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Abstract The LR(0) goto-graph is the basis for the construction of parsers for several inter-
esting grammar classes such as LALR and GLR. Early work has shown that even when a
grammar is an extension to another, the goto-graph of the first is not necessarily a subgraph
of the second. Some authors presented algorithms to grow and shrink these graphs incremen-
tally, but the formal proof of the existence of a particular relation between a given goto-graph
and a grown or shrunk counterpart seems to be still missing in literature as of today. In this
paper we use the recursive projection of paths of limited length to prove the existence of one
such relation, when the sets of productions are in a subset relation. We also use this relation to
present two algorithms (Grow and Shrink) that transform the goto-graph of a given grammar
into the goto-graph of an extension or a restriction to that grammar. We implemented these
algorithms in a dynamically updatable LALR parser generator called DEXTER (the Dynam-
ically EXTEnsible Recognizer) that we are now shipping with our current implementation
of the Neverlang framework for programming language development.

1 Introduction

1.1 Motivation and objectives

Modern software development has seen a growing interest in an old practice that has never
really gone out of fashion, that is, the habit of developing custom little languages [4] (as
Unix users like to call them) to solve a particular problem. Advocates of the so-called
language-oriented programming [34] consider the implementation of domain-specific lan-
guages (DSLs) a great way to communicate with domain experts and validate the correctness
of the implementation of a software product [17].

Improving language development in the industry requires dealing with usual concerns in
software development: software evolution and component reusability. Just as any other piece
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of software, even a DSL implementation may be required to evolve during the years. In fact,
studies pointed out [24,25] that up to 80 % of a software system lifetime is spent on main-
tenance and evolution activities. With such a high rate, and considering the pace at which
business requirements change over the time, it is hard to believe that a DSL implementation
could escape from this simple logic. Therefore, it becomes important for a language imple-
mentation to be flexible enough to admit the introduction of new features, without a complete
overturn of the structures that are already in place. Another important point is DSL com-
ponent reusability: modern software development is component-based, but today languages
are still developed as non-modular entities, using largely static toolchains, with lexers and
parsers rebuilt from source each time the grammar changes. The theoretical results that we
are presenting, being related to parsers, are all concerned with the syntactic evolution of a
language specification, but we are working on a more general language framework that we
briefly introduce in the next section.

1.2 The Neverlang framework

The need for a parser for an evolving language is a consequence of our previous experience
in the design and implementation of tools for adaptable software systems. In particular, Nev-
erlang [9,10,33] is the framework that we developed to assist the design and implementation
of programming languages using a compositional approach. The core idea is that an inter-
preter or a compiler for a language implementation may be generated by composing together
language units, each of which encapsulates different, but related aspects of its syntax and
semantics. Each module may be shared between different languages: for instance, C-like pro-
gramming languages could share many of their grammar specifications, such as the syntax
of loop constructs, conditionals and expressions.

Neverlang is a complete toolchain that covers all of the different aspects of the definition
of a language, from the generation of its parser, to the implementation of its semantics. In the
early stages of its development, the framework worked as a comprehensive code-generating
toolchain. However, our final goal is to develop a language implementation system that not
only is no more bound to full code re-generation for the smallest changes to the codebase,
but that can also be updated on-the-fly, by plugging and unplugging features, possibly even
at runtime [11,12].

In order to achieve this kind of flexibility, every part of the toolchain should to be developed
with this purpose in mind. The work that we are presenting here is the foundation for a
parser generator library that we have integrated into the latest version of Neverlang. Our
requirements were the following:

– supporting arbitrary new syntax to be plugged into an existing, executable parser;
– supporting arbitrary syntax restrictions by unplugging a module;
– being able to perform such changes on-the-fly, possibly at runtime;
– being able to perform such changes without needing the original input grammar to be

available.

These requirements were met by studying a method to perform syntax extensions and
restrictions to a language by updating its parser. The result was implemented in a library
called DEXTER, the Dynamically EXTEnsible Recognizer. DEXTER generates LALR(1)
parsers that can be updated on-the-fly. The Neverlang framework uses these features to load
and unload syntactic modules dynamically, but DEXTER works also as a standalone library.
The details of the implementation of DEXTER in Neverlang and further developments of the
framework can be found in [11,12].
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1.3 State of the art

Several authors have dealt with the problem of evolving the parser of a language from
different perspectives. The problem of performing syntax extensions is known to be nontrivial.
Traditionally, the problem of parsing a context-free language is a matter of choosing between
the LL and the LR family [23], but these techniques alone do not deal with the problem of
evolution.

Modern programming languages such as Scala [26] contributed to a new wave of interest
in parser combinator (e.g., [22]) libraries. Parser combinators are higher order functions
that can be composed together to form a parser for a complete language. The focus on
composability and component reuse seem in fact a great answer to the requirement for
a fast development cycle and continuous evolution. Moreover, because of the way parser
combinators are composed, often the resulting program resembles the structure of an EBNF
grammar, which makes this technique even more appealing to the casual language developer.
[13] used parser combinators in the implementation of its modular language framework.
However, parser combinators, PEGs [16], and in general any technique based on recursive
descent (e.g., [29,35]) are known not to be trouble-free. For instance, a naïve implementation
of an ambiguous context-free grammar requires exponential time and space. Most of these
problems can be usually solved using more advanced techniques (e.g., in the first case,
memoization), which are however generally less easy for a casual user to grasp. In the top-
down family, an early work by [8] uses LL(1) parsers to implement extensible grammars,
which makes time linear, but restricts the class of recognized languages. The rats! is a
packrat parser generator [18] that provides a rich grammar module system; it provides a form
of templating to reuse partial input grammar specifications, but only if they are available in
their original source form.

Other authors investigated alternative parsing algorithms, to allow more flexibility in
grammar definitions. The metafront tool [6] uses a novel parsing algorithm called specificity
parsing; the main problem with this algorithm is that the class of recognized languages is not
fully characterized. On the other hand, Earley’s parsing algorithm [15] is well-known, and it is
able to handle any (possibly ambiguous) context-free grammar, although at the cost of a non-
linear computational complexity [19]. The dynamic nature of the algorithm makes possible
to implement reflective grammars [31], that is grammars that allow language extension at
parse time, similar to those in [8], but not limited to the LL(1) class. The algorithm is also
being employed in the SPARK toolkit for DSLs generation in Python [2], but the author
reports concerns in term of speed. A proposed solution to this problem (e.g., [3]) involves
a pre-computation phase similar to those for LL and LR parsers, but the cost is losing
all of the dynamic properties that in fact would make evolution easier. The ANTLR [28]
parser generator is more similar to traditional tools such as YACC, but it implements a
novel extension to LL(k) called LL(∗) which permits arbitrary lookahead, gently falling over
backtracking only as a last resort; ambiguities are resolved using predicated grammars that
resolve nondeterminism in ambiguous grammars using guards. ANTLR has been shown to
be very competitive in terms of and ease of use, and in terms of performance it is close to GLR
(Generalized-LR, [32]) parsers, of the LR family; however, it does have limits: for instance,
as opposed to LR parsers, LL(*) cannot handle left-recursive grammars.

On the other hand, LR parsers are known to be an efficient family of bottom-up parsers
that is guaranteed to run in linear time for any deterministic context-free language. The main
arguments against this family are that LR parsers are not easy to write by hand, and that many
notable subclasses of LR, such as LALR, in general are not closed under composition [30].
The first problem can be addressed using an LR parser generator, such as YACC, that takes
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(E)BNF grammars as their input. Moreover, there are parsers in the LR family that are known
to be able to parse any context-free grammar, such as GLR. Scannerless Generalized LR
parsers (GLR) [32] have been showed to be closed under composition, they are able to parse
any context-free grammar, and are generally more efficient than Earley for programming
languages that are close to LR [7]. However, for nondeterministic grammars, they may
generate multiple different parse trees, and therefore execute different actions for the same
input text. However, another notable class of the LR family, LALR(1), has been showed
to be practical and efficient with respect both to parsing and to composition, by introducing
context-aware scanning [36]. Both LALR and GLR parsers are based off the same formalism,
that is, LR(0) goto-graphs. The conclusion is that studying a method to extend and restrict
LR(0) goto-graph leads to a working foundation for reasoning about the other classes. [7]
describe an algorithm to compose together different grammar portions and obtain an LR(0)
goto-graph. First, the input grammars are translated into ε-NFAs, then they are compose
together, and then the result is converted into the LR(0) goto-graph. The algorithm has
been implemented in MetaBorg and in the OCaML project dypgen [27]. This intermediate
representation, however, can be avoided, by applying the updating procedure directly on the
LR(0) goto-graph. Early literature on incremental extension of LR(0) goto-graphs [20,21]
shows promising results. However, these works do not really account for an actual formal
proof of their results, favoring a mostly empirical exposition of the software tools that the
authors implemented. In this work, we decided to go for another route. We tried and filled the
void by completing these works with a formal proof of the existence of a relation between
extended and restricted LR(0) goto-graphs using the technique of reduction over path lengths.

1.4 Technical contribution

Compared to other works, updating the LR(0) goto-graph to reflect changes in the grammar
does not only make possible for a language implementation to evolve over time from the
syntactic standpoint, but, most importantly, it does so while still relying on a well-known and
tested family of parsers. In particular:

– the input grammar is not required to be available as a source file, as opposed to any
traditional parser generator such as YACC, Bison or ANTLR;

– parsers can be updated on-the-fly; in this regard, the technique might render the LR-
family a valid alternative to Earley’s algorithm, when implemented in tools similar to
Neverlang [3];

– the transformation is applied directly to the goto-graph, without intermediate steps (c.f.
[7];)

Moreover, although early results in this field do exist [20,21] we believe that the value in
our contribution is in the formal results that otherwise would not be found in other literature.

In this paper we consider the case of growing and shrinking a base grammar G with a
set of productions Q, and describe the process of updating the LR(0) goto-graph. Technical
contributions of this work:

– the formal proof of the existence of a particular relation between the goto-graph ΓG of a
grammar G and the goto-graph ΓG ′ of the modified grammar G ′ (whether it has grown
or shrunk), and the description of such relation; in particular, if ΓG ′ has grown and V ′
is its set of vertices, there exist a graph Γ̂ isomorphic to ΓG such that its vertices are a
subset of P(V ′).

– the algorithms to transform (update) the graph of a given grammar into a graph equivalent
to that of a corresponding growing or shrinking grammar.
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The key idea is that, if we indicate the growing grammar with G ′ = G ⊕ Q, where ⊕
denotes the growing operation and Q is a set of rules, then the graph ΓG ′ intuitively should
include the graph ΓG . If this simple observation held true, then we could augment the graph
ΓG of the initial grammar with new vertices and edges and transform it into a graph that is
isomorphic to ΓG ′ ; that is, for our intents and purposes, a graph that is completely equivalent
to ΓG ′ to drive the recognition of the language of G ′. Conversely, when G ′ = G � Q, with
� denoting the shrinking operation, then graph ΓG ′ is supposed to be included in ΓG , so
ΓG could be transformed into an equivalent representation of ΓG ′ by removing vertices and
edges. Unfortunately, the reality is more complicated: adding a rule can cause vertices in the
graph to be split [20,21]. In other words, if G is a grammar and G ′ is a growing grammar,
ΓG might not be a subgraph of ΓG ′ ; similar considerations can be made for the shrinking
case.

Thus, in this paper, we do not only explore how a graph grows and shrinks with respect
to growing and shrinking grammars, but also how the splitting phenomenon should be dealt
with. The theorems form the foundation for the algorithms presented in the latter part of this
document, that we implemented in DEXTER to update on-the-fly a pre-generated parser. For
what concerns LALR(1) lookahead sets, we decided to implement the computation in a non-
incremental procedure that is called on-demand. In this case we employed the well-known
algorithm found in [1].

1.5 Paper outline

In Sect. 2 we describe the theoretical foundations of our work, by briefly recalling common
definitions about grammars; we then proceed to introduce the concepts of growing and
shrinking grammar. Section 3 contains all the formal proofs that justify the correctness of
the procedures to update a parser that we then describe in Sect. 4. In Sect. 5 we draw the
conclusions and describe our plans for future works.

2 Terminology and theoretical background

A context-free grammar G is a four-tuple G = 〈Σ, N , S, P〉, where � is the set of terminal
symbols, N is the set of non-terminal symbols, S is the start symbol (or axiom) and P is a
set of production rules. The symbol ε represents the empty string. If R is a relation then R∗
is the reflexive transitive closure of R. Moreover, when not otherwise specified:

S, S′, A, B,C, . . . ∈ N ; X ∈ (Σ ∪ N ∪ ε); a, b, c, . . . ∈ Σ; α, β, γ, . . . ∈ (Σ ∪ N )∗.

We represent the length of a word α as |α|. Obviously |ε| = 0. The relation ⇒ is defined so
that αAγ ⇒ αβγ for all α, γ ∈ (Σ∪ N )∗ and A → β ∈ P . The relation ⇒∗ is the transitive,
reflexive closure of ⇒. A nonterminal A is useless if there is no string ω of terminals such
that A ⇒∗ ω. A nonterminal Z is unreachable if there is no derivation S ⇒∗ αZβ, where S
is the axiom.
Growing and shrinking grammars. We will now define two operations over grammars called
growth and shrinkage. The result of these operations applied to an input grammar G and a
production A → ω is a new (possibly identical) grammar G ′.

Definition 1 (Growth) Let G = 〈Σ, N , S, P〉 be a grammar and A → ω a production, and
let us denote with σ(A → ω) the set of terminal symbols and with ν(A → ω) the set of
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non-terminal symbols of the new rule; then grammar

G ′ = 〈Σ ∪ σ(A → ω), N ∪ ν(A → ω), S, P ∪ {A → ω} 〉 .
is the growing grammar for G , and we will denote it with G ⊕ {A → ω}.
Definition 2 (Shrinkage) Let G = 〈Σ, N , S, P〉 be a grammar and A → ω a production;
then

G ′ = 〈Σ, N , P \ {A → ω}, S〉 .
is the shrinking grammar for G , and we will denote it with G � {A → ω}.

Finally, we make the following generalizations: let Q be a non-empty set of productions
such that Q = {A1 → ω1, A1 → ω2, . . . , An → ωn} then we define

G ⊕ Q � G ⊕ {A1 → ω1} ⊕ {A1 → ω2} ⊕ · · · ⊕ {An → ωn}. (1)

If Q ⊆ P we can define G � Q similarly.
For completeness, we will also mention the axiom change operation. Let G =

〈Σ, N , S, P〉, we define the axiom change operation

ρSnew(G ) � 〈Σ, N , Snew, P〉 .
Obviously, if there is no rule Snew → ω ∈ P , for some ω, then the grammar ρSnew(G )

generates the empty language. This is an expected effect of the axiom change operation.

2.1 The LR parsing technique

The LR technique (where LR stands for Left-to-Right) has been first described by [23]. It is a
bottom up parsing technique, because the parse tree is built starting from the leaves, from left
to right. The parsing process terminates successfully when all the parts of the input program
have been reduced to the axiom of the grammar, which constitutes the root of the parse tree.

LR(k) parsers are usually modeled by a deterministic pushdown automaton, supplied with
a set of states, that scans the input up to k characters ahead of the current one. A pushdown
automaton is a finite automaton enriched with an auxiliary memory that is organized as a
pushdown stack of states and symbols

I0 X1 I1 X2 I2 . . . Xn In

with I j being a state and Xk being a symbol ( j, k integers). The configuration of the parser
is determined by reading a terminal a from the input and peeking the last state I on the stack.
The pair (a, In) determines how to change the configuration; the possible actions are two:
shift or reduce.

– A shift action removes the terminal a from the input and shifts a new state on the stack.
– A reduce action of a production A → X1 . . . Xk pops 2k elements from the stack,

resulting in state In−k being on top of the stack; next, the reduce action pushes A and a
new current state on the stack.

The parsing procedure succeeds when only the starting symbol (usually denoted with S′)
is left on the stack. The set of states Ik is determined by applying an iterative procedure.
In particular, the construction procedure for the canonical LR(0) set of states is the basis
for the application of many notable classes of parsing algorithms, such as LALR and GLR.
Because the main matter of this article requires a good understanding of the principles behind
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Fig. 1 The goto-graph ΓG of the grammar G in Example 1. Black items are kernel (labels of the vertices),
grayed items are nonkernel (shown here for completeness)

the construction of these sets, this section is devoted to briefly introduce the reader to the
LR technique, that, although well-known, it is no more standard in many computer science
curricula. In particular, we will show how to generate the LR(0) goto-graph [1], which is
the traditional representation of the LR(0) set of states. At the end, we will also show how
the goto-graph is used in an LR parser to recognize an input string. We will make use of the
following example throughout all of rest of the section.

Example 1 Let G0 = 〈Σ, N , P, S〉 be grammar, where the production set is

P = {S → a A, A → b, A → c} (2)

The grammar generates the language {ab, ac}. The goto-graph of this grammar is represented
in Fig. 1.

Generation of the canonical LR(0) set of states. The augmented grammar of a given grammar
G0 = 〈Σ, N , S, P〉 is the tuple

G = 〈
Σ ∪ {$}, N ∪ {S′}, S′, P ∪ {S′ → S$}〉

with $ 
∈ Σ . We will call S′ → S$, where S′ 
∈ N , the starting production. For instance,
with respect to Example 1, the production set for the augmented grammar G would be:

P = {S′ → S$, S → a A, A → b, A → c} (3)

An LR(0) item (item for short) is a dotted production rule, e.g., A → α · Xβ. A generic
item will be denoted by ξ, ξ ′, ξ ′′, etc. In the following, we may say that symbol X is “dotted
in ξ” if it is preceded by · in the item ξ . We say the dot “·” to be leftmost in ξ if ξ = A → ·ω
(for some A, ω) and we say the dot to be rightmost if ξ = A → ω·. A rule with a rightmost
“·” is said to be a reduction candidate or more simply a candidate. The item S′ → ·S$ will
be called “initial item”. For convenience we also define the following expressions:

next(A → α · Xβ) � A → αX · β and prev(A → αX · β) � A → α · Xβ

with next(ξ) = ξ when ξ is candidate, and prev(ξ) = ξ when the dot in ξ is leftmost. Now,
let G = 〈Σ, N , S, P〉 be a grammar and let I be a set of items. The closure of I (with respect
to G ) is defined as the smallest set ClosureG (I ) such that:

1. I ⊆ ClosureG (I )
2. B → α · Aβ ∈ ClosureG (I ), A → γ ∈ G �⇒ A → ·γ ∈ ClosureG (I )
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In other words, for all productions B → α · Aβ ∈ I , then ClosureG (I ) is the set obtained
by first enriching I with all the items A → ·γ (provided A → γ ∈ G ), and then enriching
iteratively the obtained set until no more items can be added.

For instance, let us consider the augmented grammar of G in Example 1, and let I =
{S′ → ·S$}; since nonterminal S is dotted, then the set ClosureG (I ) is defined to include
also every item of the form S → ·γ such that S → ω is a production of G . In this case, there
is only one such production, that is S → a A. Since the set does not contain any other item
with a dotted nonterminal, then ClosureG (I ) is the set I0:

I0 = {S′ → ·S$, S → ·a A}. (4)

A kernel item is either the initial item S′ → ·S$ of an augmented grammar or an item
whose dot is non-leftmost. Any other item is called nonkernel. For each set of items I we
denote with K (I ) the subset of I that contains all of its kernel items. Notice that it is always
ClosureG (K (I )) = I , thus, for each pair of sets I, J it is K (I ) = K (J ) if and only if I = J .

The particular collection of sets of LR(0) items of a given grammar that is be used to drive
the pushdown automaton of an LR parser is called the canonical LR(0) collection; we will
indicate this collection with the symbol I . The set I is the result of the iterative application
of the Closure function. We will call a set of items I state when I ∈ I . The algorithm
to generated the LR(0) set of states I from an augmented grammar is described in [1]; we
represented the algorithm here as the procedure Items(G ) (Algorithm 1), with G being an
augmented grammar. The procedure uses the Goto function, defined as follows: let I be
the set of LR(0) states for grammar G , and let I ∈ I and X ∈ (Σ ∪ N ∪ {ε}) then

GotoG (I, X) � ClosureG ({A → αX · β | A → α · Xβ ∈ I }). (5)

Because of the way Items(G ) is defined, we call the closure of set I = {S′ → ·S$} the initial
state of the canonical LR(0) collection of states, and we usually indicate it with I0.

Back to Example 1, I is initialized as I =: {I0} (4). Then the procedure repeats until no
new sets are added to I . During the first run, the only set in I is I0 (4); then the innermost
loop will iterate over every symbol X of the grammar and compute GotoG (I0, X), but the
only non-empty sets will be

I1 = GotoG (I0, a) = {S → a · A, A → ·b, A → ·c},
I2 = GotoG (I0, S) = {S′ → S · $}.

Every other set for this run will be empty. The outer for-loop will then compute GotoG (X, I1)

for every symbol X of the grammar; the non-empty sets will be

I3 = GotoG (I1, b) = {A → b·},
I4 = GotoG (I1, c) = {A → c·}.

The procedure continues until no new sets are added to I .
The Goto-Graph. It is quite common to represent the canonical LR(0) set of states I as a
graph. Informally, the set of vertices of this graph corresponds to I , and the set of edges is
the set of pairs (I, J ), with I, J ∈ I and such that GotoG (I, X) = J for some symbol X .
In the next sections we will use the following definition.

Definition 3 (Goto-Graph) Let I be the LR(0) set of states for a grammar G , then the goto-
graph is a tuple ΓG = 〈V, E〉 where V is the set of vertices and E is the set of edges. Each
vertex q corresponds to one and only one state I ∈ I . For each q ∈ V , we denote with
�G (q) the kernel K (I ) of the corresponding state. Then E is the subset of V × V such that
for all pairs (p, q) ∈ E :
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1. �G (p) = K (I ), �G (q) = K (J ) and I, J ∈ I
2. GotoG (I, X) = J with the symbol X ∈ (Σ ∪ N ∪ {ε}).

Algorithm 1: Items(G = 〈
Σ ∪ {$}, N ∪ {S′}, S′, P ∪ {S′ → S$}〉)

1 I := {ClosureG ({S′ → ·S$})}
2 repeat
3 for I ∈ I do
4 for X ∈ Σ ∪ N ∪ {ε} do
5 if GotoG (I, X) is not empty and not in I then
6 add GotoG (I, X) to I

7 until no new sets of items are added to I on a round
8 return I

We will also write �G (p, q) to refer to the label of the edge (p, q); if this label is X then
�G (p, q) = X ; if (p, q) 
∈ E then we might write �G (p, q) = ⊥. For simplicity, we may
also write δ(p, X) = q when GotoG (I, X) = J and δ(p, X) = ⊥ when GotoG (I, X) = ∅.

To denote the edge (p, q) with label X we will also use the notation p
X→ q . A sequence

�G (p, q) = X , �G (q, r) = Y could be also written p
X→ q

Y→ r .

As you may have noticed, because I = ClosureG (K (I )), each vertex q ∈ V can be labeled
with the kernel K (I ) of some state I . It follows from the definition of LR(0) states that
�G (q) = �G (p) if and only if q ≡ p. Finally, since the LR(0) collection of states admits a
notion of initial state, we can also define a notion of starting vertex for the goto-graph.

Definition 4 (Starting Vertex) Let be ΓG = 〈V, E〉 the goto-graph for G and let be q0 ∈ V
the vertex such that the starting production S′ → S$ ∈ �G (q0); then q0 is the starting vertex
of the goto-graph.

In the following we will always denote the starting vertex of a goto-graph with q0. In
Fig. 1 we represented the goto-graph ΓG for the augmented grammar G of the grammar in
Example 1. For convenience, in the picture we also show the nonkernel items of the states
(in light gray).
Parsing using LR(0) goto-graphs. For completeness, we will now show how to parse a string
for the grammar shown in Example 1 and the goto-graph in Fig. 1. Because of the definition,
here and in the following we can assume that for all Ik ∈ I there is one vertex qk ∈ V (with
V being the vertex set of ΓG ). In particular, in this example, k = 0, 1, . . . , 6.

Consider now the string ab. The initial configuration has I0 (the initial state) on the stack.
Because the first symbol in the input string is a, and because there is a transition in the graph
between q0 and q1, it means that it is possible to shift I1. Thus, the configuration of the stack

becomes I0 a I1. The next symbol in the input is b; since there is a transition q1
b→ q3, it

is possible to shift I3 onto the stack, thereby changing the configuration to I0 a I1 b I3. In
this case, A → b· is a reduction candidate. Therefore, it is possible for the parser to reduce
by A → b, which translates to popping from the stack every symbol in the left-hand part
of the rule and then pushing the head of the production; in this case, state I3 and symbol b
are removed from the stack and A is shifted, leading to configuration I0 a I1 A. The process
continues until no more shift-reduce actions can be applied. The parser accepts the input
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string, if only S′ (the starting symbol) is left on the stack. In this case, ab will be accepted
(in fact, it is a word of the language generated by grammar G ).

3 Relations between goto-graphs

In this section we will find a relation between the graph of a given grammar G and the graph
of a corresponding growing grammar G ′ = G ⊕ Q. This relation will help us to define a
procedure to augment the graph of G in such a way that the result is equivalent to the graph
of the growing grammar G ′. Finally, we will also describe the opposite procedure, to obtain
the graph of a shrinking grammar G � Q, starting from a given G . Before we carry on with
the details, it is useful to introduce a notion of path.

Definition 5 (Path) Let ΓG = 〈V, E〉; we call path a string α = X0 X1 . . . Xk of symbols of
(Σ ∪ N ∪ {ε}) such that:

q0
X0→ q1

X1→ q2
X2→ · · · Xk−2→ qk−1

Xk−1→ qk

where q0 is the starting vertex by convention, and q1, q2, . . . qk is any sequence of vertices
of V for which the condition holds. We can say that path α reaches qk or that qk is reachable
through α.

The length of a path is generally the length of the wordα, unless the last symbol Xk−1 = ε;
in that case (and only in that case) the length of the path is |α|+1. In fact, because of the way
LR(0) states are constructed, if there is one ε on a path, it is always the last symbol of the

path: if p
ε→ q , it is not possible that there is some X̄ such that p

ε→ q
X̄→ r , as it is generally

assumed that rules containing ε are always of the form Z → ε, with Z being a nonterminal.

Thus, �(q) = {Z → ·ε}, which implies that there cannot be any X̄ such that q
X̄→ r : in fact,

the case p
ε→ q

X̄→ r would only be possible if the grammar contained a rule of the form
Z → ωε X̄ω′ with ω,ω′ ∈ Σ ∪ N ; but then the rule would be written as Z → ω X̄ω′.

The degenerate 0-length path is admissible only in those graphs ΓG where V ≡ {q0}. For
instance, this is the case for a grammar with one sole production of the form S → A, that is
a grammar where A is a useless nonterminal. It is easy to see that in these cases the language
generated by G is empty: this is not to be confused with those grammars G whose generated
language is the sole word ε: in this case there will be at least one path q0

ε→ q1, for some
q1 ∈ V .

For the sake of simplicity, in the following we will assume grammars not to include
productions of the form Z → ε, therefore, for all paths α the length of a path will be the
length of the word |α|.
3.1 Relations between goto-graphs: growing grammars

We shall now consider a grammar G = 〈Σ, N , P, S〉 and its growing grammar G ′ = G ⊕ Q.
For the sake of simplicity, we will suppose that the production set Q is always a singleton;1

the results can be easily generalized to the case when the cardinality m of Q (denoted by
|Q|) is greater than 1 by considering the m singleton sets (one set for each rule of Q) and the
chain seen in (1).

1 We disregard the case when Q is empty since it is explicitly excluded by our definition of growing grammar
(see Sect. 2).
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Fig. 2 Representation of a portion of ΓG for the grammar G in Example 2

Fig. 3 Representation of a portion of ΓG for the grammar G ′ in Example 2

The Graph of G ′ as an AugmentedΓG . Earlier work (e.g. [21]) has proven by counterexamples
that given the goto-graph ΓG for G and a growing grammar G ′ = G ⊕ Q it is not always true
that ΓG is a subgraph of ΓG ′ .

In fact, due to what has been called a splitting phenomenon [21], one vertex in ΓG might
correspond to more than one vertex in ΓG ′ . Consider the next example.

Example 2 (Splitting) The following is the grammar G presented in [21].

S → C | D | f D f, C → a Ab, D → aec, B → ec (6)

We are showing the relevant vertices and edges of this goto-graph in Fig. 2. Please notice
that B is an unreachable nonterminal and A is useless. If we consider G ′ = G ⊕ Q, with
Q = {A → B}, here B becomes reachable and A is no longer useless. In the new graph
ΓG ′ (Fig. 3) that we can obtain by applying Items(G ′) (Algorithm 1), we could informally
say that some vertices have split. In particular, while it is easy to find a bijection between
q0, q1, q2, q3 and p0, p1, p2, p3, respectively, it is harder to decide whether q4 is related to
p′

4 or p′′
4 . In fact, in a certain sense we could even say that q4 is related to both p′

4 and p′′
4 .

The conclusion is that the relation between ΓG and ΓG ′ is nontrivial, and that, in general,
we cannot say that, for any set of productions Q and for any grammar G ,ΓG is just a subgraph
of ΓG ⊕Q . Thus, it is not possible to find a simple mapping ϕ : V → V ′, but, more precisely,
because of the splitting phenomenon that we just observed it might be possible to find some

ϕ : V → P(V ′) (7)

In general, if q ∈ V we will expect ϕ(q) to be a singleton. In other words we usually
expect q to correspond to one and only one vertex p of ΓG ′ . For instance, in our example,
q0 corresponds to p0 and q1 corresponds to p1, therefore we could pose ϕ(q0) � {p0} and
ϕ(q1) � {p1}. Then, by visually comparing Figs. 2 and 3, it is tempting to conjecture that
there might be a way to map q4 onto the set of {p′

4, p′′
4 }, and similarly map q5 onto {p′

5, p′′
5 }.

If this were possible, then, these would be the cases when a vertex has split. In Sect. 3.1.1
we will find the mapping ϕ and give a formal definition of split vertex.
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Fig. 4 The portion of graph Γ̂ that relates the portion of ΓG ′ in Fig. 3 to the portion of ΓG in Fig. 2

Our final goal is to find some graph Γ̂ isomorphic to ΓG , so that, given ΓG and the set Q
of new productions, it is possible to defineΓG ′ in terms of Γ̂ , a set of new vertices and a set of

new edges. Now, let be Γ̂ =
〈
V̂ , Ê

〉
: we can define the sets V̂ and Ê in terms of the mapping

ϕ; because for each q ∈ V the image ϕ(q) is a set of vertices of V , then the set of vertices for
Γ̂ can be defined as a collection of sets of vertices in V ; the set of edges Ê would be then a
set of pairs of elements of V̂ . Thus, it would be natural to pose V̂ ⊆ P(V ) and Ê ⊆ V̂ × V̂ ;
in particular, we want V̂ = ϕ(V ) and therefore Ê ⊆ ϕ(V )× ϕ(V ); that is, Ê would contain
edges between images of V through ϕ. For instance, let us impose ϕ(p4) � {p′

4, p′′
4 } and

ϕ(p5) � {p′
5, p′′

5 } and let them be vertices in Γ̂ (Fig. 4). In ΓG ′ we have p′
4

c→ p′
5 and

p′′
4

c→ p′′
5 . Therefore we would like Γ̂ to contain edge ϕ(p4)

c→ ϕ(p5), because this edge is

easy to trace back to edge p4
c→ p5 in ΓG ; moreover, edge (ϕ(p4), ϕ(p5)) should be in Γ̂

because we know that p′
4

c→ p′
5 and p′′

4
c→ p′′

5 in ΓG ′ . This could be expressed by a function

ψ : E → P(E ′) (8)

that maps edges in E onto collection of edges in E ′, in such a way that edges between vertices
like p4 and p5 are mapped into the set of edges between p′

4, p′
5 and p′′

4 , p′′
5 ; in other words, we

want that ψ(ϕ(p4), ϕ(p5) ) = {(p′
4, p′

5), (p
′′
4 , p′′

5 )}. In Sect. 3.1.2 we will find this mapping
ψ and we will describe the construction for Γ̂ .

Finally, in Sect. 3.1.3, we will describe a construction to obtain ΓG ′ (modulo one isomor-
phism) by augmenting ΓG . In particular we will find a set V̄ ⊆ V and a set Ē ⊆ E such that
for some sets ΔV̄ and ΔĒ , the graph G:

G = 〈
V̄ ∪ΔV̄ , Ē ∪ΔĒ

〉

is isomorphic to ΓG ′ .

3.1.1 Construction of ϕ and ΔV

The mapping ϕ can be constructed inductively. Our strategy will be the following:

– we will define a family of functions ϕn : each of these functions will map any vertex on
a r -length path (r ≤ n) in ΓG to a collection of vertices of ΓG ′ ;

– we will define ϕ in terms of this family of functions

First, let us define a family of sets Vn ⊆ V . Each Vn contains each vertex of V that is
reachable in ΓG through every path with length at most n (see Definition 5). For instance, in
Fig. 2, V0 = {q0}, V1 = {q1, q3}, V2 = {q2, q4}, etc. If the graph is acyclic, then there exists
a longest finite path of length k in ΓG , and we can write:

123



Incremental growth and shrinkage of LR goto-graphs 431

V =
k⋃

n=0

Vn (9)

where V0 � {q0} (by the definition of paths). However, if ΓG is cyclic, then there are infinite
possible paths; therefore (9) becomes:

V = lim
k→∞

k⋃

n=0

Vn (10)

We can now define the family of applications:

ϕn :
n⋃

r=0

Vr → P(V ′)

Each of these functions maps any vertex q on any r -length path, with r ≤ n to a collection
of vertices of ΓG ′ . Let us now suppose that q, q ′, q0 ∈ V and p, p′, p0 ∈ V ′, where q0 is the
starting vertex for ΓG , and p0 is the starting vertex for ΓG ′ = 〈

V ′, E ′〉. We can then proceed
to construct ϕ inductively as follows:

ϕ0(q0) � {p0}

ϕn(q) � {p | ∃p′ ∈ V ′, q ′ ∈ V : p′ ∈ ϕn−1(q
′), p′ X→ p, q ′ X→ q , for some symbol X}

(11)

In other words, we impose q0 to map to the singleton set {p0}; in fact, since q0, is the starting
vertex, it can never split. Then, the image of q ∈ V on a r -length path (r ≤ n) is defined in
terms of ϕn−1 as the collection of all those vertices p such that:

– there is an edge p′ X→ p in ΓG ′
– p′ was in the image of a vertex q ′ on a path not longer than n − 1

– there is an edge q ′ X→ q in ΓG

For instance, with reference to Fig. 2, ϕ1(q1) = {p1} because q1 can be reached from q0

through an r -length path, where r ≤ 1, that is, the 1-length path f , and p1 can be reached
through the same 1-length path f from p0 (with p1 in Fig. 2). Also, ϕ3(q4) = {p′

4, p′′
4 }

(p′
4, p′′

4 in Fig. 2); in fact, q4 can be reached from q0 through two r -length paths from q0,
with r ≤ 3, and said paths are ae and f ae; p′

4 and p′′
4 can be reached through those same

paths, respectively.
Now, let us consider ϕk for some k > 0. By definition, it is:

ϕk :
k⋃

r=0

Vr → P(V ′).

If the graph is acyclic, then there exist some finite k̄ such that V = V0 ∪ V1 ∪ · · · ∪ Vk̄ ; thus,
we can write:

ϕk̄ : V → P(V ′) (12)

and pose

ϕ � ϕk̄ (13)

When the graph is cyclic, paths are infinite in number, but set V is still finite; so, there will
still be a finite k̄ such that (13) holds. Consequently, even in this case ϕ � ϕk̄ .
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Example 3 Consider a generic grammar G and its goto-graph ΓG , of which Fig. 2 is a partial
representation. Now consider a growing grammar G ′ and its goto-graph ΓG ′ , for which the
splitting phenomenon described by [21] takes place. Suppose that the resulting ΓG ′ is por-
trayed in Fig. 3. We want to find a correspondence between the set V = {q0, q1, q2, q3, q4, q5}
of vertices of ΓG and the set V ′ = {p0, p1, p2, p3, p′

4, p′′
4 , p′

5, p′′
5 } of vertices of ΓG ′ . If we

consider the construction in this section, the mapping ϕ is defined as follows: ϕ(qi ) = {pi }
for i = 1, 2, 3; moreover ϕ(q4) = {p′

4, p′′
4 } and ϕ(q5) = {p′

5, p′′
5 }.

We shall now prove that the definition of ϕ is well-posed. This would hold true only if we
could guarantee that no vertex ofΓG is ever mapped onto an empty set. Otherwise, there would
some vertices of ΓG that could not be put in relation with any vertex of ΓG ′ . This can only
occur when there is a path in ΓG that is not also in ΓG ′ . We shall now prove (Theorem 1) that
this can never happen. We will see that ϕ is well-posed as a simple consequence (Corollary 1).

Theorem 1 Let be G ′ = G ⊕ Q; then every path in ΓG is also in ΓG ′ .

Proof The theorem can be proven by induction over the length n of a path. The 0-length
path (Definition 5) is the one where the starting vertex coincides with the last vertex. By
definition, it is q0 ∈ V and p0 ∈ V ′.

Now, by contradiction, suppose for n = 1 that there is one path X in ΓG that is not also in

ΓG ′ . Then for some q , q0
X→ q but there is no p such that p0

X→ p. But then δ(p0, X) = ⊥,
which would mean that some rule A → Xα is in G but not in G ′: but this is impossible,
because G ′ = G ⊕ Q.

Now consider any n-length path, with n > 1. By the inductive hypothesis path α =
X1 X2 . . . Xn−1 is both in ΓG and ΓG ′ and

p0
X1→ p1

X2→ · · · Xn−1→ pn−1
Xn→ p.

Then again, by contradiction, let us suppose that there is no p such that pn−1
Xn→ p. But

then there is an edge qn−1
Xn→ q in ΓG that is not in ΓG ′ , which can only happen if some rule

Z → ω1 Xnω2 is in ΓG , but not in ΓG ′ , which is a contradiction since G ′ = G ⊕ Q. ��
Corollary 1 The image of any vertex of ΓG is non-empty.

Proof Because of the inductive definition of ϕ, the corollary is in turn proven by induction.
We posed ϕ0(q0) = {p0} by definition (11); then obviously ϕ(q0) is non-empty.

Now, for n > 0, consider a (n − 1)-length path, and let q be the last vertex of this path.
By the inductive hypothesis there is at least one p ∈ V ′ such that p ∈ ϕ(q). Now suppose

that q
X→ q ′. If ϕ(q ′) were empty, then there would be no p′ ∈ V ′ such that p′ ∈ ϕ(q ′). But

this would contradict Theorem 1, and therefore ϕ(q ′) must be non-empty, too. ��
The concept of split vertex that we introduced in Sect. 3.1 will be now described more

formally with the following definition.

Definition 6 (Split vertices) If q ∈ V and |ϕ(q)| > 1 we say that q has split (in ΓG ′ ) or that
q is a split vertex.

The set of the split vertices (Definition 6) will be:

VS �
{
q ∈ V

∣∣ |ϕ(q)| > 1
}

(14)
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We can also define the set

V ′
S �

{
p ∈ V ′ ∣∣ ∃qs ∈ Vs : p ∈ ϕ(qs)

} =
⋃

qs∈VS

ϕ(qs). (15)

The collection ΔV of vertices is the collection of all those vertices of ΓG ′ that are not an
image of any vertex in ΓG . In symbols:

ΔV � {p ∈ V ′ | ∀q ∈ V : p 
∈ ϕ(q)} = V ′ \
⋃

q∈V

ϕ(q) (16)

Since our initial objective was to define a graph Γ̂ =
〈
V̂ , Ê

〉
that relates ΓG to ΓG ′ , we can

now pose the set of vertices V̂ � ϕ(V ). The relation ϕ(V ) ⊆ P(V ) holds as expected at the
beginning.

3.1.2 Construction of ψ and ΔE

In this section we will define the set of edges Ê for Γ̂ .

– We will define the function ψ to relate each edge in ΓG to a (possibly non-singleton)
collection of edges of ΓG ′ ;

– we will define a set Ê ⊆ V̂ × V̂ using ψ ;
– we will finally prove this definition to be well-posed.

Let us define ψ : E → P(E ′) by:

ψ(e = (q, q ′)) � {(p, p′) ∈ E ′ | p ∈ ϕ(q), p′ ∈ ϕ(q ′)} (17)

In other words, the image of (q, q ′) ∈ E is the collection of all those edges in E ′ between
a vertex in the image of q and a vertex in the image of q ′; that is, that particular subset of
ϕ(q) × ϕ(q ′) that is contained in E ′. Please notice that because of Theorem 1, it is always
ψ(e) 
= ∅, when e ∈ E .

Example 4 With respect to Example 3, ϕ(q4) = {p′
4, p′′

4 }. In ΓG there is one edge (q4, q5),
while in ΓG ′ there are two edges (p′

4, p′
5) and (p′′

4 , p′′
5 ). The mapping ψ defines a relation

between them all. In fact you can easily verify:

ψ( (q4, q5) ) = {(p′
4, p′

5), (p
′′
4 , p′′

5 )}.
We would like now Ê to be such that when (q, q ′) ∈ E also (ϕ(q), ϕ(q ′)) ∈ Ê . For instance,
we would like (ϕ(q4), ϕ(q5)) ∈ Ê .

Let us pose Ê as follows:

Ê � {(ϕ(q), ϕ(q ′)) | ∃p ∈ ϕ(q), ∃p′ ∈ ϕ(q ′), (p, p′) ∈ ψ( (q, q ′) )} (18)

That is, for each edge (ϕ(q), ϕ(q ′)) ∈ Ê there is at least one edge between an element
p ∈ ϕ(q) and an element p′ ∈ ϕ(q ′), and that edge (p, p′) ∈ ψ((q, q ′)).

Now we have potentially all the elements to define Γ̂ =
〈
V̂ , Ê

〉
. However, we still need

to guarantee that every path in ΓG is also in Γ̂ (Theorem 3). In order to prove this, we need
to give define properly the labels of the edges in Ê . In particular, we want:

�(ϕ(q), ϕ(q ′)) = X when q
X→ q ′, and p

X→ p′,∀(p, p′) ∈ ψ((q, q ′)).
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Fig. 5 Possible inconsistencies
in the definition of �(ϕ(q), ϕ(q ′)) (a) (b)

However, given our definition of ψ , we might be concerned that in some situations the
choice of that label X is not unique. In particular, if (q, q ′) is an edge, then the choice for
�(ϕ(q), ϕ(q ′)) might not be unique (Fig. 5):

– when ψ((q, q ′)) ⊇ {(p, p′
1), (p, p′

2)}; in fact it should be �G ′(p, p′
1) 
= �G ′(p, p′

2).

Otherwise the choice between p
X→ p′

1 and p
X→ p′

2 would be nondeterministic.

– when ψ((q, q ′)) ⊇ {(p1, p′
1), (p2, p′

2)}; in fact, it might be �G ′(p1, p′
1) 
= �G ′(p2, p′

2).

Let us see that neither of these can ever occur by proving the following theorem.

Theorem 2 If q
X→ q ′ is in ΓG , then, for all p′ ∈ ϕ(q ′), it is always p

X→ p′, for any edge
(p, p′) of ΓG ′ , with p ∈ ϕ(q)
Proof Let us call e the generic edge (q, q ′) ∈ E . Consider the set ψ(e) and the collection

�(ψ(e)) = {X | p
X→ p′, (p, p′) ∈ ψ(e)}.

If any edge to a vertex p′ ∈ ϕ(q ′) had always the same label X , then �(ψ(e)) would be the
singleton set {X}. Now, consider a vertex q ′ of ΓG ; then, for some X ∈ (Σ ∪ N ∪ {ε}), and
because of the definition of the goto-graph (Definition 3):

∀q s.t. (q, q ′) ∈ E : �G (q, q ′) = X. (�)

That is, any edge to q ′ of ΓG has the same label X . But then �(ψ(e)) = {X}, because of the
definition of ϕ. ��
In the proof, (�) follows from the definition of goto-graph. In fact, in the goto-graph we

have that q
X→ q ′ (which can also be written as δ(q, X) = q ′) if and only if there are two

states I, J ∈ I such that GotoG (I, X) = J (Sect. 2.1). Because Goto is defined in terms
of Closure, if there is some state K ∈ I such that GotoG (K , Y ) = J then it must be
Y ≡ X . Therefore, if there is some some other edge (r, q ′), for some r ∈ V , then it is
always δ(r, X) = q , that is, �G (r, q) = X ; but then (�) holds. For a concrete example of this,
consider vertices q2, q3, q4 in Fig. 2; the label of the edges between this nodes is always e.

From Theorem 2, it follows that we can always assign some single label X to
�(ϕ(q), ϕ(q ′)), so we can now legitimately write:

ϕ(q)
X→ ϕ(q ′).

We can finally prove that the definition of Ê is well-posed.
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Theorem 3 A path is in Γ̂ if and only if it is in ΓG .

Proof Every path is in Γ̂ is also in ΓG by construction. Let us then prove that when a path
is in ΓG it is also in Γ̂ , by induction on the length of the paths. For the 0-length path, the
property is trivially true. Now, consider a path of length n > 0 in ΓG and Γ̂ , such that q and

ϕ(q) is the last vertex on these paths, respectively; then for each q
X→ q ′ there must also be

ϕ(q)
X→ ϕ(q ′): in fact, let us suppose by contradiction that there is one edge q

X→ q ′ but there

is no edge ϕ(q)
X→ ϕ(q ′). Then, because of (17) and (18), ψ((q, q ′)) = ∅; in other words,

∀p ∈ ϕ(q) and ∀p′ ∈ ϕ(q ′) it is (p, p′) 
∈ E ′. But then there would be paths in ΓG that are
not also in ΓG ′ , which would contradict Theorem 1. ��
We can now define split edges and describe another notable set of edges, similarly to what
we did previously for vertex sets.

Definition 7 (Split edges) If e ∈ E and |ψ(e)| > 1 we say that e has split (in ΓG ′ ) or that e
is a split edge.

The split edges (Definition 7) will be the set:

ES �
{
e ∈ E

∣∣ |ψ(e)| > 1
}

(19)

Finally, the collection ΔE of new edges is the set of all those edges in E ′ that are not the
image of edges in E :

ΔE � {e′ ∈ E ′ | ∀e ∈ E : e 
∈ ψ(e′)} = E ′ \
⋃

e∈E

ψ(e) (20)

3.1.3 Construction of ΓG ′ from ΓG

We will now describe how to obtain a graph G = 〈VG , EG〉 that is isomorphic toΓG ′ , starting
from the given ΓG .

Theorem 4 Let ΓG = 〈V, E〉 and ΓG ′ = 〈
V ′, E ′〉, with G ′ = G ⊕ Q, for some Q. Then,

there is a graph

G = 〈
VG = (V \ VS) ∪ΔV̄ , EG = (E \ ES) ∪ΔĒ

〉

where ΔV̄ ⊆ V ′, ΔĒ ⊆ E ′, and there is an isomorphism ϕG : VG → V ′ such that

(r, r ′) ∈ EG ⇐⇒ (ϕG(r), ϕG(r
′)) ∈ E ′ (21)

Proof We first pose V̄ � V \VS and Ē � E\ES . We also introduce the mapping ϕ̄ : V̄ → V ′
as a restricted version of ϕ (13):

ϕ̄(q) = p ⇐⇒ ϕ(q) = {p}
Please notice that when VS , ES [see (14) and (19)] are empty, then V̄ ≡ V and Ē ≡ E . Now,
let us call ΔV̄ � V ′

S ∪ΔV . Similarly, when V ′
S is empty ΔV̄ ≡ ΔV . We can then write:

VG � (V \ VS) ∪ (V ′
S ∪ΔV ) = V̄ ∪ΔV̄ (22)

Now, we want to express similarly EG , that is:

EG � Ē ∪ΔĒ
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Ē has been defined as the set of all those edges of ΓG that are not split. Now, let us describe
ΔĒ . The description of this set is not as simple as the one forΔV̄ , since it is supposed to be
a collection of pairs that relate vertices of V̄ with new vertices in ΔV̄ , in a way that makes
G isomorphic to ΓG ′ . Let us define ΔĒ as follows:

ΔĒ � Eold ∪ Ebdg ∪ Enew (23)

– Eold is the set of all those edges that were not in ΓG but are between vertices that were
already in ΓG (modulo ϕ);

– Ebdg is the set of the bridging edges; that is, all those edges between vertices of
ΓG (modulo ϕ) and new vertices of ΓG ′ (including split vertices), and vice versa;

– Enew is the set of the edges between vertices that are completely new to ΓG ′ (including
split vertices)2

In symbols:

Eold � {(q, q ′) 
∈ E | q, q ′ ∈ V̄ , (ϕ̄(q), ϕ̄(q ′)) ∈ ΔE}
Ebdg � {(q, p) | q ∈ V̄ , p ∈ ΔV̄ , (ϕ̄(q), p) ∈ E ′}

∪ {(p, q) | p ∈ ΔV̄ , q ∈ V̄ , (p, ϕ̄(q)) ∈ E ′}
Enew � {(p, p′) | p, p′ ∈ ΔV̄ , (p, p′) ∈ E ′} ⊆ E ′

We then pose the following isomorphism ϕG : VG → V ′:

ϕG(r) �
{
ϕ̄(r), r ∈ V̄

r, otherwise

– If (r, r ′) ∈ Ē then (ϕG(r), ϕG(r ′)) ≡ (ϕ̄(r), ϕ̄(r ′)) ∈ E ′;
– If (r, r ′) ∈ Eold then (ϕG(r), ϕG(r ′)) ≡ (ϕ̄(r), ϕ̄(r ′)) ∈ ΔE ;
– If (r, r ′) ∈ Ebdg then either:

(ϕG(r), ϕG(r
′)) ≡ (ϕ̄(r), r ′) ∈ ΔE or (ϕG(r), ϕG(r

′)) ≡ (r, ϕ̄(r ′)) ∈ ΔE;
– If (r, r ′) ∈ Enew then (ϕG(r), ϕG(r ′)) ≡ (r, r ′) ∈ ΔE ;

Then, by construction, the (21) holds. ��
The previous theorem describes the structure of a graph that isomorphic to ΓG ′ = 〈

V ′, E ′〉

starting from elements of ΓG = 〈V, E〉. We called this graph G = 〈VG , EG〉, but, from now
on, we will assume the following:

Remark 1 Because of Theorem 4, without loss of generality, we can always assume that it
is always V̄ = V ∩ V ′, Ē = E ∩ E ′. That is, from now on, we will always assume that
V ′ ≡ VG , E ′ ≡ EG . In light of this, we can also assume:

ΓG ′ ≡ G (24)

Until now, we put aside any consideration about the labels of the vertices on purpose.
We will now see how labels change between a goto-graph ΓG and the graph of its growing
grammar ΓG ′ . [20] made similar observations in their early work on lazy construction of LR
parsers. We can now restate these observations in light of the previous proofs. Intuitively,
with the growth of the graph, labels grow as well. We will proceed by cases, first considering
vertices that do not split, and then the case of split vertices.

2 Therefore V ′
S ⊆ (Ebdg ∪ Enew).
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Theorem 5 (Labels in V̄ ) Let G = 〈Σ, N , S, P〉 and G ′ = 〈
Σ ′, N ′, S, P ′〉 two grammars

such that G ′ = G ⊕ Q where Q = {A → ω}; let ΓG = 〈V, E〉 be the subgraph of ΓG ′ =〈
V ′, E ′〉, with V̄ = V ∩ V ′, Ē = E ∩ E ′; then, for all q ∈ V̄ , it is always �G (q) ⊆ �G ′(q).

Proof Let us again proceed by induction on the length of a path. On the zero-length path,
we consider the starting vertex q0 (Definition 4): because of the definition of � as the kernel
of an LR(0) set of items, it is easy to see that �G (q0) ≡ �G ′(q0), as it will only contain the
initial item S′ → ·S$. Therefore, it is also true that �G (q0) ⊆ �G ′(q0).

Now, for all q ′ ∈ V̄ on a (n − 1)-length path, with n > 0, let us assume that the inductive
hypothesis holds, and consider q such that (q ′, q) ∈ Ē . Now, because of the ways goto-graphs
are constructed (Definition 3):

∀ξ ∈ �G (q) : prev(ξ) ∈ ClosureG (�G (q
′))

∀ξ ′ ∈ �G ′(q) : prev
(
ξ ′) ∈ ClosureG ′(�G ′(q ′));

but, for the inductive hypothesis �G (q ′) ⊆ �G ′(q ′): then it is also �G (q) ⊆ �G ′(q). ��
The theorem above formally proves a simple intuitive observation: if the grammar has

grown, then the label of a vertex can only grow; in particular it will grow if the closure
changes. Split vertices are a special case, that we treat separately in this remark.

Remark 2 (Labels of the Split Vertices) If q ∈ VS , for each p ∈ ϕ(q), �G ′(p) is at least the
same as �G (q); in particular:

�G (q) ⊆
⋂

p∈ϕ(q)
�G ′(p) and �G (q) ⊂

⋃

p∈ϕ(q)
�G ′(p). (�)

Proof Let us first consider all those non-split vertices that lead to the split vertex q for some

symbol X ; that is, all those qi such that qi
X→ q for i = 0, 1, . . . , n, for some n. Then,

because of the definition of Goto and Closure (Sect. 2.1):

K (GotoG (�G (qi ), X)) = �G (q), for all i = 0, 1, . . . , n

But, then this also means that there is a set of items L that is common to all labels �G (qi ),
or, in symbols:

L ⊆
⋂

i=0,1,...,n

�G (qi )

and this set L is such that K (GotoG (L , X)) = �G (q). Because every qi is non-split, we
already know that �G (qi ) ⊆ �G ′(qi ), then it is also:

L ⊆
⋂

i=0,1,...,n

�G ′(qi ).

But then, by definition of ϕ(q), for each p ∈ ϕ(q) there is at least one qi such that qi
X→ p,

and it is �G ′(p) ⊇ K (GotoG ′(L , X)). This proves the first inequality in (�) for the case
when every qi is non-split. It is easy to see that the second inequality holds as well: in fact, if
the relation did not hold true, then the labels of each p ∈ ϕ(q) would all coincide, but then,
by definition of goto-graph ϕ(q) ≡ {p} which would mean q 
∈ VS .

Now, let us consider some edge p
X→ p′, where p ∈ ϕ(q) and p′ ∈ ϕ(q ′) such that

q
X→ q ′, where q, q ′ are both split vertices. By induction, for all p ∈ ϕ(q) there is a set
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L such that L ⊆ �G ′(p) and such that L ⊆ �G (q): then, for all p′ ∈ ϕ(q ′) there is a set
L ′ such that L ′ ⊆ �G ′(p′) and such that L ′ ⊆ �G (q ′), and this set is L ′ = GotoG ′(L , X).
This proves the left-hand inequality in (�); the right-hand inequality, again, holds as well,
otherwise q ′ would not be a split vertex. ��

We can finally enunciate the following theorem.

Theorem 6 (Relation between labels) Let be q ∈ V , then ∀p ∈ ϕ(q) it is �G (q) ⊆ �G ′(p).

The proof follows from Theorem 5 and Remark 2.

3.2 Relations between goto-graphs: shrinking grammars

In the previous section we showed how to grow the goto-graph ΓG of a given grammar G by
some rule A → ω and then obtain the extended graph ΓG ⊕Q . In this section we will prove
that the graph of a shrinking grammar can be obtained from the graph of the initial grammar
in a similar way. The theorem that follows will prove that the operation of growth can be
inverted. The graph of a shrinking grammar can be obtained from the initial grammar by
removing vertices and edges. Even in this case, split vertices require a special treatment. In
the case of the growth operation, we were removing the set VS and added in the set V ′

S , that
contained all the edges ϕ(q) such that q ∈ VS . In this case, we will remove all those vertices
p ∈ V ′

S that are split in ΓG and then we will add all the vertices in VS . These operations
can always be done, because any grammar G ′ can be seen as the growing grammar of some
G = G ′ � Q, for some Q. In light of Theorem 4 and Remark 1, we can then enunciate the
theorem as follows.

Theorem 7 Let ΓG ′ = 〈
V ′, E ′〉, then there are ΔV̄ , VS,ΔĒ, ES such that

ΓG = 〈
V ′ \ΔV̄ ∪ VS, E ′ \ΔĒ ∪ ES

〉
. (25)

Proof Let be ΓG ′ = 〈
V ′, E ′〉. Because of Theorem 4, we know that there are V̄ ⊂ V and

Ē ⊂ E such that

〈
(V \ VS) ∪ΔV̄ , (E \ ES) ∪ΔĒ

〉 = ΓG ⊕Q = ΓG ′�Q⊕Q = ΓG ′

for some setsΔV̄ ,ΔĒ . The construction of these sets has been described in the correspondent
proof. It is obviously V ′ = (V \ VS) ∪ΔV̄ , E ′ = (E \ ES) ∪ΔĒ . We can then derive the
following expressions:

V = V ′ \ΔV̄ ∪ VS, E = E ′ \ΔĒ ∪ ES

The (25) follows. ��

For the sake of completeness, we enunciate the following corollary, about the the vertex
labels: in this case they shrink.

Corollary 2 If q is a vertex of ΓG �Q, then �G (q) ⊇ �G �Q(q).

We omit the proof of the corollary since it trivially follows from Theorems 6 and 7.
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We have now sufficient elements to design two procedures to grow and shrink any graph
ΓG of LR(0) states by some rule A → ω. We will call these procedures Shrink(ΓG , A → ω)

and Grow(ΓG , A → ω), respectively. The first procedure transform ΓG into an isomorph
of ΓG ⊕{A→ω}, while the second transforms the graph into an isomorph of ΓG �{A→ω}. We
will describe these procedures in Sect. 4.

3.3 Axiom change

In Sect. 2 we briefly mentioned the axiom change operation. Although the formal proof will
be omitted, because it would be a simple consequence of those that precede, we will sum up
the idea here.

Given a grammar G = 〈Σ, N , P, S〉, ΓG is constructed using the augmented grammar
G ′ = 〈

Σ ∪ {$}, N ∪ {S′}, S′, P ∪ {S′ → S$}〉, it is therefore possible to transform ΓG into
�ρ

G
(Snew) by executing the Grow and Shrink procedures in sequence (the order does not

matter) on the input graph ΓG . In particular, to obtain the graph �ρ
G
(Snew) from ΓG , given a

new axiom Snew, it is sufficient to execute the procedure Grow(ΓG , S′ → Snew$) obtaining
a new graph ΓG ′ and then Shrink(ΓG ′ , S′ → S$).

4 Algorithms

In Sect. 3 we showed several theoretical results applying to the LR(0) graph of a given
grammar. First, we implied that it is enough to keep track of the kernel items for each state
(the “labels” of the graph), since it is always I = ClosureG (K (I )). But, most of all, we
showed that, given the graph ΓG , it is possible to obtain ΓG ⊕Q by

– adding the missing vertices;
– possibly substitute some vertices with the corresponding split vertices;
– adding the new edges along with their labels;
– updating old labels with the new kernel items.

Likewise, ΓG �Q is obtained from ΓG by

– removing the vertices that are not in the graph of the shrinking grammar;
– substitute split vertices with the corresponding non-split vertices;
– removing any edge that is not in ΓG �Q ;
– updating old labels by removing any missing kernel item.

The axiom change operation can be seen as a combination of the two.
In the following we will present the algorithms to actually produce such results. It is

also worth noticing that these algorithms do not require the input grammar to be completely
available in order to be performed. In fact, they only depend on the original graph represen-
tation ΓG and the particular rule A → ω that is being added or removed. This means that an
updatable parser generator such as DEXTER does not require the complete input grammar
to be available in source form to perform the updates.

Even though it is possible to use the same algorithms to update any parser based on
the LR(0) graph of states (such as SLR or GLR), our choice for DEXTER was to generate
updatable LALR(1) parsers. Therefore, in the last part of this section, we also mention briefly
how we compute the LALR lookahead sets. In this case, we opted for a more traditional
approach: the lookahead sets are computed in a non-incremental way, using the well-known
algorithm due to [1]. Since the computation would be expensive to perform at each growth
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or shrinkage, it is executed on demand, by calling an ad-hoc API every once in a while; for
instance, when a full batch of Grow and Shrink operations has been completed.

We will outline the proofs of correctness of these algorithms by showing that, given an
input graphΓG and a set Q = {A → X1 X2 . . . Xn}, thenΓG ⊕Q = Grow(ΓG , Q). Likewise,
we will show that Shrink(ΓG , Q) = ΓG �Q

4.1 The Grow procedure

In the previous sections we saw that we can obtain a graph that is isomorph toΓG ′ = 〈
V ′, E ′〉,

where G ′ = G ⊕ Q for a given G and some singleton set of productions Q, by augmenting
the graph ΓG . In particular, if ΓG = 〈V, E〉, in Theorem 4, by way of Remark 1, we saw
that there are VS, ES , and ΔV̄ ,ΔĒ such that:

〈
V \ VS ∪ΔV̄ , E \ ES ∪ΔĒ

〉 ≡ ΓG ′ .

Let us suppose that Q = {A → X1 X2 . . . Xn}. Then for some vertex r it is:

B → α · Aβ ∈ �G ′(r),

and therefore:

A → ·X1 X2 . . . Xn ∈ ClosureG ′(�G ′(r)).

This implies that there must exist some r ′ such that

A → X1 · X2 . . . Xn ∈ �G ′(r ′).

and it must be r
X1→ r ′, or, otherwise stated, δ(r, X1) = r ′. We formalize this requirement

with the relation implies. We write that r � r ′, and read it as � r implies r ′ �, if r, r ′ ∈ V ′
and

ξ ∈ �G ′(r ′) �⇒ prev(ξ) ∈ ClosureG ′(�G ′(r))

The relation expresses the fact that when r
X1→ r ′, for all items ξ in �G ′(r ′), prev(ξ) is in

the closure of �G ′(r). In fact, by definition, trivially r � r ′; therefore this relation shall hold
for any other edge that is added to this graph. Split vertices (Definition 6) would then be all
those vertices such that, for some edge (r̂ , r ′) in ΓG , the relation r̂ � r ′ does not hold in ΓG ′
anymore. For instance, suppose to update the graph in Fig. 3 as described in Example 2. In
this case, a new item B → ·ec is added to the label of q3, which in turn causes the labels for
q4 and q5 to be updated as well. However, graph ΓG (see Fig. 6) contains an edge q2

e→ q4

that is wrong in ΓG ′ because q2 
� q4. The Grow procedure is described by Algorithm 2.

Fig. 6 Dashed, an edge that leads to a split vertex
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Algorithm 2: Grow(ΓG , A → X1 X2 · · · Xn)

1 V ′ := V
2 R := {r ∈ V ′ | B → β1 · Aβ2 ∈ ClosureG ′ (�(r))}
3 while ∃r ∈ R unprocessed do
4 foreach r ∈ R do
5 L ⊆ ClosureG ′ (�(r)) s.t. every item is non-candidate (Sect. 2.1)
6 foreach X dotted in an item ξ ∈ L do
7 Find or create r ′ : r � r ′
8 δ(r, X) := r ′
9 �(r ′) := �(r ′) ∪ {next(ξ)} (where �(r ′) = ∅ if r ′ is a freshly created vertex)

10 if ∃r̂ ∈ V : r̂
X→ r ′ but r̂ 
� r ′ then RS = Split(r ′)

11

12 R := R ∪ {r ′} ∪ RS

Algorithm 3: Split(r ′)
1 RS = ∅
2 foreach r̂ : r̂

X→ r ′ but r̂ 
� r ′ do
3 Create rS s.t. r̂ � rS ; δ(r̂ , X) := rS
4 foreach Y : δ(r ′, Y ) 
= ⊥ do δ(rS , Y ) := δ(r ′, Y )
5

6 RS := RS ∪ {rS}

7 return RS

You should see that the set R in the procedure is defined in such a way that, the first time
the procedure loops, L always contains also A → ·X1 X2 . . . Xn . The procedure is designed
so that it will eventually add all of the vertices inΔV̄ and the edges inΔĒ (they are expressed
through the updating of the transition function δ). It performs a visit of all the parts of the
graph that can be reached starting from the vertices r of R. We will now outline a proof of
correctness of this algorithm.

4.1.1 Grow(ΓG , Q) computes ΓG ′ = ΓG ⊕Q.

For what concerns V̄ and Ē , we can assume they are all preserved as expected, in fact the
algorithm never deletes any vertex or edge contained in these sets. Then, the algorithm can
be shown to be correct by proving that:

1. it substitutes every split vertex and every split edge with the correspondent couples of
new vertices and edges;

2. it generates every new vertex in ΔV̄ and every new edge in ΔĒ ;
3. it generates no more vertices than those in ΔV̄ and no more edges than those in ΔĒ .

Please notice that that now V ⊆ V ′ (Remark 1), and therefore, for all q ∈ V it is always at
least q ∈ ϕ(q).
New vertices and edges. Let be r, r ′ ∈ ΔV , that is, they are not in V ′

S . Then (r, r ′) ∈ ΔĒ is
created at line 7. In fact:

1. if there is r ′ such that r � r ′ and r ∈ V̄ , r ′ ∈ V , then (r, r ′) ∈ Eold;
2. if there is r ′ such that r � r ′ and r ∈ V̄ , r ′ 
∈ V̄ , then (r, r ′) ∈ Ebdg;

123



442 W. Cazzola, E. Vacchi

3. if there is r ′ such that r � r ′ and r, 
∈ V̄ , r ′ 
∈ V̄ then (r, r ′) ∈ Enew; if no such r ′ exists,
then one is created, and therefore it is still (r, r ′) ∈ Enew (see Theorem 4)

These observations should apply to split vertices as well: in fact Theorem 4 showed that
E ′

S ⊆ Ebdg ∪ Enew.
Split vertices and edges. The algorithm updates the label of a vertex r ′ at line 9, by adding
an item next(ξ), with ξ ∈ L ⊆ �(r). If item ξ was already in �(r ′), then this label will not
change. Otherwise, ξ is based on a grammar rule that was either unreachable or in the set Q.
Now, if r ′ has more than one in-edge, then it might split.

In particular, the algorithm mandates the vertex r ′ ∈ V to be split when it is reachable
from some other r̂ ∈ V , but it is r̂ 
� r ′. Now, consider (11), which defines ϕ, and remember
that now V ⊆ V ′ (Remark 1). If |ϕ(q)| > 1 then there is certainly one vertex p ∈ ϕ(q) such
that �G ′(p) ⊃ �G (q) (Remark 2), which is therefore an alternate necessary condition for q

to be a split vertex. A direct consequence is that, for some vertex q̂ ∈ V such that q̂
X→ q ,

and for said p ∈ ϕ(q), we have that q̂ � q but q̂ 
� p. Being this a direct consequence of a
necessary condition, it is itself a necessary condition for q to be split. In other words, when
the latter holds, p ∈ ϕ(q). Of course, then |ϕ(q)| > 1. In particular for each r̂ such that
r̂ 
� r ′, there must be a rS ∈ ϕ(r ′) such that r̂ � rS : in fact, the algorithm adds any such

vertex to V ′, and it adds any edge r̂
X→ rS to E ′.

The algorithm generates only vertices in ΔV̄ and edges in ΔĒ . The algorithm generates a
new vertex when:

1. for some vertex r there is no vertex r ′ such that r � r ′ (Algorithm 2, line 7)

2. there is an edge r̂
X→ r ′ such that r̂ 
� r ′ (Algorithm 3, line 3)

In both cases, a new edge between the old vertex and the new vertex is added to the graph.
Therefore, new vertices are only added when a new edge is added as well. It follows that we
only need to prove that the algorithm generates only edges in ΔĒ . This is easily proven by
contradiction. Suppose that the algorithm generates one edge (r, r ′) 
∈ ΔĒ ; therefore there

would exist one edge r
X→ r ′ in the graph generated by the algorithm that is not in the graph

ΓG ⊕Q ; if r 
 X→ r ′ then, it follows that r 
� r ′: but this is absurd, because it always holds by

construction: in fact, when there is an edge r̂
X→ r ′ r̂ 
� r ′ this is removed from the graph

(Algorithm 3).

Conclusion. Since the algorithm Grow(ΓG , Q) adds to ΓG only edges in Ē ∪ ΔĒ , we can
conclude that it computes ΓG ′ .

4.2 The Shrink procedure

The Shrink procedure (Algorithm 4) is defined so that it can ideally undo a previous appli-
cation of Grow to the graph. If A → X1 X2 . . . Xn is the input rule, and

ξ0 = A → ·X1 X2 . . . Xn, ξ1 = A → X1 · X2 · · · Xn, . . . , ξn = A → X1 X2 . . . Xn ·
then the algorithm visits each r ∈ V ′ such that ξi ∈ �(r), for all ξi , and it disconnects any
vertex that should not be reachable from the starting vertex r0. The last line removes any
unreachable vertex from the result. Please notice that a real-world implementation might defer
this step to an independent garbage collection procedure,3 for obvious reasons: unreachable

3 In fact, this is what happens in our prototype DEXTER.
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Algorithm 4: Shrink(ΓG , A → X1 X2 · · · Xn)

1 V ′ := V
2 ξ := A → ·X1 X2 · · · Xn
3 R = {r ∈ V ′ | B → β1 · Aβ2 ∈ ClosureG ′ (�(r))}
4 while ∃r ∈ R unprocessed do
5 foreach r ∈ R do
6 �(r) := �(r) \ {ξ}
7 if ∃r ′ : �(r) = �(r ′) then Merge(r, r ′)
8

9 else
10 L = ClosureG ′ (ξ) \ ClosureG ′ (�(r))
11 foreach X dotted in an item of L do δ(r, X) := ⊥
12

13 ξ := next(ξ)
14 R := {r ∈ V ′ | ξ ∈ �(r)}
15 foreach r unreachable from r0 do V ′ := V ′ \ {r}
16

Algorithm 5: Merge(r, r ′)

1 foreach r̂ ∈ V ′ : r̂
X→ r , for some X do δ(r̂ , X) := r ′

2 foreach r̂ ∈ V ′ : r
X→ r̂ , for some X do δ(r ′, X) := r̂

Fig. 7 In this picture p′
4, p′′

4 and p′
5, p′′

5 have identical labels, and should be merged

vertices will never be visited by a parsing routine, thus they can be retained up until it is
necessary to reclaim back some memory. For each node that is visited, the procedure also
updates the labels of the remaining nodes.

The Merge procedure (Algorithm 5) undoes the splitting phenomenon, when it is neces-
sary. For instance, Fig. 7 shows the situation of ΓG ′ when we apply Shrink without applying
Merge: in this case, we would have �(p′

4) ≡ �(p′′
4 ) and �(p′

5) ≡ �(p′′
5 ). This is not accept-

able in a goto-graph, because if two labels coincide, then also the vertices should coincide:
this stems from the definition of the vertices of the graph as sets of items, and the vertex set
as the collection of the LR(0) sets of items (Sect. 2.1). It follows that, for each pair of vertices
with the same labels, these vertices should be merged, that is, the pair should be substituted
by one single vertex, such that:

1. its in-edges are all the in-edges of the vertices that are being merged
2. its out-edges are those of either one of the vertices that are being merged. In fact, choos-

ing the out-edges of one vertex over the other is equivalent, because the labels of the
subsequent vertices will still equal, pairwise.

Similarly to what we did for the Grow procedure, we will now outline a proof for Shrink.
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4.2.1 Shrink(ΓG , Q) computes ΓG ′ = ΓG �Q

Theorem 7 was proven as a consequence of Theorem 4; it follows that we can see ΓG =〈
V ′, E ′〉 as ΓG ′⊕Q (Theorem 7), where ΓG ′ = 〈V, E〉. Therefore:

1. there is a set of edges ΔĒ (described in Theorem 4) that shall be removed from ΓG .
2. in particular, there is a subset of vertices of V ′

S ⊆ ΔV̄ that should be merged back.

Removed vertices and edges. For obvious reasons, the algorithm is expected to act symmet-
rically to the Grow procedure. At line 5 of the algorithm, the label of a vertex is updated by
removing the item ξ , which is an dotted item derived from the input rule A → X1 X2 . . . Xn .
The algorithm visits every r ∈ V ′ such that ξ ∈ �(r), for all ξ (that is, for every possible dot
position in the input rule), and it disconnects any vertex that shall not be reachable from the
starting vertex r0. In other words, let be r, r ′ ∈ ΔV (let us not consider V ′

S for now); then
each pair r, r ′ ∈ (Eold ∪ Ebdg) is removed at line 10. In fact, the set

L = ClosureG ′(ξ) \ ClosureG ′(�(r))

contains every item that enables a transition that shall not be retained in δ. Now let be r ′ the
vertex such that δ(r, X) = r ′ for all X dotted in L; then either:

1. (r, r ′) ∈ Eold, that is, r, r ′ ∈ V
2. (r, r ′) ∈ Ebdg, that is, r ∈ V, r ∈ V ′

The last line of the algorithm “garbage collects” every node unreachable from r0, effectively
removing every (r, r ′) ∈ Enew, that is, such that r, r ′ ∈ ΔV .

Split vertices and edges. Obviously, if ΓG = 〈
V ′, E ′〉 can be seen as ΓG ′⊕Q , where ΓG ′ =

ΓG �Q = 〈V, E〉, then P(V ′
S) is the collection of sets of vertices of V ′ that shall be mapped

onto vertices of VS . In particular, we know that ϕ(rS) = RS , with RS ∈ V ′
S , rS ∈ VS .

Therefore, for all RS for which the relation holds, we expect the procedure to find every
r ∈ RS and substitute them all with one rS . By definition of LR(0) goto-graph it is obvious
that there cannot be p, p′ ∈ ϕ(q) such that �(p) = �(p′) otherwise p ≡ p′.

The removal of an item might occasionally result in two (or more) vertices of V ′ with
the same label on two (or more) distinct paths. This means that their paths must all exist in
ΓG ′ , even though these vertices cannot coexist in an LR(0) goto-graph. Then, for all pairs
r, r ′ ∈ V ′ such that �(r) ≡ �(r ′), it must be r ≡ r ′, that is, the path to r ′ and the path r shall
lead to the same vertex rS ≡ r ′ ≡ r , which is in fact an alternate definition of split vertex,
when V ⊆ V ′.
Conclusion. We showed that every edge inΔĒ is removed from E ′ and that any vertex in V ′

S is
transformed to a corresponding vertex in VS , therefore we can conclude that Shrink(ΓG , Q)
computes ΓG ′ .

It is interesting to notice the different approach taken by [21], where the Shrink procedure
is an exact inverse of Grow. The drawback is that, in this case, the procedure is likely to
decimate non-ill states; in fact, as [21] suggests, it is necessary to call the equivalent of
our Grow procedure afterwards, in order to restore states that may have been erroneously
deleted.

Our procedure takes instead a conservative approach, by keeping most states and only then
merging duplicates. Given the low incidence (in our experience and in [21]) of the splitting
phenomenon, we are overall convinced that our approach is an improvement.
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4.3 DEXTER and LALR lookahead sets

As we briefly mentioned in Sect. 1.1, DEXTER is a LALR(1) parser generator. The LALR
technique extends the LR(0) sets of items with lookahead sets to solve reduce-reduce con-
flicts. The description of the parsing technique and the algorithms to compute these sets has
been extensively discussed in several works, such as [1,5,14].

We decided not to incrementally update LALR lookahead sets: as we deemed that the
performing entire computation would become rather expensive. In our prototype, we defined
an UpdateLookahead procedure that recomputes the lookahead sets on demand. The idea
is that this procedure should be called every once in a while, after a batch of subsequent
Grow or Shrink applications. We will omit any implementation detail, since we adopted
the well-known algorithm reported in [1]. Moreover, when the grammar does not generate
any reduce-reduce conflict, the system can operate using an alternate lightweight internal
algorithm that avoids the lookahead computation. We omit here an extensive description of
this algorithm, since it is only a slightly modified LR(0) parsing routine that imposes a default
choice in case of a shift-reduce conflict.

The version of the algorithms that we implemented does not deal with conflict resolution.
Therefore, in our prototype, ambiguous grammars still lead to a nondeterministic LALR(1)
parser. In this case, our implementation raises an error to indicate the type of conflict, which
is then to be resolved by the user (possibly, by refactoring the grammar). In our experience
with implementing languages using the Neverlang framework, of which DEXTER is now a
core part, we did not run into many issues involving grammar conflicts. This brought us to the
conclusion that DEXTER is enough for our purposes, at least for the time being. However,
it has been showed that pairing context-aware scanning [36] with LALR(1) addresses many
of the shortcomings of the LALR(1) family, with respect to composition issues. Since this
would be a very simple extension to our prototype, we plan to look into this solution in
future iterations. Moreover, because the Grow and Shrink algorithms apply to the LR(0)
goto-graph, it would be interesting to experiment with GLR parsers as well.

5 Conclusions and future work

Even though intuition suggests that there must be a particular relation between the LR(0)
graph of a given grammar and the graph of a correspondent growing (or shrinking) grammar,
we could not find in literature the proof that this relation must always exist. In this paper
we presented these theoretical proofs (Sect. 3), and we showed how it is possible to obtain
the (equivalent of a) graph of a growing or shrinking grammar by applying an algorithm to
the graph of the initial grammar. The Grow procedure and the Shrink procedure described
in Sect. 4 do not depend on anything but the graph structure and the rule that is being
added or removed. These procedures have been successfully implemented in a prototype
called DEXTER that is now integrated in the Neverlang framework for modular language
development. Our framework stresses the compositional aspect of developing a domain-
specific language by conceiving any language as the result of the composition of several
slices, each of which groups together related syntactical and semantic features. The plan is
turning Neverlang into a development system that exploits modularity to reduce the need for
recompilations of a language toolset to a minimum, possibly enabling runtime extensibility
with new syntactic and semantic features. The DEXTER library, the proofs and the algorithms
that we presented here have been all developed with these requirements in mind.
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Performance-wise, early testing of our Java prototype has shown promising results. On a
test machine, a Windows 7 ×64 PC with a Core 2 Duo P8400, 2.26 GHz per core, 4 GB RAM,
and JDK 6, adding or removing one rule takes 1/100 s on average. Parse time varies in function
of the grammar, but, for our intents, we found it quite reasonable: we implemented simple
grammars such as LISP and JSON and stress-tested DEXTER with big inputs (around 130K
characters). DEXTER outperformed Scala’s parser combinators and PetitParser’s grammars,
resulting from two to about four times quicker. In general, we still expected a traditional parser
generator to win over DEXTER, but we saw that the gap is not as big as one would expect. For
instance, in the case of JSON, our prototype is only two times slower than ANTLR. We also
implemented a fairly bigger parser, the C89 grammar (220 productions): the initialization
phase took less than 2 s, 1.5 on average; 100 lines of C were parsed in 55 ms on average. We
plan to test DEXTER further and publish a complete summary of our results in a follow-up
paper.
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