
T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 1 – 5, 2007.
© Springer-Verlag Berlin Heidelberg 2007

9th International Workshop on
Aspect-Oriented Modeling

Jörg Kienzle1, Dominik Stein2, Walter Cazzola3,
Jeff Gray4, Omar Aldawud5, and Tzilla Elrad6

1 McGill University, Canada
 2 University of Duisburg-Essen, Germany

3 University of Milano, Italy
 4 University of Alabama at Birmingham, USA

5 Lucent Technologies, USA
 6 Illinois Institute of Technology, USA

joerg.kienzle@mcgill.ca, dominik.stein@icb.uni-due.de,
cazzola@dico.unimi.it, gray@cis.uab.edu, oaldawud@lucent.com,

elrad@iit.edu

Abstract. This report summarizes the outcomes of the 9th Workshop on
Aspect-Oriented Modeling (AOM) held in conjunction with the 9th International
Conference on Model Driven Engineering Languages and Systems – MoDELS
2006 – in Genoa, Italy, on the 1st of October 2006. The workshop brought
together approximately 25 researchers and practitioners from two communities:
aspect-oriented software development and software model engineering. It
provided a forum for discussing the state of the art in modeling crosscutting
concerns at different stages of the software development process: requirements
elicitation and analysis, software architecture, detailed design, and mapping to
aspect-oriented programming constructs. This paper gives an overview of the
accepted submissions and summarizes the results of the different discussion
groups. Papers and presentation slides of the workshop are available at
http://www.aspect-modeling.org/.

1 Introduction

This report summarizes the outcomes of the 9th edition of the successful
Aspect-Oriented Modeling Workshop series. The workshop took place at the Bristol
Hotel in Genoa, Italy, on Sunday, October 1st 2006, as part of the 9th International
Conference on Model Driven Engineering Languages and Systems – MoDELS 2006. A
total of 11 position papers were submitted and reviewed by the program committee, 9 of
which were accepted to the workshop. Approximately 25 participants attended the
presentation session and took part in lively discussions. Papers, presentation slides, and
further information can be found at http://www.aspect-modeling.org/.

2 Overview of Accepted Position Papers

Marcelo Sande from the Military Institute of Engineering in Rio de Janeiro, Brazil,
described how he and his colleagues mapped AspectualACME, an architectural

2 J. Kienzle et al.

description language, to UML 2.0 [8]. He presented why the base UML 2.0 modeling
abstractions of component diagrams are not strong enough. One reason to this is that
standard UML only allows to connect provided interfaces of components to required
interfaces of other components. He explained how they made connectors first-order
elements, and how they defined a special aspectual connector that can be used to
connect the provided interface of a (crosscutting) component to both the provided and
the required interfaces of another (base) component.

Natsuko Noda from the Japan Advanced Institute of Sciences and Technology in
Nomi, Japan, presented a symmetric aspect-oriented modeling technique for
aspect-oriented design [6]. In Noda’s presentation, each concern of the system is
modeled with aspects that are composed of class diagrams, object diagrams and state
diagrams. Each aspect is self-contained. The connections between aspects are defined
in aspect relation rules, which define how a transition change in one aspect can affect
other aspects (i.e., by introducing events into other aspects).

Asif Iqbal from the Honeywell Technology Solutions Lab in Bangalore, India,
works in the context of modeling of safety-critical systems. He talked about the issue
of modeling temporal behavior, which usually crosscuts the functional model of a
system [4]. In order to reason about concepts such as Worst Case Execution Time,
time-depending behavior has to be explicitly represented in models. As an example,
Asif mentioned the synchronization of local clocks with a global clock. He showed
how this concern can be modeled with timed state diagrams, and how the crosscutting
can be modeled using the AOSF framework with time extensions. However, state
diagrams that are created using orthogonal composition run on a single clock, which
is a problem that still needs to be addressed.

Thomas Cottenier from Motorola Labs in Chicago, USA, argued that reactive
functionality of a system should be modeled using a reactive modeling formalism
such as state diagrams [2]. He showed a small demonstration of the Motorola Aspect
WEAVR, a tool for aspect-oriented composition of state diagrams. The Motorola
models are executable (or transformable into executable code). Thomas argued that
aspect-oriented modeling is more powerful than aspect-oriented programming: The
join point model of state diagrams is better suited to express crosscutting reactive
concerns than the classic join point model of aspect-oriented programming languages.

Sonia Pini from the University of Genoa, Italy, argued that current pointcut
definitions require global knowledge of the base program by the developer in order to
write meaningful pointcuts [1]. Hence, current join point selection mechanisms are
fragile, because they fail to provide reusability and evolvability. In order to reason
about the semantics of join points, she proposed a technique in which the join points
are expressed at a higher level of abstraction (i.e., at the modeling level with sequence
and activity diagrams). Furthermore, she presented a mechanism to map these high-
level join point selections to program code.

Arnor Solberg from SINTEF/the University of Oslo, Norway, presented an
aspect-oriented modeling technique based on sequence diagrams [7]. In this approach,
aspect sequence diagrams are defined that represent a template of crosscutting
behavior. To instantiate the aspects, the base model is annotated with tags that define
where the aspects should be applied (i.e., instantiated). Simple aspects are inserted
into the base sequence diagram at one specific point, whereas composite aspects are
applied to regions within the base diagram (annotated with a tagged fragment). In

 9th International Workshop on Aspect-Oriented Modeling 3

order to allow fine-grained application of crosscutting behavior within this tagged
fragment, a composite aspect defines several parts: begin/end parts that execute when
the fragment is entered/exited, before/after parts that execute before or after every
message invocation, and a body part that can alter the actual message sending.

Andrea Sindico from ELT Elettronica in Rome, Italy, presented an aspect-oriented
modeling approach in which concerns are specified in an aspect diagram [3], which
defines static crosscutting in the form of an inter-type declaration diagram, and
dynamic crosscutting in the form of advice diagrams. Inter-type declaration diagrams
are composed of two class diagrams. Advice diagrams are composed of pointcut
diagrams and behavioral diagrams. In both cases, one diagram explains the context of
the base program that is of interest, while the other shows what has to be added to the
base context. Pointcut diagrams (comprised in advice diagrams), for example, define
the set of join points to which an aspect is to be applied. In his work, Andrea suggests
to specify them in the form of a UML activity diagram.

Thomas Cottenier from the Motorola Labs in Chicago, USA, also presented work
on aspect interference at the modeling level [9]. He showed a demo of the Telelogic
TAU tool, in which they implemented different dependencies in their aspect
deployment diagrams: A «follows» B, which specifies that aspect A's behavior has
lower precedence than B; A «hidden_by» B, which specifies that the behavior of
aspect A is not activated when A and B apply to the same join point; and A
«depends_on» B, which specifies that aspect A's behavior can only be applied where
aspect B's behavior is also applied.

Roberto Lopez-Herrejon from Oxford University, UK, related Feature-Oriented
Programming (FOP) to the approach of Aspect-Oriented Software Development with
Use Cases (AOSD w/UC) [5]. He demonstrated how features can crosscut other
features and how aspects can help to resolve this crosscutting. Roberto referred to the
existing approach of AOSD w/UC and pointed out its limitations with respect to a
well-defined composition mechanism. After that, he introduced the algebraic
approach of FOP, which contains a formal composition model, but lacks an
"intuitive" notation. Roberto proposed to combine FOP with AOSD w/UC to achieve
mutual benefit.

3 Overview of Discussion Topics

Due to space limitations, this section offers a summary of the most interesting and
significant issues that were addressed during the discussion sessions. These issues
also emerged during the questions and comments in the presentation sessions.

Is AOM about visual representation? During the workshop, the participants
expressed several opinions about the essence of AOM. The general idea of modeling
is to make something simpler (i.e., more comprehensible). Very often, this goal is
achieved by providing a visual notation. However, most of the participants agreed that
a visual notation is not essential. Once the semantics of an abstraction are well-
defined, finding a suitable graphical representation for it is only syntactic sugar. The
discussion did not go into further details, unfortunately, about what precisely AOM
should make simpler or more comprehensible other than "visual communication."

4 J. Kienzle et al.

Is there a need to look at woven models? There has been a disagreement on
whether developers need to have a look at woven models. Although some participants
argued that this is necessary for comprehending the execution of an aspect-oriented
program (or model) and for debugging, others claimed that, once the semantics of a
given weaving mechanism is clear, developers do not care about (and do not need to
look up) how these semantics are actually accomplished.

Does AOM meet its goals? One of the participants questioned if AOM actually
meets its goals, such as an improved readability, comprehensibility, extensibility, and
reusability of software (artifacts). The participant reported on a case study that was
conducted in which aspect-oriented modeling techniques were used throughout the
entire software development lifecycle. That is, each concern was separated all the way
down from requirements elucidation to the pre-coding phase. In the end, the
participant obtained a nicely separated set of concern specifications. However, this
results in a full load of very complex composition specifications determining how
those nicely separated concerns are supposed to work together. These composition
specifications were not readable, comprehensible, extendible, or reusable.

What is the role of model composition specifications (join point selections,
composition rules, etc.) in the software development process? Various participants
were concerned about the relevance of model composition specifications (such as join
point selections, pointcuts, composition rules, composition directives, or other kinds
of dependency relationships between concern models) in the software development
lifecycle. It has been stated that the gap between join points1 in requirement
specifications and join points in the corresponding code is huge. Consequently, the
mapping of join point selections (composition rules) between different levels of
abstraction is often problematic. One solution to this might be to introduce notions of
join points at various levels of abstraction, such as architectural join points for
architectural system descriptions, and map the join point notion of one abstraction
layer to the join point notion of the layer beneath.

A statement from an industry participant suggested that AOM may help to keep
concepts separated and consistent throughout the development process. However,
AOM should also provide a means to indicate explicitly how those separated concepts
interact with each other in order to document design decisions and tradeoffs.
Furthermore, AOM should provide support for documenting the application of a
particular policy in the general case and at the same time outlining under which
circumstances a more specialized policy is used (e.g., in general, use password
authentication, but in these and those special cases, use biometric authentication).

What is the target application context of AOM? Another question concerned the
target application context of AOM and how AOM should support it. Industry
mentioned that software projects rarely attack problems from scratch. Usually,
existing software needs to be extended. Therefore, AOM should provide a means to
support extensibility. Another point was that introducing aspects into industry should
start with simple cases. Such simple aspects should be implemented by a small group
of developers, which facilitates support for the larger group of "base program
developers." Once the simple aspects are adopted, more elaborate aspects could be
introduced. One problem that has to be solved concerns the fact that even simple

1 or, more generally speaking, some kind of concern interaction points.

 9th International Workshop on Aspect-Oriented Modeling 5

aspects can add an enormous amount of new possible states to a base program. Perhaps
AOM can help in estimating the effects of an aspect onto a given base system. Another
scenario mentioned concerns how AOM could be used to document design decisions and
tradeoffs (see previous question).

4 Concluding Remarks

The 9th International Workshop on Aspect-Oriented Modeling in Genoa provided
evidence that the AOM community has reached a state of maturity. Most participants
were well aware of the fundamental ideas and key concepts of AOSD. Consequently,
the focus of discussions shifted from "what are the right abstractions to use in AOM
in general?" towards "how to use these abstractions and AOM in order to reach
certain goals?" The participants from academia critically evaluated the existing
modeling approaches with respect to certain claims and specific problems.
Participants from industry expressed clear expectations of what they anticipate from
AOM. These problems and expectations outline cardinal and substantial topics for
future research on AOM.

Acknowledgements

We would like to thank the program committee members who have helped to assure the
quality of this workshop: Mehmet Aksit, Aswin van den Berg, Thomas Cottenier, Robert
France, Sudipto Ghosh, Stefan Hanenberg, Andrew Jackson, Jean-Marc Jézéquel, Kim
Mens, Alfonso Pierantonio, Raghu Reddy, and Markus Völter. We also thank all
submitters and workshop participants who helped to make this workshop a success.

References

[1] Cazzola, W., Pini, S., Join Point Patterns: A High-Level Join Point Selection Mechanism
[2] Cottenier, T., van den Berg, A., Elrad, T., Model Weaving: Bridging the Divide between

Elaborationists and Translationists
[3] Grassi, V., Sindico, A., UML Modeling of Static and Dynamic Aspects
[4] Iqbal, A., Elrad, T., Modeling Timing Constraints of Real-Time Systems as Crosscutting

Concerns
[5] Lopez-Herrejon, R., Batory, D., Modeling Features in Aspect-Based Product Lines with

Use Case Slices: An Exploratory Case Study
[6] Noda, N., Kishi, T., An Aspect-Oriented Modeling Mechanism Based on State Diagrams
[7] Reddy, R., Solberg, A., France, R., Ghosh, S., Composing Sequence Models using Tags
[8] Sande, M., Choren, R., Chavez, C., Mapping AspectualACME into UML 2.0
[9] Zhang, J., Cottenier, T., van den Berg, A., Gray, J., Aspect Interference and Composition

in the Motorola Aspect-Oriented Modeling Weaver

	Introduction
	Overview of Accepted Position Papers
	Overview of Discussion Topics
	Concluding Remarks
	References

