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INTRODUCTION

%XVLQHVV�SURFHVVHV�DUH�IUHTXHQWO\�VXEMHFW�WR�FKDQJH�

due to two main reasons (Aalst & Jablonski, 2000): 

i) at design time the workflow specification is 

incomplete due to lack of knowledge, ii) errors or 

exceptional situations can occur during the workflow 

execution; these are usually tackled on by deviating 

from the static schema, and may cause breakdowns, 

UHGXFHG�TXDOLW\�RI�VHUYLFHV��DQG�LQFRQVLVWHQFLHV�

Workflow management facilitates creating and 

executing business processes. Most of existing 

Workflow Management Systems, :06�LQ�WKH�VHTXHO�

(e.g., IBM Domino, iPlanet, Fujisu iFlow, Team-

Center), are designed to cope with static processes. 

The commonly adopted policy is that, once process 

changes occur, new workflow templates are defined 

and workflow instances are initiated accordingly 
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from scratch. This over-simplified approach forces 

tasks that were completed on the old instance to 

be executed again, also when not necessary. If 

the workflow is complex and/or involves a lot of 

external collaborators, a substantial business cost 

will be incurred.

Dynamic workflow management might be 

EURXJKW�LQ�DV�D�VROXWLRQ��)RUPDO�WHFKQLTXHV�DQG�

analysis tools can support the development of 

WMS able to handle undesired results introduced 

by dynamic change. Evolutionary workflow de-

sign is a challenge on which lot of research efforts 

are currently devoted. A good evolution is carried 

out through the evolution of workflow’s design in-

formation, and then by propagating these changes 

to the implementation. This approach should be 

the most natural and intuitive to use (because it 

adopts the same mechanisms adopted during the 

development phase) and it should produce the best 

results (because each evolutionary step is planned 

and documented before its application).

At the moment evolution is emulated by 

directly enriching original design information 

with properties and characteristics concern-

ing possible evolutions. This approach has two 

main drawbacks: i) all possible evolutions are 

not always foreseeable; ii) design information 

is polluted by details related to the design of the 

evolved system.

In the research on dynamic workflows, the 

prevalent opinion is that models should be based 

on a formal theory and be as simple as possible. In 

Agostini & De Michelis, 2000 process templates 

are provided as ‘resources for action’ rather than 

strict blueprints of work practices. May be the 

most famous dynamic workflow formalization, the 

ADEPTflex system (Reichert & Dadam, 1998), is 

designed to support dynamic change at runtime, 

making at our disposal a complete and minimal 

set of change operations. The correctness proper-

ties defined by ADEPTflex are used to determine 

whether a specific change can be applied to a 

given workflow instance or not.

Petri nets play a central role in workflow 

modeling (Salimifard & Wright, 2001), due to 

their description efficacy, formal essence, and the 

DYDLODELOLW\�RI�FRQVROLGDWHG�DQDO\VLV�WHFKQLTXHV��

Classical Petri nets (Reisig, 1985) have a fixed 

topology, so they are well suited to model work-

flows matching a static paradigm, i.e., processes 

that are finished or aborted once they are initiated. 

Conversely, any concerns related to dynamism/

evolution must be hard-wired in classical Petri nets 

DQG�E\SDVVHG�ZKHQ�QRW�LQ�XVH��7KDW�UHTXLUHV�VRPH�

expertise in Petri nets modeling, and might result 

in incorrect or partial descriptions of workflow 

behavior. Even worst, analysis would be polluted 

by a great deal of details concerning evolution.

Separating evolution from (current) system 

functionality is worthwhile. This concept has been 

recently applied to a Petri net-based model (Capra 

& Cazzola, 2007b), called Reflective Petri nets, 

using reflection (Maes, 1987) as mechanisms that 

easily permits separation of concerns. A layout 

formed by two causally connected levels (base-, 

and meta-) is used. the base-level (an ordinary 

Petri net) is unaware of the meta-level (a high-

level Petri net).

Base-level entities perform computations on 

the entities of the application domain whereas 

entities in the meta-level perform computations 

on the entities residing on the lower level. The 

computational flow passes from the base-level to 

the meta-level by intercepting some events and 

specific computations (shift-up action) and backs 

when the meta-computation has finished (shift-

down action). Meta-level computations are carried 

out on a representative of the lower-level, called 

reification, which is kept causally connected to 

the original level.

With respect to other dynamic Petri net exten-

sions (Cabac, Duvignau, Moldt, & Rölke, 2005; 

Hoffmann, Ehrig, & Mossakowski, 2005; Badouel 

& Oliver, 1998; Ellis & Keddara, 2000; Hicheur, 

Barkaoui, & Boudiaf, 2006), Reflective Petri nets 

(Capra & Cazzola, 2007b) are not a new Petri net 
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class, rather they rely upon classical Petri nets. 

That gives the possibility of using available tools 

DQG�FRQVROLGDWHG�DQDO\VLV�WHFKQLTXHV�

We propose Reflective Petri nets as formal 

model supporting the design of sound dynamic 

workflows. A structural characterization of sound 

dynamic workflows is adopted, based on Petri 

net’s free-choiceness preservation. The approach 

is applied to a localized open problem: how to 

determine what tasks should be redone and which 

ones do not when transferring a workflow instance 

from an old to a new template. The problem is 

efficiently but rather empirically addressed in Qiu 

& Wong, 2007, according to a template-based 

schema relying on the concept of bypassable task. 

Conforming to the same concept we propose an 

alternative, that allows evolutionary steps to be 

soundly formalized, and basic workflow proper-

ties to be efficiently verified.

As widely agreed (Agostini & De Michelis, 

2000), the workflow model is kept as simple as 

possible. Our approach has some resemblance 

with Reichert & Dadam, 1998, sharing some 

completeness/smallness criteria, even if it con-

siderably differs in management of changes: it 

neither provides exception handling nor undoing 

mechanism of temporary changes; rather it relies 

upon a sort of “on-the-fly” validation.

The balance of the chapter is as follows: first 

we give a few basic notions around Petri nets 

and workflows; then we sketch a template-based 

dynamic workflow approach (Qiu & Wong, 2007) 

adopted by an industrial WMS; finally, we present 

our alternative based on Reflective Petri nets, us-

ing the same application case as in Qiu & Wong, 

2007; we conclude drawing conclusions and 

perspectives. We refer to the companion chapter 

(Capra & Cazzola, 2009) for a complete, up-to-

date introduction on Reflective Petri nets.

WORKFLOW PETRI NETS

This section introduces the base-level Petri net 

VXEFODVV�XVHG�LQ�WKH�VHTXHO��ZLWK�UHODWHG�QRWDWLRQV��

and properties. We refer to Reisig, 1985; Aalst, 

1996 for more elaborate introductions.

Definition 1 (Petri net). A Petri net is a triple 

(P;T;F), in which:

3�� LV�D�¿QLWH�VHW�RI�SODFHV���

7��LV�D�¿QLWH�VHW�RI�WUDQVLWLRQV���� =P T� �

;),

�� ( ) ( )F P T T P� u � u �LV�D�VHW�RI�DUFV��ÀRZ�

relation)

In accordance with the simplicity assumption 

(Agostini & De Michelis, 2000), we are consider-

ing a restriction of base-level Petri nets used in 

Capra & Cazzola, 2009. In the workflow context, 

it makes no sense to have weighted arcs, because 

tokens in places correspond to conditions. Con-

VHTXHQWO\��LQ�D�ZHOO�GHILQHG�ZRUNIORZ�D�PDUNLQJ�

m is a set of places, i.e., ( )Set P�m . In general a 

marking is a mapping, : �P om . Inhibitor arcs 

and priorities are unnecessary to model the routing 

of cases in a workflow Petri net.

,x xx x
 denote the pre- and post- sets of 

x P T� � , respectively (the set-extensions 

A, Ax xA P T� � , will be also used). Transi-

tions change the state of the net according to the 

following rule:

- t  is enabled in m if and only if each place 

p tx�  contains at least one token.

if  � t is enabled in m the it can�¿UH��FRQ-

suming one token from each p tx�  

and producing one token for each 

p tx�

Let = ( ; ; )PN P T F ,  it T� ,  in T P� � , 

V = , ,1 2 1t t tk�
-

 (possibly V H= ).
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BASIC NOTIONS/NOTATIONS

1

1 2

t

om m  if and only if t
1
 is enabled in m

1
 and its 

firing results in m
2

�� 1 k

V

om m  if and only if 

11 2

1 2 1,
tt t k

k k

�

�o o om m m m� .

�� m
k
 is reachable from m

1
 if and only if 

1, k

V

V� om m .

�� ( ; )0PN m  is a Petri net with an initial 

state m
0
.

Given �� ( ; )0PN m , m'  is said reachable if 

and only if it is reachable from m
0
.

Behavioral Properties

(Live). ( ; )0PN m  is live if and only if, for every 

reachable state m'  and every transition t there ex-

ists 'cm  reachable from m'  which enables t.

(Bounded, safe). ( ; )0PN m  is bounded if and 

only if for each place p there exists �b�  such that 

for every reachable state m, ( )p bdm . A bounded 

net is safe if and only if b = 1. A marking of a safe 

Petri net is denoted by a set of places.

Structural Properties

(Path). A path from n
1
 to n

k
� LV� D� VHTXHQFH�

n n nk1 2, , ,�  such that  1( , )i in n F� � ,  i�  

1 1i kd d �

(Conflict). t
1
 and t

2
 are in conflict if and only 

if 1 2t tx x� z�.

(Free-choice). PN is free-choice if and only if 

1 2 1 2 1 2 , =t t t t t tx x x x� � z�� .

(Causal connection - CC). t
1
 is causally con-

nected to t
2
 if and only if 1 1 2( \ )t t tx x x� ����.

Sound Workflow-Nets and 
Free-Choiceness

A Petri net can be used to specify the control flow 

of a workflow. Tasks are modeled by transitions, 

places correspond to task’s pre/post-conditions. 

Causal dependencies between tasks are modeled 

by arcs (and places).

Definition 2 (Workflow-net). A Petri net PN 

= (P;T;F) is a Workflow-net (hereafter WF-net) 

if and only if:

There is one source place �� i such that =ix �.

There is one sink place �� o such that =ox �.

Every �� x P T� �  is on a path from i to o.

A WF-net specifies the life-cycle of a case, so 

it has exactly one input place (i) and one output 

place (o��� 7KH� WKLUG� UHTXLUHPHQW� LQ� GHILQLWLRQ�

2 avoids dangling tasks and/or conditions, i.e., 

tasks and conditions which do not contribute to 

the processing of cases.

If we add to a WF-net PN a transition t* such 

that ( ) = { }t* ox
 and ( ) = { }t* ix

, then the resulting 

Petri net PN  (called the short-circuited net of 

PN) is strongly connected.

7KH�UHTXLUHPHQWV�VWDWHG�LQ�GHILQLWLRQ���RQO\�

relate to the structure of a Petri net. However, there 

LV�DQRWKHU�UHTXLUHPHQW�WKDW�VKRXOG�EH�VDWLVILHG�

Definition 3 (soundness). A WF-net PN = 

(P;T;F) is sound if and only if:

for every �� m reachable from state {i}, there 

H[LVWV�1�� { }o
V

om

{�� o} is the only marking reachable from {i} 

with at least one token in place o

there are no dead transitions i)n (�� PN;{i}), 

i.e., t T� �  there exists a reachable m, 

'
t

om m

In other words: for any cases, the procedure 

will terminate eventually1, when the procedure 

terminates there is a token in place o with all the 



222

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

other places empty (that is referred to as proper 

termination), moreover, it should be possible to 

execute any tasks by following the appropriate 

route through the WF-net.

The soundness property relates to the dy-

namics of a WF-net, and may be considered as 

D�EDVLF�UHTXLUHPHQW�IRU�DQ\�SURFHVV��,W�LV�VKRZQ�

in Aalst, 1996 that a WF-net PN is sound if and 

only if ( ;{ })PN i  is live and bounded. Despite that 

helpful characterization, deciding about sound-

ness of arbitrary WF-nets may be intractable: 

liveness and boundedness are decidable, but also 

EXPSPACE-hard.

Therefore, structural characterizations of sound 

WF-nets were investigated (Aalst, 1996). Free-

choice Petri nets seem to be a good compromise 

between expressive power and analysis capability. 

They are the widest class of Petri nets for which 

strong theoretical results and efficient analysis 

WHFKQLTXHV�GR�H[LVW��'HVHO�	�(VSDU]D���������,Q�

particular (Aalst, 1996), soundness of a free-choice 

WF-net (as well as many other problems) can be 

decided in polynomial time. Moreover, a sound 

free-choice WF-net (PN; {i}) is guaranteed to be 

safe, according to the interpretation of places as 

conditions.

Another good reason to restrict our attention 

to workflow models specified by free-choice WF-

nets is that the routing of a case should be inde-

pendent of the order in which tasks are executed. 

If non free-choice Petri nets were admitted, then 

the solution of conflicts could be influenced by the 

order in which tasks are executed. In literature the 

term confusion is often used to refer to a situation 

where free-choiceness is violated by a badly mix-

ture of parallelism and conflict. Free-choiceness 

is a desirable property for workflows. If a process 

can be modeled as free-choice WF-net, one should 

do so. Most of existing WMS support free-choice 

processes only. We will admit as base-level Petri 

nets free-choice WF-nets.

Even though free-choice WF-nets are a 

satisfactory characterization of well-defined 

workflow procedures, for which soundness can 

be efficiently checked, there are WF-nets non free-

choice which correspond to sensible processes. 

S-coverability (Aalst, 1996) is a generalization 

of free-choiceness: a sound free-choice WF-net 

is in fact S-coverable. In general, it is impossible 

to verify soundness of an arbitrary S-coverable 

WF-net in polynomial time, that problem being 

PSPACE-complete. In many practical cases, 

however, this theoretical complexity significantly 

lowers, so that S-coverability could be considered 

as an interesting alternative to free-choiceness.

A TEMPLATE-BASED APPROACH 
TO DYNAMIC WORKFLOWS

An interesting solution to facilitate an efficient 

management of dynamic workflows is proposed 

in Qiu & Wong, 2007. WMS supporting dynamic 

workflow change can either directly modify the 

affected instance, or restart it on a new workflow 

template. The first method is instance based while 

the second is template based. The approach we 

are considering, in accordance with a consoli-

dated practice, falls in the second category, and 

is implemented in Dassault Systèmes SmarTeam 

(ENOVIA, 2007), a PLM (Product Lifecycle 

Management) system including a WMS module. 

In Qiu & Wong, 2007 workflows are formally 

specified by Directed Network Graphs (DNG), 

which can be easily translated into PN.

The idea consists of identifying all bypass-

able tasks, i.e., all tasks in the new workflow 

instance that satisfy the following conditions: i) 

they are unchanged, ii) they have finished in the 

old workflow instance, and iii) they need not be 

re-executed.

A task (transition, in Petri nets) is said un-

changed, before and after a transformation of the 

workflow template, if and only if it represents 

the same activity (what will be always assumed 

true), and preserves input/output connections. 

To determine if a task is bypassable when the 
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instance is transferred to a new template, an ad-

ditional constraint is needed: all tasks from which 

there is a path (i.e, are causally connected) to the 

task itself, must be bypassable in turn. A smart 

algorithm permits the identification of bypassable 

tasks: starting from the initial task, which is by-

passable by default, only successors of bypassable 

tasks are considered.

This solution has been implemented in 

SmarTeam system, that includes a workflow man-

ager and a messaging subsystem, but no built-in 

mechanisms to face dynamic workflow’s change. 

A set of API enables detaching and attaching 

operations between processes and workflow tem-

plates. A process is redone entirely if its template 

is changed. Workflow’s change is implemented 

by an application-server, which executes the fol-

lowing steps:

1.  Obtain a process instance;

2.  Obtain the old and new workflow 

templates;

3.  Attach the new workflow template to the 

process;

4.  Identify and mark the tasks that can be by-

passed in the new workflow instance;

5.  Initiate the new workflow without redoing 

the marked tasks.

What appears completely unspecified in Qiu & 

Wong, 2007 is how to safely operate steps 4 and 5: 

some heuristics appear to be adopted, rather than 

a well defined methodology. No formal tests are 

carried out to verify the soundness of a workflow 

instance transferred to the modified template.

AN ALTERNATIVE BASED ON 
REFLECTIVE PETRI NETS

We propose an alternative to Qiu & Wong, 2007, 

based on Reflective Petri nets, which allows a full 

formalization of the evolutionary steps, as well as 

a validation of changes proposed for the workflow 

template, by means of a simple Petri nets structural 

analysis. Validation is accomplished “on-the-fly”, 

i.e., by operating on the workflow reification while 

change is in progress. Changes are not reflected 

to the base-level in case of a negative check. With 

respect to a preliminary version (Capra & Cazzola, 

2007a), the evolutionary strategy, as concerns in 

particular the validation part, is redesigned and 

some bugs are fixed.

We consider the same application case pre-

sented in Qiu & Wong, 2007. A company has 

several regional branches. To enhance operation 

FRQVLVWHQFH�� WKH� FRPSDQ\� KHDGTXDUWHU� �+4��

standardizes business processes in all branches. A 

workflow template is defined to handle customer 

problems. When the staff in a branch encounters 

a problem, a workflow instance is initiated from 

the template and executed until completion.

The Petri net specification of the initial template 

is given in Figure 1. A problem goes through two 

stages: problem solving and on-site realization. 

Problem solving involves several tasks, included 

in a dashed box. When opening a case, the staff 

reports the case to HQ. When closing the case, 

it archives the related documents. The HQ man-

ages all instances related to the problem handling 

process.

In response to business needs, HQ may decide 

to change the problem handling template. The 

new template (Figure 2) differs from the original 

one in two points: a) “reporting” and “problem 

solving” become independent activities; b) “on 

site realization” can fail, in that case procedure 

“problem solving” restarts.

At Petri net level, we can observe that transition 

Report is causally-connected to ProductChange 

in Figure 1, while it is not in Figure 2, and that a 

new transition has been added in Figure 2 (Real-

izationRejected) which is in free-choice conflict 

with OnSiteRealization.

When using Reflective Petri nets, the evolu-

tionary schema has to be redesigned. The new 

workflow template is not passed as input to the 

staff of the company branches, but it results from 
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applying an evolutionary strategy to a workflow 

instance belonging to the current template. The 

initial base-level Petri nets is assumed a free-choice 

WF-net. No details about the workflow dynamics 

are hard-wired in the base-level net. Evolution is 

delegated to the meta-program, that acts on the 

WF-net reification.

The meta-program is activated when an evolu-

tionary signal is sent in by HQ, or some anomaly 

(e.g., a deadlock) is revealed by introspection. 

(Late) introspection is also used to discriminate 

whether evolutionary commands have been safely 

applied to the current workflow instance, or they 

have to be discarded.

Figure 1 depicts the following situation: a 

workflow instance running on the initial template 

has received a message from HQ. At the current 

state (marking) SolutionDesign, a sub-task of 

Figure 1. An instance of a workflow template (begin, end are used instead of i and o)
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ProblemSolving, and Report are pending tasks, 

whereas a number of tasks (e.g., Analysis and 

CaseOpening) have been completed. The meta-

program in that case successfully operates a change 

on the old template’s instance, once verified that 

all paths to any pending tasks are only composed 

of bypassable tasks.

The workflow instance transferred to the new 

template is illustrated in Figure 2.

One might think of this approach as instance-

based, rather than template-based. In truth it covers 

both: if the evolutionary commands are in fact 

broadcasted to workflow’s instances we fall in 

the latter scheme.

The evolutionary strategy relies upon the no-

tion of adjacency preserving task, which is more 

general than the unchanged task used in Qiu & 

Wong, 2007. It is inspired by van der Aalst’s 

Figure 2. Workflow’s evolution
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concept that any workflow change must preserve 

the inheritance relationship between old and new 

templates (Aalst & Basten, 2002). Let us introduce 

VRPH�QRWDWLRQV�XVHG�LQ�WKH�VHTXHO�

Let  PN Old P Old T Old A= ( _ ; _ ; _ ) ,  be 

a base-level WF-net (better, its reification at 

the meta-level), = ( ; ; )PN P T Ac c c c  be the re-

sulting Petri net after some modifications2, 

_ = _ _Old N Old P Old T� , =N P Tc c c� .

Symbols x and x  refer to a node “preserved” 

by change, considered in the context of PN and 

PN c, respectively.

S e t s  _ = _ _Del N Del P Del T� , 

_ = _ _New N New P New T� ,  and New_A , 

Del_A, denote the base level nodes/arcs added to 

and removed from PN, respectively.

We assume that _ _ =New A Del A� �. No 

other assumptions are made: for example “mov-

ing” a given node across the base-level Petri net 

might be simulated by first deleting the node, then 

putting it again setting new connections.

As explained in (Capra & Cazzola, 2009), 

the evolutionary framework (a transparent meta-

level’s component) being in charge of carrying 

out evolution rejects a proposed change if not 

consistent with respect to the current base-level’s 

reification.

Finally, NO_ADJ, NO_BYPS denote the 

tasks not preserving adjacency and the non-

bypassable tasks, respectively (of course, 

_ _NO ADJ NO BYPS� ). Some of the symbols 

just introduced will be used as names for the 

evolutionary strategy parameters.

Definition 4 (adjacent set). Let t be a transi-

tion. The set of adjacent transitions A
t
 is:

( ) ( ) \{ }t t t t tx x x x x x� � � . 

Definition 5 (adjacency preserving task). Let 

_t Old T� , t T c� . Task t is adjacency preserv-

ing if and only if _ , tt
x Old T x A x A� � � � �  

and there exist a bijection : t t t tI x x x x� o �  

such that

tx A y t tx x� � � � � , ( )y x y xIx x� � �  and  

( )y x y xIx x� � �  

If t is adjacency preserving then all its cau-

sality/conflict relationships to adjacent tasks are 

maintained. A case where Definition 5 holds, and 

another one where it does not, are illustrated in 

Figure 3 (the black bar denotes a new task, t’ is 

used instead of t ). In case (b) the original input 

connections of t are maintained (output connec-

tions are unchanged): if the occurrence of t is made 

possible by the occurrence of some preceding tasks 

it, the same may happen in the new situation. That 

is not true in case (c): the occurrence of the new 

task represents in fact an additional precondition 

IRU�DQ\�VXEVHTXHQW�RFFXUUHQFH�RI�t.

Checking definition 5 is computationally 

very expensive. However, if useless changes are 

forbidden, e.g., “deleting a given place p, then 

adding p’ inheriting from p all connections”, or 

“adding an arc ,p t¢ ², then deleting p or t ”, check’s 

complexity can be greatly reduced.

Lemma 1 states some rules for identifying a 

superset of tasks N
a
 not preserving adjacency. 

It can be easily translated to an efficient meta-

program’s routine. Almost always it comes to be 

_aN NO ADJ{ .

Lemma 1. Consider set N
a
, built as follows

_ ap Del P p p Nx x� � � �
 

_ ( ) ( ) at Del T t t Nx x x x� � � �  

, _ , _ ap t Del A t p Del A p p Nx x¢ ²� � ¢ ²� � � �  

, _ _ { } ap t New A t Old N t D N¢ ²� � � � � �  

where =D p px x�  if _p Old N� , else =D � 

Then _ aNO ADJ N� .

The evolutionary meta-program if formalized 

in Figure 4. The use of a CSP-like syntax (Hoare, 

1985; Capra & Cazzola, 2009) makes it possible 

its automatic translation to a high-level Petri net 
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(the logical meta-level of the Reflective Petri 

nets layout). The meta-program is activated at 

any transition of state on the current workflow 

instance (shift-up), reacting to three different types 

of events. In the case of deadlock, a signal is sent 

to HQ, represented by a CSP process identifier. 

If the current instance has finished, and a “new 

instance” message is received, the workflow is 

activated. Instead if there is an incoming evolution-

ary message from HQ, the evolutionary strategy 

starts running.

*[ 

  VAR p, t, n: NODE; 

  VAR New_P,New_T,Old_N,Del_N, NO_BYPS: 

SET(NODE); 

  VAR New_A,Del_A: SET(ARC); 

  //receiving an evolutionary signal 

  HQ ? change-msg() -> [ 

  //receiving the evolutionary commands 

  HQ ? New_P; HQ ? New_T; HQ ? New_A; HQ 

? Del_A; HQ ? Del_N; 

  //getting the WF-net reification 

  Old_N = ReifiedNodes(); 

  //computing the non-bypassable tasks 

  NO_BYPS = ccTo(notAdjPres()); 

  

//changing the current reification 

  newNode(New_P � New_T);newArc(New_A); 

deleteArc(Del_A); delNode(Del_N); 

  //checking the (new) WF-net’s well-def-

initeness 

  checkWfNet(); checkFc(); 

  /*there might be a deadlock, or a non-

bypassable task is causally 

  Connected  to a pending one ...*/ 

  !exists t in Tran, enab(t) or (exists t 

in Tran @�2OGB1��enab(t) and  

  !isEmpty(ccBy�W��@�12B%<36����!�>re-

start()] //rejecting changeshiftDown() //

reflecting change  

  ] 

[] 

  #end=0 and !exists t in Tran, enab(t) 

-> [HQ ! notify-deadlock()] 

[] 

  #end=1; HQ ? newInstance-msg() -> 

[flush(end); incMark(begin)]  

]  

Just after an evolutionary signal, HQ com-

municates the workflow nodes/connections to 

Figure 3. Definition 5 Illustrated
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be removed/added. For the sake of simplicity we 

assume that change can only involve workflow’s 

topology. The (super)set of non-bypassable tasks 

is then computed.

After operating the evolutionary commands 

on the current workflow reification, definition 

2 and free-choiceness are tested on the newly 

changed reification. Following, the strategy 

checks by reification introspection whether the 

suggested workflow change might cause a dead-

lock, or there might be any non-bypassable tasks 

causally-connected to an old task which is cur-

rently pending. In either case, a restart procedure 

takes the workflow reification back to the state 

before strategy’s activation. Otherwise, change 

is reflected to the base-level (shift-down). The 

scheme just described might be adopted for a 

wide class of evolutionary patterns.

Language’s keywords and routine calls are 

in bold. We recall (Capra & Cazzola, 2009) that 

type NODE represents a (logically unbounded) 

recipient of base-level nodes, and is partitioned 

into Place and Tran subtypes . The exists�TXDQ-

tifier is used to check whether a net element is 

currently reified. The built-in routine ReifNodes 

computes the nodes belonging to the current 

base-level reification. The routine notAdjPres 

initializes the set of non-bypassable tasks to N
a
 

according to lemma 1. The routines ccTo and ccBy 

compute the set of nodes the argument is causally 

connected to, and that are causally connected to 

routine’s argument, respectively.

Figure 4. Workflow’s evolutionary strategy
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On-the-Fly Structural Check

The structural changes proposed from time to time 

to a dynamic workflow can be validated by means 

of classical 3HWUL�QHWV�DQDO\VLV�WHFKQLTXHV��9DOLGD-

tion is accomplished on the workflow reification 

“on-the-fly”, i.e., while the evolutionary strategy 

is in progress. Thanks to a restart mechanism, po-

tentially dangerous changes are discarded before 

they are reflected to the base-level, at the end of 

a meta-computation.

Routines checkWfNet, checkFc test the pres-

ervation of base-level Petri nets well-definiteness 

(definition 2) and free-choiceness, respectively. 

Their calls are located in the meta-program just 

after the evolutionary commands, which operate 

on the base-level workflow reification.

 [  

 VAR t,tx: Tran; 

 VAR p: Place; 

 *(<p,t> in New_A � Del_A)  

   [ 

    exists(p) and exists(t) ->  

      [  

       *(tx in post(pre(t))/{t})  

        [pre(t) <> pre(tx) -> restart();]  

      ] 

   ] 

]  

Free-choiceness preservation, in particular, 

may be checked in a simple, efficient way. 

Figure 5 expands the corresponding routine. 

It works under the following assumptions and 

principles:

�� the initial base-level Petri net is a free-

choice WF-net (conservative hypothesis)

variables New_A, Del_A record �� all the 

arcs which are added/deleted to/from the 

base-level UHL¿FDWLRQ�GXULQJ�WKH�HYROXWLRQ-

ary strategy’s execution; they are cleared at 

any meta-program activation;

the only operations affecting free-choice-��

ness, under a conservative hypothesis, are 

the addition/removal of an input arc ¢p,t² 

(the removal of a node produces as a side-

effect the withdrawal of all adjacent arcs, so 

it is fair, with respect to free-choiceness)

for each arc �� ¢p,t² which has been added/

removed we only have to check the free-

choiceness between t and every transition 

sharing with t some input places.

Putting the Strategy to the Test

Let us explain how the strategy works, considering 

again Figures 1-2, upon receiving the evolution-

ary commands:

New_P={}

New_T={ RealizationRejected}

Del_A={ ¢p13, ProductChange²�}

Del_N={}

New_A={¢p6, Realization Rejected², ¢p13, 

Archiving², ¢Realization Rejected, p5²}.

The non-bypassable tasks come to be: {Report, 

Archiving, ProductChange, OnSiteRealization, 

CaseClosure}. In the workflow instance running 

on the modified template (Figure 2) tasks (tran-

sitions) Report and ProductChange are pending 

(enabled) in the current state (marking) m:{p
11

, 

p
14

}. All preexisting completed tasks that are caus-

ally connected to one of them can be bypassed, 

so the new workflow has not to be restarted from 

scratch, saving a lot of work.

The approach just described ensures a de-

pendable evolution of workflows, while being 

enough flexible. We have not intended to propose 

a general solution to the particular problem ad-

dressed in Qiu & Wong, 2007. Better policies 

do probably exist. Rather, we have tried to show 

that an approach merging consolidated reflec-

tion concepts to classical 3HWUL�QHWV�WHFKQLTXHV�

can suitably address the criticisms of dynamic 

workflow change.
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Structural Base-Level Analysis. The base-

level is guaranteed to be a free-choice WF-net 

all over its evolution: that makes is possible to 

use polynomial algorithms to check workflow’s 

VRXQGQHVV��,Q�SDUWLFXODU�WHFKQLTXHV�EDVHG�RQ�WKH�

calculus of flows (invariants) are elegant and very 

efficient. In general they are highly affected by 

the base-level Petri net complexity. The separa-

tion between evolutionary and functional aspects 

encourages their usage.

For instance, by operating the structural algo-

rithms of GreatSPN tool (Chiola, Franceschinis, 

Gaeta, & Ribaudo, 1995), it is possible to discover 

that both nets depicted in Figures 1-2 are covered 

by place-invariants. A lot of interesting properties 

thereby descend: in particular boundedness and 

liveness, i.e., workflow soundness.

Counter Example

Assume that evolution occurs when the only 

pending task is OnSiteRealization, i.e., consider 

as current marking of the net in Figure 1 6' :{ }pm . 

That means, among the other things, tasks Pro-

ductChange, VersionMerging and Report have 

been completed: change in that case is discarded 

after having verified that there are some non-

bypassable tasks which are causally connected 

to the pending one. If the suggested change were 

really carried out (reflected) on the base-level, 

without doing any consistency control, a deadlock 

would be eventually entered (state {p
8
}) after 

the workflow instance continues its run on the 

modified template. The problem is that 'm  is not a 

reachable state of ( ;{ })PN beginc , but reachability 

is NP-complete also in live and safe free-choice 

Petri nets, so it would make no sense checking 

reachability directly at meta-program level.

Current Limitations

The proposed reflective model for dynamic work-

flows suffers from a major conceptual limitation: 

only the control-flow perspective is considered. 

Let us shortly discuss this choice. We abstract from 

the resource perspective because in most workflow 

management systems it is not possible to specify 

that several (human) resources are collaborating 

in executing a task. Even if multiple persons are 

executing a task, only one is allocated to it from 

the WMS perspective: who selected the work item 

from the in-basket. In contrast to other application 

domains such as flexible manufacturing systems, 

anomalies resulting from locking problems are 

not possible (it is reasonable to assume that each 

task will be eventually executed by the person 

having in charge it). Therefore, from the view-

point of workflow verification, we can abstract 

Figure 5. Meta-program’s routine checking free-choiceness
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from resources. However, if collaborative features 

will be explicitly supported by WMS (through 

a tight integration of groupware and workflow 

technology), then the resource perspective should 

be taken into account. We partly abstract from the 

data perspective. Production data can be changed 

at any time without notifying the WMS. Their 

existence does not even depend upon the work-

flow application and they may be shared among 

different workflows. The control data used to 

route cases are managed by the WMS. Some of 

these data are set or updated by humans or ap-

plications. Clearly, some abstraction is needed to 

incorporate the data perspective when verifying 

a given workflow. The abstraction currently used 

is the following. Since control data (workflow at-

tributes such as the customer id, the registration 

date, etc.) are only used for the routing of a case, 

we model each decision as a non-deterministic 

choice. If we are able to prove soundness for the 

situation without workflow attributes, it will also 

hold for the situation with attributes. Abstracting 

from triggers and workflow attributes fits in the 

usage of ordinary Petri nets for the base-level of 

the reflective model: this is preferable because of 

the availability of efficient and powerful analysis 

tools.

CONCLUSION

Industrial/business processes are an example of 

discrete-event systems which are increasingly 

subject to evolution during life-cycle. Covering 

the intrinsic dynamism of modern processes has 

been widely recognized as a challenge by designers 

of workflow management systems. Petri nets are 

a central model of workflows, but traditionally 

they have a fixed structure. We have proposed 

and discussed the adoption of Reflective Petri nets 

as a formal model for sound dynamic workflows. 

The clean separation between (current) workflow 

template and evolutionary strategy on one side, 

and the use of classical Petri nets notions (free-

choiceness) on the other side, make it possible 

to efficiently check preservation of workflow’s 

structural properties, which in turn permit sound-

ness -a major behavioral property- to be checked 

in polynomial time. All is done while evolution is 

in progress. An algorithm is delivered to soundly 

transferring workflow instances from an old to a 

new template, redoing already completed work-

flow’s task only when strictly necessary. The 

approach formalizes and improves a procedure 

currently implemented in an industrial workflow 

management system. We are studying the possibil-

ity of using even more general structural notions 

than free-choiceness, in particular S-coverability 

(Aalst, 1996), that provides in most practical cases 

a structural characterization of soundness.

REFERENCES

Agostini, A., & De Michelis, G. (2000, Au-

gust). A Light Workflow Management System 

Using Simple Process Models. Computer Sup-

ported Cooperative Work, 9(3-4), 335–363. 

doi:10.1023/A:1008703327801

Badouel, E., & Oliver, J. (1998, January). Recon-

figurable Nets, a Class of High Level Petri Nets 

Supporting Dynamic Changes within Workflow 

Systems (IRISA Research Report No. PI-1163). 

IRISA.

Cabac, L., Duvignau, M., Moldt, D., & Rölke, 

H. (2005, June). Modeling Dynamic Architec-

tures Using Nets-Within-Nets. In G. Ciardo & 

P. Darondeau (Eds.), Proceedings of the 26th 

International Conference on Applications and 

Theory of Petri Nets (ICATPN 2005) (p. 148-167). 

Miami, FL: Springer.

Capra, L., & Cazzola, W. (2007a, on 26th-29th 

of September). A Reflective PN-based Approach 

to Dynamic Workflow Change. In Proceedings 

of the 9th International Symposium in Symbolic 

and Numeric Algorithms for Scientific Computing 

(SYNASC’07) (p. 533-540). Timisoara, Romania: 

IEEE CS.



232

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

Capra, L., & Cazzola, W. (2007b, December). 

Self-Evolving Petri Nets. Journal of Universal 

Computer Science, 13(13), 2002–2034.

Capra, L., & Cazzola, W. (2009). An Introduction 

to Reflective Petri Nets. In E. M. O. Abu-Atieh 

(Ed.), Handbook of Research on Discrete Event 

Simulation Environments Technologies and Ap-

plications. Hershey, PA: IGI Global.

Chiola, G., Franceschinis, G., Gaeta, R., & Ribau-

do, M. (1995, November). GreatSPN 1.7: Graphi-

cal Editor and Analyzer for Timed and Stochastic 

Petri Nets. Performance Evaluation, 24(1-2), 

47–68. doi:10.1016/0166-5316(95)00008-L

Desel, J., & Esparza, J. (1995). Free Choice Petri 

Nets (Cambridge Tracts in Theoretical Computer 

Science Vol. 40). New York: Cambridge Univer-

sity Press.

Ellis, C., & Keddara, K. (2000, August). ML-

DEWS: Modeling Language to Support Dynamic 

Evolution within Workflow Systems. Computer 

Supported Cooperative Work, 9(3-4), 293–333. 

doi:10.1023/A:1008799125984

ENOVIA. (2007, September). Dassault systèmes 

plm solutions for the mid-market [white-paper]. 

Retrieved from. http:/www.3ds.com/fileadmin/

brands/enovia/pdf/whitepapers/CIMdata-DS_

PLM_for_the_MidMarket-Program_review-

Sep2007.pdf)

Hicheur, A., Barkaoui, K., & Boudiaf, N. (2006, 

September). Modeling Workflows with Recursive 

ECATNets. In Proceedings of the Eighth Inter-

national Symposium on Symbolic and Numeric 

Algorithms for Scientific Computing (SYNACS’06) 

(p. 389-398). Timisoara, Romania: IEEE CS.

Hoare, C. A. R. (1985). Communicating Sequen-

tial Processes. Upper Saddle River, NJ: Prentice 

Hall.

Hoffmann, K., Ehrig, H., & Mossakowski, T. 

(2005, June). High-Level Nets with Nets and Rules 

as Tokens. In G. Ciardo & P. Darondeau (Eds.), 

Proceedings of the 26th International Conference 

on Applications and Theory of Petri Nets (ICATPN 

2005) (pp. 268-288). Miami, FL: Springer.

Maes, P. (1987, October). Concepts and Ex-

periments in Computational Reflection. In N. K. 

Meyrowitz (Ed.), Proceedings of the 2nd confer-

ence on object-oriented programming systems, 

languages, and applications (OOPSLA’87) (Vol. 

22, pp.147-156), Orlando, FL.

Qiu, Z.-M., & Wong, Y. S. (2007, June). Dynamic 

Workflow Change in PDM Systems. Computers 

in Industry, 58(5), 453–463. doi:10.1016/j.com-

pind.2006.09.014

Reichert, M., & Dadam, P. (1998). ADEPTflex 

- Supporting Dynamic Changes in Workflow 

Management Systems without Losing Control. 

Journal of Intelligent Information Systems, 10(2), 

93–129. doi:10.1023/A:1008604709862

Reisig, W. (1985). Petri nets: An introduction 

(EATCS Monographs in Theoretical Computer 

Science Vol. 4). Berlin: Springer.

Salimifard, K., & Wright, M. B. (2001, November). 

Petri Net-Based Modeling of Workflow Systems: 

An Overview. European Journal of Operational 

Research, 134(3), 664–676. doi:10.1016/S0377-

2217(00)00292-7

van der Aalst, W. M. P. (1996). Structural Char-

acterizations of Sound Workflow Nets (Computing 

Science Reports No. 96/23). Eindhoven, the Neth-

erlands: Eindhoven University of Technology.

van der Aalst, W. M. P., & Basten, T. (2002, 

January). Inheritance of Workflows: An Approach 

to Tackling Problems Related to Change. Theo-

retical Computer Science, 270(1-2), 125–203. 

doi:10.1016/S0304-3975(00)00321-2



233

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

van der Aalst, W. M. P., & Jablonski, S. (2000, 

September). Dealing with Workflow Change: 

Identification of Issues and Solutions. Interna-

tional Journal of Computer Systems, Science, and 

Engineering, 15(5), 267–276.

KEY TERMS AND DEFINITIONS

Evolution: attitude of systems to change 

layout/functionality.

Dynamic Workflows: models of industrial/

business processes subject to evolution.

Petri Nets: graphical formalism for discrete-

event systems.

Reflection: activity performed by an agent 

when doing computations about itself.

Workflow Nets: Petri net-based workflow 

models.

Soundness: behavioral property of a well-

defined workflow net.

Structural Properties: properties derived 

from the incidence matrix of Petri nets.

Free-Choiceness: typical structural property 

which can be efficiently tested.

ENDNOTES

1  If we assume, as it is reasonable in the work-

flow context, a strong notion of fairness: in 

HYHU\�LQILQLWH�ILULQJ�VHTXHQFH��HDFK�WUDQVLWLRQ�

fires infinitely often.
2  We recall that in Reflective Petri nets any 

evolutionary strategy is defined in terms of 

basic operations on base-level’s elements


