described in Section 4.3, where the framework
and its APIs are described in detail. These APIs have been designed to be easy to use even using a general-purpose
JVM-supported programming language. The Neverlang language is just one of the possible front-ends to this
API. For completeness, Listing 1 is the full grammar of the Neverlang language (EBNF operators were used for conciseness).

4.1.1. Defining syntax and semantics: modules

Listing 2. reference syntax for the while statement and the type-checking. The name of the module and the left-
hand nonterminal are generally not required to match.
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Listing 3. reference syntax for a Pascal-style while statement.
A module is a basic container unit that groups different roles together, defined in terms of a reference syntax declaration.
A module may hold any number of roles, but each module must at least include a reference syntax declaration.

Reference syntax: The reference syntax section is the section of a module to define the syntax of a construct (Section 3).
The reference syntax section either defines or refers to a set of production rules of a BNF grammar. When it defines production
rules, it is a bracket-delimited block that contains a list of production rules; when it refers to another syntax, it is substituted
by the clause from omodulename4 , where modulename is the name of the module that contains the list of productions
that is being referred.

In a production, unquoted identifiers represent nonterminals and quoted identifiers represent terminals. The empty string
"" denotes the empty word ε. Special syntax for patterns is also provided to represent classes of terminals such as identifiers
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or numbers. In this case, instead of quotes the traditional Perl-like syntax for regular expression literals is used. For
instance the literal /[a-z]þ/ matches one or more alphabetic characters. Neverlang provides full support to Java's Pattern
library.

The set of production rules in the reference syntax section represents the concrete syntax of a construct the semantic
roles will be coded against. It is a reference syntax, though, because the roles that are defined in terms of this syntax are not
required to be always bundled with this same syntax. The framework makes it possible to code against one reference syntax
and then ship with a different concrete syntax, provided that a mapping between the two is possible. In Section 3 the while

loop could have been defined with a Java-like syntax, using braced blocks (Listing 2), or using a Pascal-like syntax (Listing 3).
Because one syntax definition is basically isomorphic to the other, modulo the terminal symbols, they can be easily
swapped: coding against Java-like syntax really makes little difference compared to coding against Pascal-like syntax. In this
sense, Neverlang's reference syntax can be seen as a sort of “abstract syntax with defaults”. For instance, the production in
Listing 2 can be thought of as representing a tree node WhileLoop(LoopCondition, LoopBody). We will see more on the
mapping between syntax and semantics later, when we will describe slices.

The reference syntax section contains a list of production rules between braces (see Listing 2). Each production may be
optionally introduced by a label that may be used in role definitions. Roles may also be defined in different modules, but new
processing phases can be still described in terms of the same piece of syntax. In this case, the programmer should indicate
that the roles in the module refer to a syntax definition that has been defined in a different model, using the
reference syntax from clause. For instance, Listing 4 declares that the reference syntax definition is the one in module
javalang.WhileLoop (Listing 2).

Listing 4. An example code generation role, generating Java bytecode in Jasmin syntax.3
Concerns about readability could be raised: using the reference syntax from clause, the syntactic definition may not
be present locally to a module where semantics is given. Nonetheless, the same could be said for any OOP language, where
subclasses do not show the members that they are inheriting, unless these are overridden. The solution to this problem may
be better tooling; we are currently working on IDE technologies that may assist users by providing visual clues about the
syntax definition that has been referenced.

Additionally, this section can be decorated with optional metadata about the intended meaning of the syntax, using tags.
The provides and requires sections may be the first statements in a reference syntax. Each line of the section is
3 http://jasmin.sourceforge.net

http://jasmin.sourceforge.net
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constituted by a provided nonterminal (on the left-hand side of a production) or a required nonterminal (on the right-hand
side of a production), followed by a list of tags. Listing 5 shows an example for the while loop. A use case for tags will be
discussed in Section 6.4.

Listing 5. provides and requires sections.
Roles: A role section defines the part of a processing phase that pertains to the reference syntax. A processing phase is
implemented as a tree traversal of the syntax tree that represents the input program. Each role in a module is identified by a
name. The name of the role is user-defined, and names do not have a special meaning. Obviously it is advisable to choose
meaningful names and follow general conventions; type checking phases may be usually called type-checking; code
generating phases might be called compilation, or code-gen; evaluation phases that actually execute the program shall
be called evaluation, execution and so on. As seen for SDT (Section 2), the semantics is specified by semantic actions,
a snippet of code that should be executed when a node of the syntax tree is being evaluated (visited). A role is therefore
a collection of semantic actions pertaining to a given reference syntax. Thus, a visit of the tree is described by the collection
of all the semantic actions of a role in all the slices that constitute a language.

A semantic action is represented by a code block enclosed within the delimiters .{ and }. and introduced by a number. The
mapping between nodes of the tree and semantic actions is given through these numbers: each nonterminal can be referred
from a role using its ordinal position inside the reference syntax section, starting from 0. Thus, action number 0 will be
executed when the 0-th nonterminal of the reference syntax will be visited, action number 1 when the visit will move to the
1-st nonterminal, etc. For instance, in Listing 2 WhileLoop is 0, LoopCondition is 1, and LoopBody is 2; thus the action
from role type-checking is being attached to the root node WhileStatement.4 Because of the reference/concrete syntax
duality, terminals are excluded for this count. First, because, being a leaf, it does not make sense to descend into a terminal
node, second, this scheme makes it easier to remap semantic actions onto different syntactic definitions, because it is
independent from the naming of the nonterminals.

Inside actions, it is possible to access any other nonterminal within the same rule5 using the same numbering scheme; in
this case nodes are referred through their identifying number preceded by a dollar sign; it is possible to read and attach
attributes to nonterminals using a familiar dot notation (Listings 2 and 4). The type of the attribute is defined implicitly at
each use-site. For instance, $0:foo¼ “hello” defines foo as a String attribute with value “hello”. Similarly, String
foo¼$0.foo; is pulling a String value from the foo attribute. Invalid attribute uses (e.g., mismatched types or undefined
values) will cause the system to raise an exception.

The choice of implicit declaration is a convenience that is retained for compatibility with Neverlang's previous version.
This is of course a double-edged sword, because users may mistype attribute names and obtain an exception at runtime.
Work is being done to support explicit declaration of attribute names and their types.

Attributes that are attached to nonterminals are similar to instance fields of a class. Each nonterminal may hold as many
attributes as desired, and each attribute may be of any JVM type. Attributes are implicitly defined after the first assignment
and, once they have been defined, they can be referred from any semantic action associated to any of the nonterminals in
the same production.

Actions are written using a JVM language. The default is Java (with some minor syntactic extensions), but programmers
may opt-in to use a different JVM language using language annotations. Each section of a module that contains code may be
annotated to switch to an alternative language; this can be done on a per-module, per-role, or even per-action basis (Listing
6). We will see more on how actions are compiled in Section 4.3.
4 In this example we assume that identifiers are collected into a symbol table during the type-checking phase; in real language implementations, a
separate phase may be introduced.

5 E.g., consider grammar A B;C D: rules 0, 1 may refer either 0, 1, but not 2; etc.
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Listing 6. Using multiple languages in a module.
Labels: The reasons for the choice of a numbering scheme instead of a naming convention to indicate syntax definitions
are mostly a matter of history. Neverlang's original implementation [37,38] followed the same convention, which was
inspired from venerable tools such as YACC. Since those days, Neverlang has undergone a major rewrite, but the basic
principles and syntax remained faithful to the original implementation. The current incarnation of the Neverlang framework
provides a way to label production rules in the reference syntax section.

Listing 2 shows that the rule could be defined for label While:, which would then be resolved by the Neverlang compiler
nlgc (Section 4.1.1) as 0. Labels can also be used to refer to every nonterminal of a labeled production using the offset
notation While[n], counting from 0. However, since syntax sections are supposed to pertain to one single construct, they
usually should not contain more than 2–3 productions at a time; this is the reason why sometimes it might be still more
convenient to use the legacy numbering scheme, rather than labels. Of course, labels support should not be seen as an invite
to write longer syntax sections, but rather, as a convenience to enhance code readability. Our guidelines for syntax
definitions are to keep them short and small, so that they can be shared more easily across language implementations.
In fact, as a syntactic definition gets large, it may become more specific to a particular language implementation, hampering
its reusability.

In any case, the planned work on IDE technologies should help in ruling out all the typical shortcomings of the
numbering scheme (e.g., rule insertion and refactoring). Moreover, as we will see in Section 4.3.1, the Neverlang API is
powerful enough that users may even define custom semantic action loading strategies for modules.

Driving the visit: Users may explicitly descend into child nodes of the tree using the eval $N statement —where N is the
identifier of a child of the root node of the production that is currently being evaluated, or the root node itself. For instance,
consider Listing 2, when the type-checking phase will be evaluated for the while loop, at some point, the visitor will
descend into the node WhileLoop(LoopCondition, LoopBody): this will trigger the execution of action 0. The first
statement of this action is eval $1, which triggers the visit of node 1 (LoopCondition). This will execute any action
attached to the node of type LoopCondition to be executed. Once the visit terminates, control is returned to action 0,
which then proceeds to test if the attribute type does not equal to Boolean.class, and so on. Similarly, action 0 in code-

gen role (Listing 4) first visits nodes LoopCondition ($1) and LoopBody ($2), and then it pulls the attributes $1:code and
$2:code, which are then used to generate the attribute $0:code of the WhileLoop node, which represents the compiled
bytecode (in Jasmin format) of the while loop.
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Listing 7. Syntactic sugar to execute a post-order visit.
Because the pattern of descending into the child nodes and then evaluating the root node might be frequent—in compilers it is
often the norm— Neverlang supports some syntactic sugar to shorten the code in such situations (Listing 7). It is possible to mark a
rule with the @modifier, which means “first descend, then execute”, that is, it makes the visit effectively “post-order” [16]. It is also
possible to refer a nonterminal using the eval-and-get shorthand $1:attribute which is compiled to an eval $1 statement and
an attribute access $1:attribute. It is also possible to mark an entire role as post-order in the language descriptor (see Listing 12
and Section 4.1.3). You may also have noticed (Listing 4) that Neverlang's Java code blocks provide a special extended syntax for
multi-line strings, deliberately reminiscent of Xtend's template expressions [39].

Visits can also be terminated abruptly by raising errors or using a special Neverlang signal, useful to return from a
procedure or break out of a loop: the command that terminates a visit abruptly is $terminate. To raise an error, a Java
RuntimeException or an Error can be thrown as usual (e.g., see Listing 2). For more information on the implementation
of the $terminate command see Section 4.3.2.

Finally, Neverlang has experimental support for suspending and resuming the execution phase. In this case the statement
$suspend interrupts the execution of the current visit, proceeds to the following (possibly, up to the last), and then
automatically, when all the remaining visits are terminated, or — typically — programmatically, using the $resume;
statement, it resumes execution from the suspended phase. The idea with the $suspend; and $resume; commands is to be
able to untangle evaluation phases: for instance an interpreter may require type-related information that is only known at
runtime. The type-checking phase could be partially executed statically, before evaluation and then suspended up to when
this information is available at runtime (cf. Linda-Python in [30]).
4.1.2. Mapping semantics onto syntax: slices

Listing 8. Slice implementing a bytecode-generating while loop feature for the Java language.
A slice contains the definition of a single, individually implemented component of the language. A component is defined
in terms of the modules that contains the syntax definition that represents the language construct and the roles that
implement its semantics. Each slice must import a reference syntax from a module, and may import as many roles as desired.
Once used in a slice, the reference syntax is called a concrete syntax. For instance in Listing 8, the javalang.

WhileLoopSlice is being defined. The reference syntax from the javalang.WhileLoop module (Listing 2) is used as
the concrete syntax for the language component; the semantics that will be used are the type-checking role in
javalang.WhileLoopTCheck (Listing 2) and the code-gen role in the javalang.WhileLoopCodeGen module (Listing
4). Nonetheless, the same roles could still apply to the reference syntax in module pascallang.WhileLoop (Listing 3),
because the nonterminals for the C-like syntax are trivially mapped onto the nonterminals for the Pascal-like syntax.
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Another interesting use case has been described in [20]; the Recipe DSL is a language inspired by Microsoft's onfXg,6 an
application to control Android smartphones so that they can react to particular events with user-defined actions. These
actions are developed through a JavaScript API, but pre-defined recipes can be shared, selected and deployed to the user's
phone through the application website. Recipe brings the idea further: it is a DSL whose syntax resemble natural language,
to define rules of the form “when X happens, then do Y”. A different syntax definition may be used to translate the English
keywords into other languages. For instance, the paper shows Italian. Using the remapping feature it would be even possible
to support languages where the structure of the sentence is not subject–verb–object.

Listing 9. Remapping part of the while implementation onto the do-while syntax.
Listing 10. Usage of the remapping feature to reuse code within the same module. On the left, the full, explicit version; on
the right, the repetition has been replaced by remapping the same semantic action.
Remapping: When the mapping between two slices is non-trivial, there is still the chance to reuse (part of) the code without

changes, by using the mapping feature. In this case the module statement is qualified with the optional mapping clause and a
mapping between the nonterminals of the reference syntax and the nonterminals of the concrete syntax is given; the mapping is
between the ordinal numbers that correspond to the nonterminals, following the same scheme that has been described for
modules (Listing 9). For instance, although the compiled code for a do-while loop slightly differs from the generated code for a
while loop because the LoopBody shall be evaluated at least once, type-checking can be reused verbatim, by remapping
nonterminal 1 of WhileLoop onto nonterminal 2 of DoWhileLoop, and nonterminal 2 of WhileLoop onto nonterminal 1 of
6 http://onx.ms

http://onx.ms
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DoWhileLoop. Themapping is local to the role, and does not ‘stick’ between roles, unless explicitly declared: this means that in role
code-gen the order of the nodes for DoWhileLoopwill be the one that has been originally declared in the concrete syntax. A new
code-gen role must be still written, but the type-checking phase will be reused.

Although named —and effectively implemented, see Section 4.3— in a different way, this operation has in practice the
same effect of rewriting the tree node DoWhileLoop(LoopBody, LoopCondition) to a node WhileLoop(Loop-

Condition, LoopBody). Nonetheless, the rewrite operation is available in Neverlang as well, in the form of an
experimental semantic action DSL; we will return on this later in Section 6.2.

The remapping feature is also useful to repeat an action over several productions, even within the same slice; for instance,
consider the chain of expressions for C-like languages UnaryExpr PostfixExpr;CastExpr UnaryExpr;… (Listing 10):
where many actions involve passing over values throughout the chain. Instead of rewriting the same semantic action assigning
attributes along the chain over and over (on the left of Listing 10), you can use the mapping construct to do it for you (on the right).
In general, consider some module M with reference syntax: «A B;B C;C D;» And suppose you want to pass on the
attribute value from D to C; then, in some role r of M you may write:

roleðrÞ f0� :f$0� :value¼ $1:value; g:g
And, then, assuming A maps to 0, B maps to 1, the second B maps to 2, etc. the slice would read:
«module M with role r mappingf2⇒0� ;3⇒1;4⇒0� ;5⇒1g» which would mean to apply on rule B C action 0� , with B as A,
and C as B; similarly, on rule C D the action 0� , will be executed with C instead of A and D in place of C.

On the one hand, the usage of this feature may hamper the reusability of a component, because it would depend on the
way the syntactic module was originally written. Any change to that grammar production would cause any module that
depend on the other to break. On the other hand, this may be true during the first phases of the development, when
iterations on a definition may be frequent. But, in the case of a stable module, this should not occur often. In fact, it is good
programming habit that a radical change in a code unit should correspond to releasing a new version of the code unit, so that
backwards compatibility can be preserved. This is especially true for Neverlang, since components can be released even in
their binary form. During the development phase, refactoring tools could limit the impact of this problem on user code.

Listing 11. Endemic slice providing a SymbolTable interface with an implementation.
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Endemic slices: In Section 3 the concept of globally scoped components was introduced. Neverlang implements such
components through endemic slice. The declare block of an endemic slice defines ancillary fields and methods that
should be globally accessible from the code of any semantic action. Endemic slices are used to implement features in a
language that do not have a direct syntactic counterpart. A typical example of this is the symbol table (see Listing 11 for an
example). Although every compiler might manage its symbol table in its own particular way, this is a construct that is
generally always present in some form. The information that we store in a symbol table must be consistent and accessible
from all the components of the compiler. Therefore, in Neverlang, this component should be accessible from all slices that
are used in the language, even if there is no syntactic construct inside the language to refer to it. An endemic slice declares
the interface and the constructor of the implementation of a globally accessible object that implements this concern.
An endemic slice only declares an interface and a constructor, so that the programmer is free to use his favorite
programming language and tools to implement the globally accessible object. The endemic slice imports the implementation
inside Neverlang, so that it is available to every component that may require it. The endemic slice can be substituted at will,
by any compatible object that implements the same interface (for a use case, see Linda-Python [30], where a threaded
execution model is substituted with a distributed, RMI-based execution model). Objects declared in an endemic slice are
destroyed and recreated at each execution of the interpreter, that is, for each new input program, but its state, if any, “sticks”
between evaluation phases. It is also possible to make an endemic slice “stick” across evaluations using the static

modifier, before the name of the object in the declare section; in this case Neverlang will instantiate the object only once
during the execution of the interpreter, so that the state may be preserved across the evaluation of different input programs.
This may be useful in the creation of interactive interpreters using the nlgi tool (Section 4.3).

Listing 12. Extract of the language descriptor for a Java compiler.
4.1.3. Combining slices together: generating a language
Neverlang's language descriptor lists all the slices that form the complete language implementation, including endemic

slices. It also defines the sequence in which roles will be evaluated (Listing 12).
Role execution order: The order of execution is specified by the roles clause. The first role is always syntax, indicating

that the first phase is parsing, followed by the sequence in which every role in the slices should be processed, separated by a
delimiter. Fig. 2 shows an example with the while loop. In the picture we are using the notation node.role-name to
indicate the order of execution. There are three kinds of pre-defined visiting strategies (all depth-first):

Semi-automated: Indicated by “oþ”; the visitor automatically descends from the root into the children until a semantic
action is attached; then the control is left to the action, which might or might not opt-in to use the eval statement (or one
of the shorthands described in the previous paragraphs) to proceed with the visit. The eval statement can be used to
perform arbitrary visiting strategies, where nodes may be even re-evaluated more than once. When eval is used, the
execution of the child nodes is nested; that is, once the execution of the action for the child nodes has terminated, control is
given back to the parent, which may eventually use eval again.

Post-order: Indicated with “o”, this strategy visits the tree depth-first, and executes the actions after the children have
been evaluated (left-to-right). It is well-suited for L-attributed and S-attributed grammars (Section 2).

Juxtaposition: Indicated by “:”, when two roles are juxtaposed, the execution of roles is interleaved; that is, instead of
executing one role per tree visit, all the roles that are juxtaposed will be executed “at once”: in other words, for each node all
the actions of all the juxtaposed roles will be executed in sequence, as opposed to simple semi-automated and post-order,
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where each role corresponds to one visit of the tree. When two (or more) roles are juxtaposed, the execution strategy is the
one indicated by the first left-hand non-juxtaposing role; e.g., with the roles clause:
then the execution is post-order, and bar is juxtaposed to foo; with the roles clause:
then the execution is semi-automated, and bar is juxtaposed to foo. Juxtaposition in combination with semi-automated at
the time of writing is experimental.

For a use case of juxtaposition, see for instance the Log Language in [21,30,38], a language for log rotating, similar to the
UNIX logrotate utility. In this language, each line is a log management operation (e.g., rename and backup). The utility,
besides the execution phase where the log management operations are performed on the file system, includes two more
evaluation phases, logging and permissions. The logging phase produces itself a log of the operations that are being
executed, the permissions phase checks the file permissions of the files that are being modified. The default is a post-order
execution, which causes each phase to be executed in sequence: first it logs all the operations that are going to be executed,
then, for all the commands the permissions are verified, then all the commands are executed at once; by switching to the
interleaved execution strategy, for each command in the input file the operation is first logged, then permissions are
evaluated, and finally the operation is executed.

Dependencies between slices: As we saw in Section 3, each language component has dependencies. These dependencies
should be satisfied when the components are combined together (Section 3). In particular, we saw that the syntax definitions
provide and require other syntactic definitions, by way of nonterminals (syntactic dependencies), and attribute definitions
provide and require other attribute definitions (semantic dependencies). In order for a language implementation to be
consistent, both syntactic and semantic dependencies shall be satisfied. In a slice, syntactic dependencies are implied by the
concrete syntax, while semantic dependencies derive from the roles. For instance, in the case of the while loop (Listings 2
and 4):
�
 the concrete syntax provides the WhileLoop nonterminal, and it requires at least one definition for the LoopBody and
LoopCondition nonterminals. Because of the semantics of grammars, each nonterminal may admit more than one
definition, but at least one is required.
�
 the type-checking role requires the Classo?4 attribute type to be defined on nonterminal $1, which, in this case,
resolves to LoopCondition
�
 the code-gen role requires the String attribute code to be defined on nonterminals LoopCondition and LoopBody,
respectively, and provides a String attribute code on nonterminal $� , which in this case resolves to WhileLoop.
Section 3 also stated that these dependencies must be satisfied in a language implementation. Thus, the framework must
enforce the resolution of such dependencies at composition time. In Neverlang, when one such dependency is left
unsatisfied, the runtime throws an error. In [27,28] we explored ways to track and resolve dependencies automatically, and
present them to end users in a convenient way (see also Section 6.4 for further details): the objective is to enable end users
to compose a working language implementation, where all the dependencies are satisfied, for any given set of slices,
without writing code.

The starting symbol or axiom of the language, in Neverlang is always called Program by convention. In order to produce a
meaningful language (that is, a non-empty language, see Section 2) at least one slice should provide the Program

nonterminal. This can be done explicitly, by introducing a production of the form “Program …”, or implicitly, by using the
rename feature, that has also a number of other uses.

Rename: A language descriptor may optionally include a rename section. This section declares a list of nonterminals
that should be consistently renamed to other nonterminals. For instance, in our example, we always used the Loop-

Condition nonterminal to represent the condition of the while and do-while loops. This condition is usually
represented by an Expression. Now, let us suppose that a slice javalang.Expression is available and that it provides
the nonterminal Expression. We may introduce a slice with the production LoopCondition Expression, but this
slice would serve no meaningful purposes beside satisfying the requirements of the slice javalang.WhileSlice There is a
better mechanism to achieve the same result, which is providing a rename mapping. In Listing 12, the LoopCondition is
renamed to Expression in every production in which it occurs, causing, for instance, the production

While ”while” ”ð”LoopCondition”Þ” ”f”LoopBody”g”

in javalang.WhileSlice to become

While ”while” ”ð”Expression”Þ” ”f”LoopBody”g”:



Fig. 2. Role execution order: the grayed node does not have semantic actions attached. For the sake of the example, we assume that all roles are evaluated
in the same way (semi-automated or post-order).
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The same can be done with LoopBody, that could be renamed into StatementList, assuming that there exists a slice that
provides such nonterminal. The rename feature can also be used to declare the starting symbol of the language, by renaming
it to Program.

Listing 13. javalang.Lang using bundles.
Bundles: A bundle is a collection of slices that together implement a sort of macro-feature. For instance, one might bundle
together all the slices that implement the looping constructs for a language and all the slices that implement the conditional
branches. The role of the bundle construct is only one of convenience. A bundle is automatically expanded into the
collection of slices that it contains; thus using a bundle in a language is completely equivalent to spell out its contents in the
language descriptor. For instance (Listing 13), consider a bundle javalang.bundles.Loops containing the slices
javalang.WhileLoopSlice and javalang.DoWhileLoopSlice, and suppose this bundle is added to a language
javalang.Lang; this language is identical to the language that included directly the slices javalang.WhileLoopSlice

and javalang.DoWhileLoopSlice.
4.2. Tools and utilities

At the beginning of this section we recalled that the Neverlang language is only one of the ways developers can exploit
the Neverlang APIs. The Neverlang compiler nlgc translates the Neverlang language into JVM-compatible source code, so
that this API is exposed to a more concise interface. Other tools are also bundled with the Neverlang framework: the simple
Neverlang launcher nlg and the interactive read-eval loop nlgi. A small library of utility functions and classes is also
provided. The reason this library is small, is that users are free to use standard libraries from the Java ecosystem.



E. Vacchi, W. Cazzola / Computer Languages, Systems & Structures 43 (2015) 1–40 19
Listing 14. Translator Plugin for Java.
The Neverlang Compiler nlgc: In Section 4.3 we will show that it is easy to map the Neverlang language onto the Neverlang
API, but the framework comes with a compiler called nlgc which automates the process. In most cases, nlgc generates Java
source files. The command nlgc generates all the source files in the src directory, then javac compiles the source code into
class files in the bin directory. For instance, in Section 4.1, we described how to write a while loop in Neverlang, and we
have shown how to write a module (Listing 2), a slice (Listing 8) and a language descriptor (Listing 12). By invoking nlgc

over these files the result would be a collection of Java source files. An example of what the generated source code looks like
can be seen in the next section, in Listing 15. The Neverlang language allows semantic actions to be written using a custom
language as well, while still providing useful syntactic sugar to drive the visit and access the attributes (the eval keyword,
the dot-notation for accessing attributes, etc.). This is provided by way of translator plugins. When multiple programming
languages are used, nlgc generates source files for each given target language. Each file can be then compiled using the
native platform tools. For instance, scala source files would be compiled using the scalac compiler.

A translator plugin hooks into the code-generation process of the Neverlang compiler to analyze and manipulate the
input source of a semantic action, and desugar the Neverlang language shorthands into the regular API calls that we
presented in this section. The developer can then hint at the system that semantic actions are being written in a different
language. In Section 4.1.1, Listing 6 showed how to switch between language plugins in a module written using the
Neverlang language.

Translator plugins in their simplest form describe how the occurrences of each shorthand should be rewritten into API
calls, and in their extended form, they may parse and verify (e.g., type check) the entire code block. Listing 14 shows how the
simple Java translator plugin is defined using Java itself to implement it. Code for the Scala plugin is similar. The plugin itself,
again, can be written using any JVM-supported language.

Currently we have implemented simple support for Java and Scala, plus the template plugin, which is suitable for code
generation. These plugins do not actually parse the code block, which is rather reproduced verbatim; desugaring occurs
through simple source code transformations (pattern matching). Although this is a very simplistic approach, it is also very
convenient, because translator plugins never become outdated: new language releases can be supported from the day one.
Compare this to the alternative solution of fully parsing the entire block of code, and how, for instance, it made instantly
obsolete all the tools that were written in the pre-generics age of Java. With this approach, the Neverlang language supports
all the most recent Java features, including Java 7's lambdas.7 Besides, type checking and other verifications will be executed
at the time the generated source files will be compiled using the target language compiler (e.g., for java javac).

Nevertheless, extended plugins can be implemented as well; this is especially preferable when the code block hosts a
custom DSL. In this case, the code block can be passed into a separate Neverlang instance, which will parse and possibly
generate the source code in a target language.

Launching and interpreting interactively: Neverlang comes bundled with a convenient predefined launcher called nlg.
The launcher instatiates a given language and invokes the Language.eval(String) API (Section 4.3) on each of the given
file names.

The read-eval loop utility nlgi executes input programs interactively and it can be started by invoking it at a command
line with the language name as a parameter. The nlgi tool provides commands to interact with the language; it is possible
to dump the contents of the endemic slices, show the complete grammar, print the attributes of the tree, and dump the AST
and the goto-graph of the parser to the screen using Graphviz [41]. Fig. 3 shows neverlang.js launched as an interactive
console, evaluating an interactively defined factorial function, as you can see, the input source code is also automatically
colorized, depending on the grammar of the language.
7 Moreover, this allows to include even language variants such as @Java's extended annotations [40].



Fig. 3. nlgi executing a JavaScript program with neverlang.js (Section 6).
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4.3. Implementation

The Neverlang framework runs on the Java Virtual Machine. Core data structures, support and utility classes are written
in Java, bearing as few dependencies as possible. In fact, Neverlang depends on no other library or technology besides pure
JDK 1.6, which makes it even compile and run on Android's Dalvik VM (see also [20]). The framework is designed so that its
APIs are easy to use. The Neverlang language is only one of the possible front-ends to the Neverlang core. The Neverlang APIs
can be used directly, exploiting the multi-language features of the JVM platform. For simplicity, the code examples in this
section will always use Java, as it is the lingua franca of the JVM.

4.3.1. Architecture
In Neverlang modules, slices and the language descriptor are mapped onto regular Java classes. They are loaded by a

Java ClassLoader through their canonical class name. The canonical class name reflects the dotted identifier
that is conventionally used in module, slice, bundle and language declarations in the Neverlang language. For instance,
the declaration “slice com.example.MySlice” would generate a class MySlice in package com.example. Class
loading is internally used by all the APIs that load components by name, such as importSlice(). A language
implementation in Neverlang is not an opaque executable, but a collection of components that JVM languages can interact
with, by querying a rich API. This API does not only drive the execution of the language processor, but also it may be
employed to retrieve information on the loaded components, making it even possible to substitute and unload components
at runtime.

Language: A language descriptor is a class that extends the Language class. A Language subclass must declare in its
constructor (using the importSlice() method) which slices it imports, the order in which roles are executed, and the
renames. The importSlice() directive expects the canonical name of an implementor of the Component interface to be
given; both Slice and Module implement this interface, thus a language may import both slices and modules; if a module
name is given, then the module also represents the slice that declares the syntax and the roles that it contains. For instance,
if a module com.example.MyModule declares a reference syntax and some role (e.g., type-checking), then it
also represents a slice with the same name that contains its reference syntax as a concrete syntax, and the corres-
ponding implementation for role type-checking. This is a convenience that is generally used during the first stages
of the development; as new roles will require to be introduced, slices may be a better fit (e.g., see [21]). Incidentally, the
Language class inherits from Bundle, since Language is a slice container as well (it follows that languages can be used as
bundles).

Slices: Slices are subclasses of Slice and implement the Component interface; in their constructors they declare the
modules from which they import their syntax and semantic roles, using the importSyntax(String moduleName) and
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importRole(String roleName) API. Endemic slices, do not extend the Slice class because they behave in a different
way: they do not import roles or syntax from modules, but rather they declare a singleton object. Nonetheless, they
extend the EndemicSlice class and invoke a different API to instantiate the globally accessible resource that they
implement.

Listing 15. Components in Section 4 as represented using Neverlang's APIs.
Modules: A module is a complex component made of several classes: one class inherits from the Moduleclass, and it
declares whether it is referencing a syntax definition from a different module, or if the syntax is being defined within the
module itself; then it declares which roles are being defined, and which nonterminals will be hooked into, using the
numbering scheme described in Section 4. Then:
�
 if the module comes with a syntax definition, another class, extending the Syntaxclass should be implemented; by
convention this class shall be named

omodule�name4$role$syntax:

For instance, the syntax for module javalang.WhileLoopin Listing 2 would be named javalang.WhileLoop$role
$syntax;
�
 for each role, and for each nonterminal being hooked into, a new class, extending the SemanticActioninterface should
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be defined. By convention, such classes would be named by convention this class shall be named

omodule�name4$role$orole�name4$oN4

where oN4 is the number of the nonterminal that is being hooked and orole�name4 is the role identifier; any “-”
in the role identifier is replaced with “_” to make it a valid Java identifier (e.g., type-checkingbecomes type_-
checking). For instance, rule 0 for the type-checkingrole of javalang.WhileLoopwould be mapped onto

javalang:WhileLoop$role$type_checking$�

The reason for this complex decomposition is to allow each semantic action to be written using a different language of the
JVM. When the method Module.getAction() will be invoked, at runtime, the required action is loaded from disk and
returned. The class javalang.WhileLoop must invoke in its constructors the APIs to declare all its sub-components
(the class defining the syntax, and the classes defining the semantic actions for each role). Fig. 4 shows a summary of all the
classes that must be generated; Listing 15 shows a complete example of how the Neverlang language relates to the Neverlang
API. Fig. 5 shows the relations between classes and interfaces.

Because each semantic action is compiled as a different class file, a different programming language can be used,
provided that it can compile to a JVM class file. This fine-grained decomposition of the compiled modules makes it possible
to achieve a finer-grained compilation model that (i) reduces compile times (ii) simplifies separate compilations (iii) enables
to ship, distribute and share language components as pre-compiled binaries. In fact, a change in one module requires to
recompile only that module from source (specifically, it would actually require recompilation only for those sections that
have been modified). Compare this to conventional compiler generation techniques, that, being usually based on source
generation, often require a large part (if not all) of the source code to be recompiled anew. This approach streamlines the
compiler-generation process by making it possible to compile only those components that really need to be rebuilt. This is
particularly useful as the language implementation becomes large and complex (see the experience we conducted with
neverlang.js Section 6.2). Plus, pre-compiled Neverlang components can be bundled together in jars to distribute them
conveniently, and they can also be shared and imported by different languages independently.

Finally, users are free to write alternative Module implementations, with different loading strategies for semantic
actions. For instance, a scripting language would make it possible to define custom behavior even at runtime.

4.3.2. Runtime and execution
The Neverlang runtime is made of two main parts: the DEXTER [42,43] incremental parser generator and the component

manager [20]. The component manager is responsible for loading languages, slices and modules, and for dispatching the
correct semantic action to the node of the syntax tree that is being visited in the correct phase (described in a role). Once all
the components have been defined and compiled into class files using the regular platform tools (javac, scalac, etc.), and
a Language subclass has been implemented, it is possible to execute the language processor, by invoking its Language.

eval(String) method. This is when the component manager kicks in.
The component manager: The component manager is Neverlang's core. It implements the componentized visitor pattern

and it loads and unloads the language components into memory. When the Language subclass is instantiated, the
component manager loads the slices from disk, then it queries them for the modules they require. For each production in
each syntax definition, an inverted index is populated to map each grammar production into the components that
implement its semantics. For a given triplet ðp; r; iÞ, where p is a production, r is a role, and iAN is an integer number, there is
at most one semantic action that may be executed at a time. In particular, for a language L with a grammar G, consider the
mapping m: P � R �N-SA? where P is the set of productions for a grammar G, R¼ fR0;R1; :::Rng is the set of all the roles for
language L, andN¼ f0;1; :::n; :::g is the set of natural numbers, and SA? is the set of all the semantic actions, in all the roles of
R, plus the undefined action ? . Let us also indicate with Sr;i the action hooked to the i-th nonterminal in role r of the slice S.
Then, for all pAP; rAR; iAN the mapping m is defined as

mðp; r; iÞ ¼ Sr;i if Sr;i exists
? otherwise

�
ð1Þ

The reason why p is needed in the definition is that each slice contains (imports) a syntax definition, and the index i refers to
a nonterminal in the syntax definition; then the triplet ðp; r; iÞ maps to at most one slice, which is the slice that contains
production p, role r and the semantic action hooked at index i. Because the index is populated dynamically during the
bootstrap phase, it is possible to grow it and shrink it at runtime, by removing, adding and updating its contents.

Action dispatching: When an input program must be processed, the eval() method in the Language class passes the
input text to the parser. If the parsing process terminates unsuccessfully (the input program is syntactically incorrect),
a ParsingException is raised. Otherwise, a syntax tree is generated. Each node of the tree is an instance of the ASTNode

class. Each node is given a tag, which is the grammar production that it represents.
Once the parsing has terminated successfully, the component manager begins the visiting process, starting from the first

semantic role. For instance, in the case of the example language javalang.Lang (Listing 12), the first role would be type-

checking. For each node, the component manager reads the tag and it queries the inverted index m. Back to our example,
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Fig. 6 represents the tree for the production WhileLoop (Listing 2), during the execution of the type-checking role.
Because nonterminal WhileLoop is number 0 in slice javalang.WhileLoop, then:

mðp;type�checking;0Þ ¼ javalang:WhileLoop$role$type_checking$0�

where p is rule WhileLoop “while”“ð”LoopCondition“Þ”“f”LoopBody“g”. If the value mðp; r; iÞa ? , then the semantic
action Sr;i is executed.

Action execution: Each semantic action implements the interface SemanticAction:
When the semantic action Sr;i must execute, its apply(Context) method is invoked. Context is a data class that contains
a reference to the node that is being visited, a reference to the current Language instance, a reference to the role that is
being executed. Executing Sr;i means invoking the SemanticAction.apply(Context) method of the corresponding class
with a valid Context instance. In the case of Fig. 6, the Context instance would contain node 0, role type-checking and
a reference to the current javalang.Lang instance. The body of the action supposedly interacts with the Context

instance:
�
 it drives the visit of the tree (and the consequent evaluation of its children or siblings), using the eval(ASTNode) to
descend into a given child node, and also evalAndReturn(ASTNode, String) to descend into a child node, and return
the value of one of its attributes. It also provides the suspend() and resume()methods to suspend and resume the role
that is currently executing. Invoking these methods correspond, in the Neverlang language, to the syntactic sugar: eval
$N, $N:attribute, $suspend, $resume;
�
 it accesses nodes by nonterminal id using Context.node(int); e.g., ctx.node(0� ) returns the node for WhileLoop,
ctx.node(1) returns the node for LoopCondition, ctx.node(2) returns the node for LoopBody, etc. In the
Neverlang language these correspond to the short form $N;
�
 it reads and writes attributes using the idioms

T value¼ ctx:nodeðiÞ:getValueð“attrName”Þ
Fig. 4. How a module is broken down into several classes.

Fig. 5. Relations between classes and interfaces in Neverlang (interface names are in italics).



Fig. 6. Method dispatching.
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where T is the expected type for $i.attrName and

ctx:nodeðiÞ:setValueð“attrName”;valueÞ:
In the Neverlang language, they correspond to the attribute access $N.attribute.
�
 it provides access endemic slices: ctx.singleton("EndemicName") corresponds to $EndemicName.

Listing 15 shows how the semantic action 0 for the type-checking phase in module javalang.WhileLoop (Listing 2)
may be written in Java by only using Neverlang's native APIs.

4.3.3. DEXTER
In order to support componentization and runtime composability, we also developed DEXTER: the Dynamically EXTEnsible

Recognizer [42,43]. In the bootstrap phase, productions are read from the Syntax subclasses, and they are fed to the DEXTER
parser generator. DEXTER implements an in-memory LR parser generator. The generated parsers can be incrementally
extended (grown) or restricted (shrunk) by adding and removing grammar productions on-the-fly. In fact, the syntax role of a
module is a straight translation from the Neverlang DSL to a series of Java API calls to the DEXTER component (compare Listing
2 to Listing 15). The DEXTER parser generator implements an algorithm that bears some resemblance to those described in
[44,45]. The algorithm updates the LR(0) DFA, which is the basis for many interesting parsers of the LR family, such as GLR and
LALR. The DEXTER component includes an extensible regex-based lexer that allows to define lexemes at runtime. This
subcomponent is called LEXTER. Lexemes are defined inline in a production both when they are constant keywords and when
they are patterns. In the Neverlang language (Section 4.1), patterns are delimited by slashes, while keywords are delimited by
quotes; in the Java API the distinction is made by using different classes. Further information on DEXTER and the underlying
formal model that proves the correctness of the updated parsers can be found in [43].

4.3.4. Conflicts and syntactic composition
LR parsers are known to be an efficient family of bottom-up parsers that is guaranteed to run in linear time for any

deterministic context-free language. However, many notable subclasses of LR, such as LALR, in general are not closed under
composition (see e.g., [46]). However, this can be tackled in many ways; for instance, a known subset of LALR (1) is closed
under composition; it has been shown [46,47] that targeting this subset is practical if context-aware scanning is employed:
this is the subset that is accepted by the Copper parser generator [46]. Currently DEXTER does not directly address the
problem of composition, and therefore an error is raised if two language components introduce a syntactic conflict in the
language. The language developer is then able to fix the problem by editing the grammar. Remapping can be used to reuse
the code in most situations. Indeed, this is an area where further work may be useful. Nevertheless, the Neverlang
framework is not in itself tightly coupled to DEXTER, and alternative parser generators may be employed in the future.
A possibility that is being investigated is to support Copper's subset of LALR.

5. Case study: evolution of a DSL through composition

DSLs are computer languages designed to tackle problems that are tied to a particular problem-domain. Studies pointed
out [48] that up to 80% of a software system lifetime is spent on maintenance and evolution activities, and DSLs are no
exception: continual evolution of DSL implementations is often difficult because it is generally unplanned and
unanticipated. Componentized language development leads to language implementations that can be easily extended
and evolved. This section shows a simple but complete usage example of Neverlang. The example is the same state machine
DSL in [49]. Just like in Tratt's paper, the DSL will be evolved through extension; but, in our case, we will show that the same
kind of language extension can be achieved in Neverlang using language components. In Section 6.1 the same experience will
be discussed, comparing other language frameworks. The source code listings may have been edited for readability, the full



E. Vacchi, W. Cazzola / Computer Languages, Systems & Structures 43 (2015) 1–40 25
working example with source code can be downloaded from http://neverlang.di.unimi.it/comlan14/examples.tgz.

Listing�16. Grammar of the State Machine DSL.
5.1. A simple state machine DSL
Listing 17. A snippet from module sm.base.Program.

http://neverlang.di.unimi.it/comlan14/examples.tgz
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The state machine defined in the input program will be translated into compilable source code. The first version of the
language only supports defining a list of states and a list of transitions between states. Each state is indicated through its
Identifier; a transition is a triplet of Identifiers that represent, respectively, the name of the state from which the
transitions leave, the name of the one where the transition goes, and a name for the transition itself. The first declared
state is by convention also the initial state of the machine. Fig. 7 shows the state machine for a door, along with the code
that describes it; this machine loops indefinitely.

Listing 16 shows the grammar of the language as broken down into the reference syntax section of 6 modules, each of
which represents a syntactic feature of the DSL (the Neverlang syntax has been omitted for conciseness). Three evaluation
phases, in Neverlang, roles (Section 4) have been defined: collect-states, validation, code-gen. Each role represents
a different concern in the DSL. The collect-states role collects the list of states in a Java SetoState4; the
validation verifies that no undefined states were used in transitions that are put in their own TransitionTable: it may
raise an error if an undefined state is encountered; the code-gen role generates compilable (Java) source code
implementing the state machine. Listing 17 shows a few lines of code from the collect-states and validation

phases for module sm.base.Program, which implements the semantics for the syntax defined in sm.Program. Notice that
attributes are pulled from StateList and TransitionList using a Neverlang API (AttributeList.collectFrom()),
which implements the bucket brigade operator [50]. The usage of this API is the preferred way to deal with such cases.
Notice that pulling up states and doing the analysis here is not idiomatic in attribute grammars, where you would rather
pass the list of states down the tree so that each transition would perform the validation. Of course, this is possible in
Neverlang as well.

The TransitionTable implementation may be provided to the language using an endemic slice. The Transition-

Table may be defined as a map between states and a list of states between which a transition exists. For instance, in the
door state machine (Fig. 7) the opened state should return the set fclosedg. Obviously in a deterministic state machine
only one transition should leave from each state; thus, the validation role may also check that, for each declared state, the
size of its entry in the table is less or equal to 1. A Transition may be implemented as a custom Java data class that
modules would import. Similarly, the TransitionTable and StateSet companion classes for the corresponding endemic
slices should be written, as described in Section 4.1.2; we will omit the source code for these components, since they are
trivial to write. A summary of the support classes is shown in Table 2.

The semantic action for the Program nonterminal in the code-gen phase produces compilable code for the state
machine (Listing 18). The generated source code is a simple Java programwith a while loop that switches over the possible
states of the machine, setting the variable nextState when a transition exists.

Listing 18. Compiled code for the Door state machine.
The language descriptor (Section 4.1) sm.base.Lang lists all of the slices constituting the base language. The nlgc

tool (Section 4.1.1) produces the source code that interfaces with the Neverlang API (Section 4.3. The code is compiled bt
javac.8 The language implementation may be executed using nlg or nlgi (Section 4.2), called from a regular JVM program
(Section 4.3.2), and reused across different language implementations without any change. The input program in Fig. 7
produces the compilable source code in Listing 18 (support APIs are provided to automatically generate an output file
on disk).
8 Of course, as seen in Section 4, if any other language is used in the semantic actions, users will have to invoke the language-specific compiler.



Fig. 7. Door state machine.

Table 2
Auxiliary classes for the state machine DSL.

Auxiliary classes

Transition A data class of three fields: to, from, and event

GuardedTransition A subclass of Transition that supports guards and actions
TransitionTable Maps a state into the transitions that leaves that state
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5.2. A simple imperative language
Listing 19. Relevant parts of the grammar for the Action Language.
Listing 20. Example code for Sum in the Action Language. Code generation uses the template syntax.
Executable UML models include the specification of an action language [51] that can be used for many purposes, such as
expressing actions and guards in a state machine model. Suppose that we already have an implementation of a suitable
language for this purpose that is a simple, imperative programming language with support for variables and expressions like
the javalang.Lang language that we used as our running example in Section 4. It is easy to see that by combining the
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syntax definitions in Listing 19 with the WhileLoop definition, we would have enough components to define a simple
Turing-complete programming language. As you can guess from the grammar, al (Action Language) supports only two
types: numbers (integers) and booleans. For simplicity, variables can be only assigned integer values, and undeclared
variables are assigned the default value �1.

Two roles are defined: validate and code-gen. The code-gen role generates Java source code, thus it is compatible
with the code-gen role of the state machine DSL. Listing 20 shows the module for the Sum definition. The code-gen phase
uses the template syntax (see Section 4.2). The validate role keeps track of the used variables, so that the code-gen role
may declare them at the top of the listing. You may also be able to see that it would be easy to extend the language with a
module VarDecl to declare variables: the validate role of the VarLookup module could then raise an error when users
attempt to use an undeclared identifier. A VarTable keeps track of the defined variables, thus one should include an
endemic slice for this purpose.

5.3. Guards and actions: composing the DSLs
Listing 21. Code for the Vending Machine in Fig. 8. Code for drinks is omitted, since it mirrors the candies side.
Listing 22. A detail from GuardedTransition.
The slices of al may be used to introduce guards and actions in our state machine DSL. Fig. 8 and Listing 21 show the
state chart of a vending machine. The machine vends drinks and candies, depending on an initial choice, which is an
integer value—that is, 1 for candies, 2 for drinks, and 0 for neither. Once a candy or a drink has been vended, the machine
resets the choice to 0, and it goes back to the initial waiting state, unless both candies and drinks are unavailable, in
which case the machine goes to the empty state. The example requires us to introduce the concepts of variable, guard and
action to transitions: the guard is a boolean expression that causes a transition to fire only when it evaluates to true, an action
is a sequence of statements of the action language that are executed when a transition fires, and a variable is an identifier
that is associated with an integer value. All these concepts can be described in terms of components of the al language.

A guarded transition is almost the same as a simple Transition of the base implementation, but it is followed by a
guard—a boolean expression between brackets—and/or by an action—a sequence of assignments. In a state machine with
guards, a transition fires only when its guard evaluates to true; therefore, now multiple transitions may leave the same
state. This extension can be realized (1) by adding a new component to the language that implements a transition with a
guard and an action, alongside the original “simple” transition, and (2) modifying the code-gen phase so that multiple
transitions leaving the same state can be accounted for.

The new module is called sm.ext.GuardedTransition. The syntactic definition would be similar to the one in
Transition.nl (Listing 16, p. 37), but it is followed by a guard, an action or both. During the code-gen phase the new
transition is added to the TransitionTable. This transition contains the generated code for the guard expression and the
assignment statements in the action body: the code-gen role from the al.BoolExpr slice and the al.StatementList

would pass on the generated code through the code attribute defined on their nonterminals.
The new slices can be introduced alongside the old ones; only one substitution is required: the code-gen phase in the

sm.ext.Program slice must now be aware that more than one transition may leave a state, and that guards and actions
should be printed out.



Fig. 8. Vending machine.
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Listing 23. Slices included in the state machine language with guards and transitions.
Finally, Listing 23 shows all the slices that have been included in the complete language implementation:
�
 the sm.n package contains sm.StateList and sm.TransitionList, simple syntactic definitions where no additional
semantics has been defined;
�
 the sm.base.n package denotes slices defined for the basic state machine language;

�
 the al.n package denotes slices defined by the imperative language that were used in the guard/action language;

�
 the sm.ext.n package denotes the slices that were explicitly (re) defined for the extended state machine language with

guards and actions.

This example showed how to implement a DSL as a collection of components, each representing a concept or feature of
the language. The component-based model, however, shows that it is possible to improve code reuse of pre-defined
features, possibly coming from different languages. The model makes it possible to reuse pre-packaged bundles of syntax
and evaluation phases across different language implementations, using language components; moreover, it makes it
possible to easily reuse syntax and evaluation phases in different language components, both making it easier to produce
variants of the same DSL or to reuse the same components into language implementations that have different requirements.
Each change does not require any editing on the existing source code, but rather consists in the creation of new modules and
new slices. The original, pre-compiled implementations can be left untouched on disk.

6. Evaluation

The experiences that follow evaluate our model of language implementation. The state machine DSL of the previous
section will be used to compare Neverlang to other modular language implementation frameworks, with the objective to
show that the model is general enough to be reproducible using different tools. In the following the benefits of a native
implementation of this model are shown: for instance, language extension is simplified by a feature-oriented language
implementation; this experience has been carried out by first implementing an interpreter for a real-world programming
language (JavaScript); language components can be compiled separately, they can be redistributed as pre-compiled artifacts,
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and they can be loaded dynamically; not only is it possible to reuse code, but extensions can be implemented in isolation and
loaded on demand; making it possible to evolve a language implementation even at runtime. Finally the expressive power of
Neverlang will be discussed by the help of an implementation of the DESK language [15].
6.1. Feature-oriented language implementation across tools

In this section we will not go into the details of implementing the state machine DSL itself, but we will use this language
as a way to discuss the features of each framework and the way the model fits in their design. The experiments were
conducted using LISA 2.2, Silver r1230 (hg), Spoofax 1.2.0.0-s41399, Xtext 2.5.3. Full source code of the examples can be
found at http://neverlang.di.unimi.it/comlan14/examples.tgz.

A full comparison of the features of the tools is shown in Table 4.
Feature-oriented language composition can be achieved if the language framework of choice provides facilities to

modularize the language implementation both on the dimension of language constructs and on the dimension of semantic
concerns of the language implementation. This capability requires the framework to support non-trivial modularization
capabilities. This rules out the Xtext framework [52,53], which is severely limited in the way language components can be
defined: for instance, only single-inheritance is permitted in syntactic definitions.

The other surveyed tools are capable of achieving a feature-oriented componentization of a language, although they are
generally focused on code-reuse rather than providing a mechanism to specifically implement languages in a feature-
oriented way. For instance, in all the tools, to a different extent, it is possible to separate the implementation of the
semantics from the definition of the syntax. Every tool makes it possible to provide libraries of functions that can be shared
among components. The degree of freedom in separating language concerns changes for each tool.

For instance, in LISA [54], syntax definitions can be separated from semantics using the inheritance mechanism. Multiple
inheritance makes it possible to componentize parts of the language into language components. Silver's grammars [23] are
able to achieve the same kind of componentization. Silver also supports attribute forwarding: with this feature the attributes
of a node may be defined in terms of the attributes of another node. This feature bears some similarity to Neverlang's
remapping feature (Section 4.1.2), but it is in fact more powerful, because it supports rewriting the tree.9 Neither in Silver or
LISA there is a formal mechanism to separate between evaluation phases, but these can be nevertheless defined separately
through design patterns (e.g., choosing a naming convention for the attributes, or modularize the implementation
accordingly). Spoofax [55] is designed to separate concerns to the extent that each of the major evaluation phases (name
binding, code generation, etc.) can be implemented using a different DSL. These DSLs are provided by the framework, but
users are free to define their own evaluation phases using the native Stratego programming language.

Considering the taxonomy in Erdweg et al. [9], we may say that all the surveyed modular tools are able to support both
semantic and syntactic language extension, restriction, unification and extension composition. It is worth noticing that
Neverlang is the only tool that supports by design real language restriction, through slice removal. But, again, this can be
achieved in the other cases through extension or, if necessary, through refactoring. Language unification is also possible,
because all of the tools are able to compose language specifications; in particular, even though according to [9] Spoofax
would not be able to perform semantics unification, we argue that the Stratego language's module system allows to define
rules and strategies across different modules,10 and therefore, such a kind of composition is indeed possible.

On the one hand, one might raise the concern that the finer-grained componentization described in this section, inspired
by the Neverlang model, may not be idiomatic in each framework. But, on the other hand, even if this were true, it would not
disprove that the surveyed tools are powerful enough to achieve these results. The obvious drawback of this technique is
that, still, entire modules have to be substituted, even when only a small computation has to be changed. There is indeed a
trade-off between module size and the ability to substitute small computations; as modules become smaller, module
management becomes more and more complex. But this kind of complexity could be managed through specific tooling
(cf. Section 6.4 for dependencies and variability management).

As we already mentioned in Section 3.1, Mernik [22] have observed that self-extension is a property of a language, rather
than a property of a language framework. For instance, SugarJ [56] is an extension to the Java language on top of Java, SDF
and Stratego which supports syntactic self-extensibility. A comparison of the examples in terms of code size is shown in
Table 3, we used the usual metrics of lines-of-code (LOC) (as found e.g., in [57]) and number of components. In terms of lines
of code, size is comparable. The Neverlang implementation may appear bigger because of the way Neverlang language
definition introduces module and slice declarations. With respect to number of productions, number of modules and
roles, the size is comparable to the other implementations; moreover, it is worth recalling that Neverlang supports alternate
JVM languages for the semantics, in which case line count might drop considerably (e.g., consider the boilerplate needed to
iterate over a collection in Java 7 compared to Scala or Java 8: in this implementation we used Java 7).

The conclusion of this experience is that none of these tools really centers around the idea of feature-oriented language
implementation, but most of them can be retargeted for this purpose through design patterns. This proves that the model
9 Neverlang is currently adding support to a tree-rewrite DSL, though (Section 6.2).
10 http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-chapter/rules-and-strategies.html#id3317807.
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(Section 3) is general enough to be supported by other tools. In the next section we will show the particular benefits that a
native implementation of this model provides.
6.2. Extending a real-world language: neverlang.js

JavaScript is a dynamic, general-purpose programming language that has been recently gaining wider and wider
consideration. In order to evaluate the capabilities of the Neverlang framework, we decided to realize a feature-oriented
implementation for this language. In our JavaScript interpreter it is possible to plug and unplug features to realize multi-
purpose dialects of the original language. The main goal of this experience was not to compete with state-of-the-art JS
interpreter implementations. We chose to implement JavaScript because it is a rather simple programming language, and,
lately, there has been a lot of buzz around it. We believe that implementing the JavaScript programming language represents
evidence that Neverlang is powerful enough to implement not only toy languages, but also real-world general purpose
programming languages. According to the Sputnik test suite11 our implementation covers about the 70% of the specification.
This score may not result very high at a first glance; really, it is justified because a large part of the test cases cover the
implementation of JavaScript's built-in libraries. Implementing these libraries is possible, but it constitutes a time-consuming
activity, that we have planned to complete in a later phase. Unfortunately, the Sputnik test suite assumes that all of the built-
in libraries are available, causing some tests to fail. Our implementation of the semantics of the language is however
complete: the interesting parts of the language are supported (e.g., closures, higher-order functions and the prototype chain),
to the point that many of the built-in libraries may be even implemented within the language; the subset of the built-in
libraries that is currently available is able to run browser-unrelated benchmarks in the Google Octane suite12 without
modifications.13

Performance-wise, preliminary tests have shown that we were able to make neverlang.js up to only one order of
magnitude slower than the Rhino JavaScript implementation.14 Considering that the implementation's main goal was
modularity and not performance, this result is quite promising. Moreover, we are already trying to address this issue through
specific efforts (see the paragraph at the end of this subsection on runtime evolution). A breakdown of the slices that
constitute the neverlang.js implementation is presented in Table 5.

Extending JavaScript: A classroom experience: Our JavaScript implementation consists of 73 slices (Table 5) that correspond
roughly to the same number of modules, for a total number of 3043 lines of code, plus around 64 Java classes of support
code (mostly, related to the supported parts of the built-in objects). Because we intended the language to be used in a short
course on modular language implementation, we intentionally kept it simple. For instance, only one role (evaluation) has
been currently implemented. This short course consisted of only three 4-hours lessons. At the end of the short course,
students were handed a full pre-compiled, pre-packaged implementation of the JavaScript interpreter, and were required to
implement a different language extension. Each extension consisted of a new language construct, with varying levels of
complexity. Each student would have provided the implementation of his/her extension as (i) a collection of Neverlang
source files (ii) a pre-compiled jar with the extension as a bundle and (iii) a collection of test cases for the developed
extension. A summary of the implemented extensions can be found in Table 6. Each extension has been developed in
isolation from the others. Students were provided with a copy of the source code, exclusively for reference and
documentation purposes. Students were not allowed to modify the source code of the reference implementation directly,
but rather to realize new components. The objective was to see the effectiveness of Neverlang as a tool to develop separate
language extensions. Grading consisted in first verifying that the provided source code was actually compiling. Then, an
automated script loaded each student-provided jar file, introducing the new components in the base interpreter.

As seen in Section 4.3.1, in Neverlang a language implementation is a JVM object instance. The public method
importSlice(sliceName) can be invoked at any time during the life-time of a language, making it possible to introduce
and substitute slices at runtime. The students' extensions were tested using this Neverlang feature. In order to verify the
correct execution, each language extension was first introduced independently from the other, and tested in isolation; then
we proceeded to verify the interactions between the extensions by testing all the possible 214 combinations of such
extensions. Because of the didactic nature of the experiment, only a few extensions actually conflicted (cf. Section 4.3.4): in
particular the students that implemented tuples and pattern matching chose a similar syntax for the same feature, causing
the parser generator to generate an error if such extensions were introduced at the same time.

The relevance of this experiment is to show that Neverlang's rendition of our feature-based model of language
implementation emphasizes its good properties, when they are brought to their natural extreme: (i) language components
can be developed separately, by different programmers, thereby allowing multiple teams to realize new features for a
language implementation in parallel; (ii) features can be shipped as pre-compiled components; (iii) pre-compiled
components can be composed onto the core language implementation at any time, possibly at runtime; (iv) independently
developed features can be tested together without touching the core language implementation in an automated fashion.
11 http://test262.ecmascript.org/
12 https://developers.google.com/octane/benchmark
13 In order to keep the grammar simple, semi-colon insertion was disregarded.
14 Preliminary tests, mainly conduced on Octane's crypto.js, showed a 30 s execution time for neverlang.js, while Rhino takes about 6 s.

http://test262.ecmascript.org/
https://developers.google.com/octane/benchmark


Table 3
Summary of the sizes of the different implementations.
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Runtime evolution for dynamic optimization: In Neverlang slices and roles are pre-compiled components that can be
deployed and undeployed at runtime. We are currently investigating how to exploit this feature to bring it one step further.
Inspired by the Truffle [58,59] runtime system, we saw an occasion to exploit this capability to perform modular runtime-
optimizations on our JavaScript interpreter. The Truffle JavaScript implementation, among other things, optimizes code paths
by rewriting tree nodes using specialized versions. Guards are installed on the code bodies that implement the semantics of
AST-based hand-written interpreters, and the rewriting occurs when a guard fires. It has been shown [59] that a Truffle-
based JavaScript interpreter implementation is close performance-wise to highly optimized interpreters such as Google's V8.
The Truffle project uses Java and Java annotations to achieve this impressive results. We are currently trying to reproduce
similar techniques in Neverlang by introducing tree rewriting capabilities and guards. In Section 4.3.2 we described how
actions are resolved. The key idea is that the component manager may to return a set of semantic actions; then the runtime
system may choose which rules should be executed, depending on the guards. Although the work is still in its infancy, the
results are promising: in an initial implementation of this technique, we measured that avoiding boxing of primitive values
through rewriting resulted in a (up to) 20� speedup. Further results on this matter will be reported in a separate work.

6.3. The DESK language

DESK is a simple desk calculation language described in [15] to show an example of an absolutely non-circular attribute
grammar (Section 2). Obviously, we are aware that implementing the DESK language does not constitute proof that
Neverlang is able to handle any non-circular attribute grammar; nonetheless, we believe that showing that Neverlang is able
to implement DESK constitutes at least evidence that the framework is able to handle non-trivial cases (see Section 2).
Full source code is available at http://neverlang.di.unimi.it/comlan14/examples.tgz

In DESK, programs are of the form

PRINT 〈expression〉 WHERE 〈definitions〉

where 〈expression〉 is an arithmetic expressions and defined constants, and 〈definitions〉 is a sequence of constant definitions
of the form

〈constant�name〉¼ 〈number〉

Each constant occurring in 〈expression〉 must be defined in 〈definitions〉 and, for each constant, only one definition may be
given. A valid DESK program may be

PRINT xþyþ1 WHERE x¼ 1;y¼ 2

The original DESK definition only includes addition as a valid expression; nevertheless, the DESK language includes many
central features of a real programming language:
�
 declaration of named entities (constants)

�
 use of declared entities

�
 conditions on the declaration and use of such entities

○ an entity cannot be redeclared
○ only declared entities can be referenced by name
In Paakki's work, DESK is compiled into an assembly code for a simple one-register machine. The execution of a valid DESK
program evaluates the expression and prints its value.

http://neverlang.di.unimi.it/comlan14/examples.tgz
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Summary of the differences between the tools.
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Table 5
Summary of neverlang.js by feature bundle.

Table 6
List of JavaScript extensions.

Extension name LOCs

Function type annotations 225
Catch guards 80
Class-based single inheritance 314
Dictionary comprehension 79
Destructuring assignment 73
Tuple literal 91
List concat operator 91
Lambda expressions 76
Named arguments in functions 78
List sum operator (vector sum) 41
Pipe forward operator 92
Immutable references 31
List comprehension 81
Syntax for pattern matching 191
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Listing 24. DESK grammar.
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Listing 25. Neverlang descriptor for the DESK language.
Listing 26. Program in DESK.
The attribute grammar in [15] has been converted into a Neverlang compiler. In Listing 24 we show the DESK grammar
with respect to the way we have defined language components. In our implementation we chose to define 5 modules, plus
the one for defining lexer tokens for constants, ConstName and numbers, Number; Paakki makes no distinction between
evaluation phases; in Neverlang it is easier to reason in terms of roles. Our implementation (Listing 25) defines three roles:
collect-constants, evaluation, code-gen. The first role has post-order semantics (Section 4) because it maps lexer
tokens into their corresponding values (e.g., it maps into an intvalue the token for the token for Number): the relevant
actions are attached to the leaves of the syntax tree, thus it makes sense to evaluate these first. The evaluationrole
performs the majority of the work. In Listing 26 the Programmodule is shown. This module contains the starting symbol of
the grammar, as defined in [15]. The evaluationrole uses the semi-automated evaluation strategy (Section 4.1.3), thus, the
developer is given full control on how and when the child nodes should be evaluated. In particular, in the DESK language,
the visit should start from the ConstPartnonterminal, and then proceed to the Expression. Neverlang is able to do this,
because it is possible to eval the second left-hand side nonterminal before the first left-hand side nonterminal, using the
command eval command. In this case, the label Pwas assigned to the production in the reference syntax section. So, we
can write eval $p½2� to proceed to evaluate the ConstPart nonterminal. Once control is returned to this semantic action
(that is, the recursive visit of the ConstPart subtree has terminated), it is possible to proceed to the Expression subtree.
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It is possible to pass down a value (a inherited attribute) by assigning it before eval is invoked. Then, we can proceed to
evaluate Expression using eval $P½1� Finally, the code-gen role generates the assembly code using the attributes that
were computed during the execution of the evaluation role, and the code attribute in Expression and its descendants,
computed during the code-gen phase: code generation is a role that is, again, a good candidate for simple post-order visit.

The size of the full DESK implementation is less than 180 lines of code. The apparent verbosity is due to our choice of
employing built-in Java data structures to keep the code base small, and without external dependencies. For instance, a
java.util.Map is used here for the environment. But java.util.Map is a stateful data structure. Nevertheless, because of
the way the language is defined (the environment is first filled, and then read), this does not introduce unintended side-
effects. Of course, it is always possible to rely on third-party libraries: for instance Google's Guava library15 provides
ImmutableMap. Another point that is worth mentioning is that our DESK implementation is a pedantic translation of
Paakki's original, in a way that is non-idiomatic in Neverlang; if the DESK language in a way that is more Neverlang-friendly,
the code base would result even tighter.

Observations: The implementation of the DESK language in Neverlang certainly does not represent a formal proof for
Neverlang's expressive power, but we believe it constitutes strong evidence that Neverlang should be practical enough to
implement non-trivial attribute grammars. If anything, it shows that Neverlang is more powerful than simpler tools such as
Yacc and ANTLR, which are limited to L-attributed or S-attributed grammars [16,11].

This power comes in some cases at the cost of being explicit about how the visit of the tree is conducted (using the eval

command) and about the way attributes are partitioned into roles. Tools that implement proper attribute grammars do not
require attribute evaluation to be triggered explicitly; in the most simplistic case, attribute evaluation is triggered at their use-
site. For instance, the rule A.val¼B.val þ C.val for a production A-BC would cause the evaluation of attributes B.val, C.
val which would, in turn, cause the evaluation of any other attribute they may be defined in term of. In fact, one strategy to
implement an attribute grammar is to map attributes onto functions; attribute grammar frameworks may then employ caching
and memoization techniques (Section 2) to avoid recomputing attributes more than once, when they produce the same results.
However, memoizationmay be hindered if the language framework admits impure computations. This is sometimes unavoidable,
for instance when I/O has to be performed. Neverlang's approach is more explicit, in that (unless the visit is post-order— Section 4)
it requires users to explicitly signal where attributes are being evaluated.

On the one hand, being explicit may feel a little inconvenient, because it places the burden of choice on the end users.
In Neverlang this is addressed by providing syntactic sugar (Section 4) to explicitly require attribute evaluation, while
retaining conciseness. On the other hand, this gives users more control over what is being evaluated: attributes may be
explicitly re-evaluated if the programmer knows that the value of an attribute should have changed; likewise, the
programmer may choose not to do so when a pre-computed attribute retains a valid value. This may be a plus for developers
that need this kind of finer-grained control. The biggest downside is that components coming from different sources may
not play well together because they expect different evaluation orders. In fact, delegating the computation of the evaluation
order to automatic machinery (as it usually happens with more traditional attribute grammar evaluation systems) would
relieve the developers from needing to think of this aspect in the first place, and, in the end simplify the combination of
components coming from different authors.

All in all, choosing one strategy over the other is a matter of trade-offs. Neverlang's choice was to trade a bit of
convenience in favor of giving users control; in AG evaluation systems users are relieved from the burden of choice, but, on
the other hand, they have less power over the way the language is evaluated.

6.4. Tracking dependencies through variability management

Each language component in itself represents a feature of a language (Section 3), which, by itself, does not constitute a
self-contained language definition. This is why each component may have dependencies. Dependency-tracking is a concern
that is not directly related to the composition model of a language framework, but it is nonetheless induced by the way the
language framework conceives components. These dependencies are usually not tracked automatically: the framework may
warn the user that a dependency has not been satisfied and raise a compile-time or run-time error. However, the framework
usually does not provide users with suggestions about how these missing dependencies may be satisfied to complete the
language implementation.

In [27,28], we have researched a way to mine data from pre-compiled language components that not only allowed to
represent the relationships between components, but also could be employed to provide users with a readable
representation of these dependencies, thereby allowing even end users to compose a language implementation from an
arbitrary selection of pre-compiled language components. Language components could be grouped by language families: by
collecting all the components that belong to a particular domain, users would be allowed to pick the features of a DSL,
realizing a variant that is member of that family. For instance, it would be possible to represent a family of state machine
languages in terms of the possible feature that a state machine language could include. End users may select the features
they want from a variability model [60–62] and generate the language implementation automatically. Mixing domains would
also be allowed: for instance state machine features may be combined with an action language, as described in Section 5.
15 https://github.com/google/guava
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Part of the information is inferred directly from the dependency graphs that can be constructed from internal properties
of the language components (Section 3). We have then tried to infer automatically a variability model by further mining
information from our language components. For instance, language components may be tagged by language developers with
keywords. The while loop implementation may be tagged with the keywords loop, statement; transition with guards
may be tagged with the keywords transition, guard, action, etc. In the Neverlang case, these would be stored as fields
of the objects that represent slices and modules (see Section 4). This metadata can be later extracted for further processing.
In the Neverlang implementation this metadata can be extracted from the pre-compiled components through the
framework's APIs (Section 4.3). Tags are then fed into a hierarchical clustering algorithm. By manipulating the dendogram
resulting from the clustering procedure, we are then able to present the features and their relationships through a tree-like
structure that is a snapshot of the given set of language components. End users are then able to pick features by selecting
components of this tree (the variability model), and the engine automatically resolves the dependencies and combines the
components into the language implementation.

The experiment has been carried out using different languages. One experiment mined data from a family of state
machine languages, similar to the one described in Section 5. This language family included different kind of states, and extra
transition types. Other experiments involved a simple imperative language. A similar experiment is now being conducted on
neverlang.js (Section 6.2), where variants can be constructed using the slices of the full neverlang.js interpreter (e.g., a purely
functional, stateless variant, and an imperative-only version).
7. Related work

Section 6 summarized which features of LISA, Silver, Spoofax were useful to implement a feature-oriented implementa-
tion of the state machine language. These frameworks provide further features to simplify language implementation.

AspectLISA [63,64] supports AOP-like constructs to hook into productions through pattern-matching and inject
attributes at multiple sites at once. The template construct makes it possible to perform a sort of macro-expansion of
repetitive rules (e.g., the bucket brigade pattern, to collect lists of attributes, which Neverlang implements through library
functions 4). However, in LISA it is harder to separate attribute definition from grammar definitions, and it is not possible to
define an abstract syntax. LISA's main target language is a Java subset. Unfortunately, there is no support for separate
compilations, nor does the tool support language extension to be performed from pre-compiled binaries; the language input
files have to be provided as source code. LISA supports the most extensive number of techniques to parse and evaluate
attribute grammars, with several choices on the kind of parser generator to use (e.g., LL, LR, and LALR) and the evaluation
strategy for the attribute grammar (among the others, Lenic Tree Walk Evaluator, Katayama Evaluator, L-Attributed
Evaluator, Visit Pattern Evaluator, etc.).

Silver [46,65] supports the definition of abstract productions, verifiable composition of modules, raising errors if a
language extension is not well-defined [65] and aspect productions, (a different feature from LISA's). It also supports attribute
forwarding, which can be described as a macro-like system to rewrite the semantics of a construct in terms of the semantics
written for a different construct (e.g., by remapping attributes, and nonterminals; in Neverlang the simpler mechanisms of
remapping and renaming are present). The generated parser uses a variant of LALR with context-aware scanning [47], and it
implements an algorithm for verifiable composition of deterministic parsers [46]. These features together make easier to
compose LALR grammars and give strong guarantees on the generation of a deterministic parser. Silver source files are
compiled down to Java and it is possible to reuse Java libraries, but while interfacing with Java/JVM code for Neverlang is a
key point, the Silver system is meant to be self-contained; thus, although it is possible to interface with Java code, the
endorsed way to define extra support code is to use Silver itself. Most notably, Silver is the only tool, among the surveyed, to
support separate compilations,16 Neverlang aside.

The Spoofax [55] language workbench internally uses Stratego, a dynamically typed declarative DSL for term rewriting,
with a unique syntax. The JVM implementation compiles the DSLs into Stratego source files and Stratego files into an
internal high-level format interpreted by the Stratego/J execution engine17; interoperability with Java code is possible, but it
is not within the main objectives of the project. Separate compilations are unfortunately not supported yet [66].

The JastAdd [67] is a Java-based attribute grammar system. JastAdd programmers define a grammar and the attributes
and the system scaffolds pre-built AST Java classes. Aspects can be used to statically inject semantics into attributes.
Attributes are implemented as Java methods that support parameters. JastAdd also supports reference attributes (similar to
Silver's higher-order attributes). Aspects can be used to separate concerns such as evaluation phases. Aspects can be
factorized in such a way that it is possible to define pre-compiled language components, but JastAdd is a code-generating
tool, thus it is not possible to further extend components without editing the original source code.

It is also worth mentioning MontiCore [68] a framework for language composition and extension that provides grammar
inheritance and rewriting mechanisms additionally to modularization features. MontiCore uses a combined grammar
format for concrete and abstract syntax and it supports grammar inheritance and rule inheritance. In the case of grammar
16 http://melt.cs.umn.edu/publications/silver/silver-reference.pdf
17 https://strategoxt.org/Stratego/StrategoJ
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inheritance, similarly to LISA, all the rules of a parent grammar are inherited; overriding of rules is also possible. Semantics is
given through visitors.

Jetbrains' Meta-Programming System (MPS) [69] for DSL implementation is a projectional editor, which means users are
actually editing an AST through context menus, autocompletion and keyboard shortcuts instead of just typing in text.
The main drawback with projectional editors is a steeper learning curve [70]. The system supports language modularization
and inheritance-based code reuse.

Lightweight Modular Staging (LMS) [71] uses Scala's embedded DSL idiom to implement compilers. LMS provides the
means to modularize the syntax of a program to generate code, and therefore it can be used to implement the work that we
described. Moreover, syntactic composition in this case would be easier than in Silver because in LMS merging language
components only consists in using APIs coming from different libraries instead of merging parse tables. The downside is that
syntax of programs is limited to the constraints imposed by Scala's compiler.

As seen in Section 6, Xtext [52] language workbench is severely limited because it only supports single inheritance.
Xsemantics [53] is a DSL that can be used in combination with Xtext to formally define and verify the semantics of
compilation phases such as type-checking. We also want to cite EMFText [72], another EMF-based tool [73] (like Xtext) that
supports modular language implementation using syntax imports.

Neverlang's DEXTER is a modular LR parser generator. In the literature, authors have tried to address composability in LR
parser, since LR is known not to be closed under composition (see Section 4.3.4); in particular, Silver targets a safe subset of
LALR(1) using Copper [46], Bravenboer and Visser [74] describe an algorithm to compose together different grammar
portions and obtain an LR(0) goto-graph. [75] describes an approach to componentized LR parsing. In [43] we proved the
existence of a relation between goto-graphs, and presented an algorithm to transform the goto-graph of a grammar into the
goto-graph of an extended grammar. Finally, with respect to extensible parsers, recent work by Reis et al. [76] has shown an
extension to PEGs that may be employed to define extensible parsers, called Adaptable PEG.
8. Conclusions

Modular language implementation is the first step towards bringing language implementation to a wider audience.
The model we presented can be easily implemented using many of the already existing tools and we showed that a native
implementation of this model gives a greater range of possibilities. Separate compilations make it possible to redistribute
pre-compiled components. In neverlang.js (Section 6.2) we showed that language extensions can be developed, and tested
and integrated in parallel and in isolation. The variability management experience (Section 6.4) has shown that multiple
language components can be mined to simplify the definition of language variants from pre-built artifacts.

The Neverlang framework has been successfully employed in real-world projects. TheMatrix [77] is a Java framework to query
and manipulate Italian's national healthcare databases to produce statistics on the prevalence of chronic diseases and estimate
the standards of care across the country. The Tyl Language is an experimental business-oriented DSL for the development of ERP
software.18 The same implementation of Neverlang's compiler nlgc (Section 4.1.1) and of the interpreter for a complete, modern
programming language (neverlang.js, Section 6.2) are a testament to the strengths of Neverlang and its underlying model. We are
also completing the implementation of a modular Java language pre-processor, in the style of Polyglot [78], SugarJ [56], and ableJ
[46]. Other experiments involved experimenting with a simple implementation of the Logo programming language. Moreover,
because the core API is entirely Java 6 compatible, we were able to successfully port the entire Neverlang implementation onto
Android (an example use case would be the Recipe language described in [20]), where its dynamic loading capabilities could be
useful to separately distribute plugins for a core language implementation.

Nevertheless, in Neverlang there is still much room for improvement. Future work will concentrate both on its expressive
power and ease of use. Runtime evolution and a DSL for tree rewriting are already in development, and thanks to the
architecture of the framework they should be available soon. The language plugin system makes it possible to support new
programming languages for semantic actions, and the dynamic mapping between parse trees and semantic actions would
simplify support to dynamic dispatching of alternative actions.

Composition between language components is also a matter of establishing a set of guidelines: Section 3 gave an
overview of the principle of dependency between language components. Even though Neverlang provides renaming and
remapping capabilities (Section 4), guidelines on naming and factorization of language components are still an open problem
that affects any modular language implementation tool. Our plan is to explore this problem more through field studies and
further experiences.
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