
218

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

7U\LQJ�2XW�5HÌHFWLYH�3HWUL�1HWV�
RQ�D�'\QDPLF�:RUNÌRZ�&DVH

Lorenzo Capra
Università degli Studi di Milano, Italy

Walter Cazzola
Università degli Studi di Milano, Italy

INTRODUCTION

%XVLQHVV�SURFHVVHV�DUH�IUHTXHQWO\�VXEMHFW�WR�FKDQJH�

due to two main reasons (Aalst & Jablonski, 2000):

i) at design time the workflow specification is

incomplete due to lack of knowledge, ii) errors or

exceptional situations can occur during the workflow

execution; these are usually tackled on by deviating

from the static schema, and may cause breakdowns,

UHGXFHG�TXDOLW\�RI�VHUYLFHV��DQG�LQFRQVLVWHQFLHV�

Workflow management facilitates creating and

executing business processes. Most of existing

Workflow Management Systems, :06�LQ�WKH�VHTXHO�

(e.g., IBM Domino, iPlanet, Fujisu iFlow, Team-

Center), are designed to cope with static processes.

The commonly adopted policy is that, once process

changes occur, new workflow templates are defined

and workflow instances are initiated accordingly

ABSTRACT

Industrial/business processes are an evident example of discrete-event systems which are subject to

HYROXWLRQ�GXULQJ�OLIH�F\FOH��7KH�GHVLJQ�DQG�PDQDJHPHQW�RI�G\QDPLF�ZRUNÀRZV�QHHG�DGHTXDWH�IRUPDO�

PRGHOV�DQG�VXSSRUW�WRROV�WR�KDQGOH�LQ�VRXQG�ZD\�SRVVLEOH�FKDQJHV�RFFXUULQJ�GXULQJ�ZRUNÀRZ�RSHUDWLRQ��

7KH�NQRZQ��ZHOO�HVWDEOLVKHG�ZRUNÀRZ¶V�PRGHOV��DPRQJ�ZKLFK�Petri nets play a central role, are lack-

LQJ�LQ�IHDWXUHV�IRU�UHSUHVHQWLQJ�HYROXWLRQ��:H�SURSRVH�D�UHFHQW�3HWUL�QHW�EDVHG�UHÀHFWLYH�OD\RXW��FDOOHG�

5HÀHFWLYH�3HWUL�QHWV��DV�D�IRUPDO�PRGHO�IRU�G\QDPLF�ZRUNÀRZV��$�ORFDOL]HG�RSHQ�SUREOHP�LV�FRQVLGHUHG��

KRZ�WR�GHWHUPLQH�ZKDW�WDVNV�VKRXOG�EH�UHGRQH�DQG�ZKLFK�RQHV�GR�QRW�ZKHQ�WUDQVIHUULQJ�D�ZRUNÀRZ�

LQVWDQFH�IURP�DQ�ROG� WR�D�QHZ�WHPSODWH��7KH�SUREOHP�LV�HI¿FLHQWO\�EXW�UDWKHU�HPSLULFDOO\�DGGUHVVHG�

LQ�D�ZRUNÀRZ�PDQDJHPHQW�V\VWHP��2XU�DSSURDFK�LV�IRUPDO��PD\�EH�JHQHUDOL]HG��DQG�LV�EDVHG�RQ�WKH�

preservation of classical 3HWUL�QHWV�VWUXFWXUDO�SURSHUWLHV��ZKLFK�SHUPLW�DQ�HI¿FLHQW�FKDUDFWHUL]DWLRQ�RI�

ZRUNÀRZ¶V�soundness.

DOI: 10.4018/978-1-60566-774-4.ch010

219

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

from scratch. This over-simplified approach forces

tasks that were completed on the old instance to

be executed again, also when not necessary. If

the workflow is complex and/or involves a lot of

external collaborators, a substantial business cost

will be incurred.

Dynamic workflow management might be

EURXJKW�LQ�DV�D�VROXWLRQ��)RUPDO�WHFKQLTXHV�DQG�

analysis tools can support the development of

WMS able to handle undesired results introduced

by dynamic change. Evolutionary workflow de-

sign is a challenge on which lot of research efforts

are currently devoted. A good evolution is carried

out through the evolution of workflow’s design in-

formation, and then by propagating these changes

to the implementation. This approach should be

the most natural and intuitive to use (because it

adopts the same mechanisms adopted during the

development phase) and it should produce the best

results (because each evolutionary step is planned

and documented before its application).

At the moment evolution is emulated by

directly enriching original design information

with properties and characteristics concern-

ing possible evolutions. This approach has two

main drawbacks: i) all possible evolutions are

not always foreseeable; ii) design information

is polluted by details related to the design of the

evolved system.

In the research on dynamic workflows, the

prevalent opinion is that models should be based

on a formal theory and be as simple as possible. In

Agostini & De Michelis, 2000 process templates

are provided as ‘resources for action’ rather than

strict blueprints of work practices. May be the

most famous dynamic workflow formalization, the

ADEPTflex system (Reichert & Dadam, 1998), is

designed to support dynamic change at runtime,

making at our disposal a complete and minimal

set of change operations. The correctness proper-

ties defined by ADEPTflex are used to determine

whether a specific change can be applied to a

given workflow instance or not.

Petri nets play a central role in workflow

modeling (Salimifard & Wright, 2001), due to

their description efficacy, formal essence, and the

DYDLODELOLW\�RI�FRQVROLGDWHG�DQDO\VLV�WHFKQLTXHV��

Classical Petri nets (Reisig, 1985) have a fixed

topology, so they are well suited to model work-

flows matching a static paradigm, i.e., processes

that are finished or aborted once they are initiated.

Conversely, any concerns related to dynamism/

evolution must be hard-wired in classical Petri nets

DQG�E\SDVVHG�ZKHQ�QRW�LQ�XVH��7KDW�UHTXLUHV�VRPH�

expertise in Petri nets modeling, and might result

in incorrect or partial descriptions of workflow

behavior. Even worst, analysis would be polluted

by a great deal of details concerning evolution.

Separating evolution from (current) system

functionality is worthwhile. This concept has been

recently applied to a Petri net-based model (Capra

& Cazzola, 2007b), called Reflective Petri nets,

using reflection (Maes, 1987) as mechanisms that

easily permits separation of concerns. A layout

formed by two causally connected levels (base-,

and meta-) is used. the base-level (an ordinary

Petri net) is unaware of the meta-level (a high-

level Petri net).

Base-level entities perform computations on

the entities of the application domain whereas

entities in the meta-level perform computations

on the entities residing on the lower level. The

computational flow passes from the base-level to

the meta-level by intercepting some events and

specific computations (shift-up action) and backs

when the meta-computation has finished (shift-

down action). Meta-level computations are carried

out on a representative of the lower-level, called

reification, which is kept causally connected to

the original level.

With respect to other dynamic Petri net exten-

sions (Cabac, Duvignau, Moldt, & Rölke, 2005;

Hoffmann, Ehrig, & Mossakowski, 2005; Badouel

& Oliver, 1998; Ellis & Keddara, 2000; Hicheur,

Barkaoui, & Boudiaf, 2006), Reflective Petri nets

(Capra & Cazzola, 2007b) are not a new Petri net

220

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

class, rather they rely upon classical Petri nets.

That gives the possibility of using available tools

DQG�FRQVROLGDWHG�DQDO\VLV�WHFKQLTXHV�

We propose Reflective Petri nets as formal

model supporting the design of sound dynamic

workflows. A structural characterization of sound

dynamic workflows is adopted, based on Petri

net’s free-choiceness preservation. The approach

is applied to a localized open problem: how to

determine what tasks should be redone and which

ones do not when transferring a workflow instance

from an old to a new template. The problem is

efficiently but rather empirically addressed in Qiu

& Wong, 2007, according to a template-based

schema relying on the concept of bypassable task.

Conforming to the same concept we propose an

alternative, that allows evolutionary steps to be

soundly formalized, and basic workflow proper-

ties to be efficiently verified.

As widely agreed (Agostini & De Michelis,

2000), the workflow model is kept as simple as

possible. Our approach has some resemblance

with Reichert & Dadam, 1998, sharing some

completeness/smallness criteria, even if it con-

siderably differs in management of changes: it

neither provides exception handling nor undoing

mechanism of temporary changes; rather it relies

upon a sort of “on-the-fly” validation.

The balance of the chapter is as follows: first

we give a few basic notions around Petri nets

and workflows; then we sketch a template-based

dynamic workflow approach (Qiu & Wong, 2007)

adopted by an industrial WMS; finally, we present

our alternative based on Reflective Petri nets, us-

ing the same application case as in Qiu & Wong,

2007; we conclude drawing conclusions and

perspectives. We refer to the companion chapter

(Capra & Cazzola, 2009) for a complete, up-to-

date introduction on Reflective Petri nets.

WORKFLOW PETRI NETS

This section introduces the base-level Petri net

VXEFODVV�XVHG�LQ�WKH�VHTXHO��ZLWK�UHODWHG�QRWDWLRQV��

and properties. We refer to Reisig, 1985; Aalst,

1996 for more elaborate introductions.

Definition 1 (Petri net). A Petri net is a triple

(P;T;F), in which:

3�� LV�D�¿QLWH�VHW�RI�SODFHV���

7��LV�D�¿QLWH�VHW�RI�WUDQVLWLRQV���� =P T� �

;),

�� () ()F P T T P� u � u �LV�D�VHW�RI�DUFV��ÀRZ�

relation)

In accordance with the simplicity assumption

(Agostini & De Michelis, 2000), we are consider-

ing a restriction of base-level Petri nets used in

Capra & Cazzola, 2009. In the workflow context,

it makes no sense to have weighted arcs, because

tokens in places correspond to conditions. Con-

VHTXHQWO\��LQ�D�ZHOO�GHILQHG�ZRUNIORZ�D�PDUNLQJ�

m is a set of places, i.e., ()Set P�m . In general a

marking is a mapping, : �P om . Inhibitor arcs

and priorities are unnecessary to model the routing

of cases in a workflow Petri net.

,x xx x
 denote the pre- and post- sets of

x P T� � , respectively (the set-extensions

A, Ax xA P T� � , will be also used). Transi-

tions change the state of the net according to the

following rule:

- t is enabled in m if and only if each place

p tx� contains at least one token.

if � t is enabled in m the it can�¿UH��FRQ-

suming one token from each p tx�

and producing one token for each

p tx�

Let = (; ;)PN P T F , it T� , in T P� � ,

V = , ,1 2 1t t tk�
-

 (possibly V H=).

221

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

BASIC NOTIONS/NOTATIONS

1

1 2

t

om m if and only if t
1
 is enabled in m

1
 and its

firing results in m
2

�� 1 k

V

om m if and only if

11 2

1 2 1,
tt t k

k k

�

�o o om m m m� .

�� m
k
 is reachable from m

1
 if and only if

1, k

V

V� om m .

�� (;)0PN m is a Petri net with an initial

state m
0
.

Given �� (;)0PN m , m' is said reachable if

and only if it is reachable from m
0
.

Behavioral Properties

(Live). (;)0PN m is live if and only if, for every

reachable state m' and every transition t there ex-

ists 'cm reachable from m' which enables t.

(Bounded, safe). (;)0PN m is bounded if and

only if for each place p there exists �b� such that

for every reachable state m, ()p bdm . A bounded

net is safe if and only if b = 1. A marking of a safe

Petri net is denoted by a set of places.

Structural Properties

(Path). A path from n
1
 to n

k
� LV� D� VHTXHQFH�

n n nk1 2, , ,� such that 1(,)i in n F� � , i�

1 1i kd d �

(Conflict). t
1
 and t

2
 are in conflict if and only

if 1 2t tx x� z�.

(Free-choice). PN is free-choice if and only if

1 2 1 2 1 2 , =t t t t t tx x x x� � z�� .

(Causal connection - CC). t
1
 is causally con-

nected to t
2
 if and only if 1 1 2(\)t t tx x x� ����.

Sound Workflow-Nets and
Free-Choiceness

A Petri net can be used to specify the control flow

of a workflow. Tasks are modeled by transitions,

places correspond to task’s pre/post-conditions.

Causal dependencies between tasks are modeled

by arcs (and places).

Definition 2 (Workflow-net). A Petri net PN

= (P;T;F) is a Workflow-net (hereafter WF-net)

if and only if:

There is one source place �� i such that =ix �.

There is one sink place �� o such that =ox �.

Every �� x P T� � is on a path from i to o.

A WF-net specifies the life-cycle of a case, so

it has exactly one input place (i) and one output

place (o��� 7KH� WKLUG� UHTXLUHPHQW� LQ� GHILQLWLRQ�

2 avoids dangling tasks and/or conditions, i.e.,

tasks and conditions which do not contribute to

the processing of cases.

If we add to a WF-net PN a transition t* such

that () = { }t* ox
 and () = { }t* ix

, then the resulting

Petri net PN (called the short-circuited net of

PN) is strongly connected.

7KH�UHTXLUHPHQWV�VWDWHG�LQ�GHILQLWLRQ���RQO\�

relate to the structure of a Petri net. However, there

LV�DQRWKHU�UHTXLUHPHQW�WKDW�VKRXOG�EH�VDWLVILHG�

Definition 3 (soundness). A WF-net PN =

(P;T;F) is sound if and only if:

for every �� m reachable from state {i}, there

H[LVWV�1�� { }o
V

om

{�� o} is the only marking reachable from {i}

with at least one token in place o

there are no dead transitions i)n (�� PN;{i}),

i.e., t T� � there exists a reachable m,

'
t

om m

In other words: for any cases, the procedure

will terminate eventually1, when the procedure

terminates there is a token in place o with all the

222

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

other places empty (that is referred to as proper

termination), moreover, it should be possible to

execute any tasks by following the appropriate

route through the WF-net.

The soundness property relates to the dy-

namics of a WF-net, and may be considered as

D�EDVLF�UHTXLUHPHQW�IRU�DQ\�SURFHVV��,W�LV�VKRZQ�

in Aalst, 1996 that a WF-net PN is sound if and

only if (;{ })PN i is live and bounded. Despite that

helpful characterization, deciding about sound-

ness of arbitrary WF-nets may be intractable:

liveness and boundedness are decidable, but also

EXPSPACE-hard.

Therefore, structural characterizations of sound

WF-nets were investigated (Aalst, 1996). Free-

choice Petri nets seem to be a good compromise

between expressive power and analysis capability.

They are the widest class of Petri nets for which

strong theoretical results and efficient analysis

WHFKQLTXHV�GR�H[LVW��'HVHO�	�(VSDU]D���������,Q�

particular (Aalst, 1996), soundness of a free-choice

WF-net (as well as many other problems) can be

decided in polynomial time. Moreover, a sound

free-choice WF-net (PN; {i}) is guaranteed to be

safe, according to the interpretation of places as

conditions.

Another good reason to restrict our attention

to workflow models specified by free-choice WF-

nets is that the routing of a case should be inde-

pendent of the order in which tasks are executed.

If non free-choice Petri nets were admitted, then

the solution of conflicts could be influenced by the

order in which tasks are executed. In literature the

term confusion is often used to refer to a situation

where free-choiceness is violated by a badly mix-

ture of parallelism and conflict. Free-choiceness

is a desirable property for workflows. If a process

can be modeled as free-choice WF-net, one should

do so. Most of existing WMS support free-choice

processes only. We will admit as base-level Petri

nets free-choice WF-nets.

Even though free-choice WF-nets are a

satisfactory characterization of well-defined

workflow procedures, for which soundness can

be efficiently checked, there are WF-nets non free-

choice which correspond to sensible processes.

S-coverability (Aalst, 1996) is a generalization

of free-choiceness: a sound free-choice WF-net

is in fact S-coverable. In general, it is impossible

to verify soundness of an arbitrary S-coverable

WF-net in polynomial time, that problem being

PSPACE-complete. In many practical cases,

however, this theoretical complexity significantly

lowers, so that S-coverability could be considered

as an interesting alternative to free-choiceness.

A TEMPLATE-BASED APPROACH
TO DYNAMIC WORKFLOWS

An interesting solution to facilitate an efficient

management of dynamic workflows is proposed

in Qiu & Wong, 2007. WMS supporting dynamic

workflow change can either directly modify the

affected instance, or restart it on a new workflow

template. The first method is instance based while

the second is template based. The approach we

are considering, in accordance with a consoli-

dated practice, falls in the second category, and

is implemented in Dassault Systèmes SmarTeam

(ENOVIA, 2007), a PLM (Product Lifecycle

Management) system including a WMS module.

In Qiu & Wong, 2007 workflows are formally

specified by Directed Network Graphs (DNG),

which can be easily translated into PN.

The idea consists of identifying all bypass-

able tasks, i.e., all tasks in the new workflow

instance that satisfy the following conditions: i)

they are unchanged, ii) they have finished in the

old workflow instance, and iii) they need not be

re-executed.

A task (transition, in Petri nets) is said un-

changed, before and after a transformation of the

workflow template, if and only if it represents

the same activity (what will be always assumed

true), and preserves input/output connections.

To determine if a task is bypassable when the

223

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

instance is transferred to a new template, an ad-

ditional constraint is needed: all tasks from which

there is a path (i.e, are causally connected) to the

task itself, must be bypassable in turn. A smart

algorithm permits the identification of bypassable

tasks: starting from the initial task, which is by-

passable by default, only successors of bypassable

tasks are considered.

This solution has been implemented in

SmarTeam system, that includes a workflow man-

ager and a messaging subsystem, but no built-in

mechanisms to face dynamic workflow’s change.

A set of API enables detaching and attaching

operations between processes and workflow tem-

plates. A process is redone entirely if its template

is changed. Workflow’s change is implemented

by an application-server, which executes the fol-

lowing steps:

1. Obtain a process instance;

2. Obtain the old and new workflow

templates;

3. Attach the new workflow template to the

process;

4. Identify and mark the tasks that can be by-

passed in the new workflow instance;

5. Initiate the new workflow without redoing

the marked tasks.

What appears completely unspecified in Qiu &

Wong, 2007 is how to safely operate steps 4 and 5:

some heuristics appear to be adopted, rather than

a well defined methodology. No formal tests are

carried out to verify the soundness of a workflow

instance transferred to the modified template.

AN ALTERNATIVE BASED ON
REFLECTIVE PETRI NETS

We propose an alternative to Qiu & Wong, 2007,

based on Reflective Petri nets, which allows a full

formalization of the evolutionary steps, as well as

a validation of changes proposed for the workflow

template, by means of a simple Petri nets structural

analysis. Validation is accomplished “on-the-fly”,

i.e., by operating on the workflow reification while

change is in progress. Changes are not reflected

to the base-level in case of a negative check. With

respect to a preliminary version (Capra & Cazzola,

2007a), the evolutionary strategy, as concerns in

particular the validation part, is redesigned and

some bugs are fixed.

We consider the same application case pre-

sented in Qiu & Wong, 2007. A company has

several regional branches. To enhance operation

FRQVLVWHQFH�� WKH� FRPSDQ\� KHDGTXDUWHU� �+4��

standardizes business processes in all branches. A

workflow template is defined to handle customer

problems. When the staff in a branch encounters

a problem, a workflow instance is initiated from

the template and executed until completion.

The Petri net specification of the initial template

is given in Figure 1. A problem goes through two

stages: problem solving and on-site realization.

Problem solving involves several tasks, included

in a dashed box. When opening a case, the staff

reports the case to HQ. When closing the case,

it archives the related documents. The HQ man-

ages all instances related to the problem handling

process.

In response to business needs, HQ may decide

to change the problem handling template. The

new template (Figure 2) differs from the original

one in two points: a) “reporting” and “problem

solving” become independent activities; b) “on

site realization” can fail, in that case procedure

“problem solving” restarts.

At Petri net level, we can observe that transition

Report is causally-connected to ProductChange

in Figure 1, while it is not in Figure 2, and that a

new transition has been added in Figure 2 (Real-

izationRejected) which is in free-choice conflict

with OnSiteRealization.

When using Reflective Petri nets, the evolu-

tionary schema has to be redesigned. The new

workflow template is not passed as input to the

staff of the company branches, but it results from

224

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

applying an evolutionary strategy to a workflow

instance belonging to the current template. The

initial base-level Petri nets is assumed a free-choice

WF-net. No details about the workflow dynamics

are hard-wired in the base-level net. Evolution is

delegated to the meta-program, that acts on the

WF-net reification.

The meta-program is activated when an evolu-

tionary signal is sent in by HQ, or some anomaly

(e.g., a deadlock) is revealed by introspection.

(Late) introspection is also used to discriminate

whether evolutionary commands have been safely

applied to the current workflow instance, or they

have to be discarded.

Figure 1 depicts the following situation: a

workflow instance running on the initial template

has received a message from HQ. At the current

state (marking) SolutionDesign, a sub-task of

Figure 1. An instance of a workflow template (begin, end are used instead of i and o)

225

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

ProblemSolving, and Report are pending tasks,

whereas a number of tasks (e.g., Analysis and

CaseOpening) have been completed. The meta-

program in that case successfully operates a change

on the old template’s instance, once verified that

all paths to any pending tasks are only composed

of bypassable tasks.

The workflow instance transferred to the new

template is illustrated in Figure 2.

One might think of this approach as instance-

based, rather than template-based. In truth it covers

both: if the evolutionary commands are in fact

broadcasted to workflow’s instances we fall in

the latter scheme.

The evolutionary strategy relies upon the no-

tion of adjacency preserving task, which is more

general than the unchanged task used in Qiu &

Wong, 2007. It is inspired by van der Aalst’s

Figure 2. Workflow’s evolution

226

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

concept that any workflow change must preserve

the inheritance relationship between old and new

templates (Aalst & Basten, 2002). Let us introduce

VRPH�QRWDWLRQV�XVHG�LQ�WKH�VHTXHO�

Let PN Old P Old T Old A= (_ ; _ ; _) , be

a base-level WF-net (better, its reification at

the meta-level), = (; ;)PN P T Ac c c c be the re-

sulting Petri net after some modifications2,

_ = _ _Old N Old P Old T� , =N P Tc c c� .

Symbols x and x refer to a node “preserved”

by change, considered in the context of PN and

PN c, respectively.

S e t s _ = _ _Del N Del P Del T� ,

_ = _ _New N New P New T� , and New_A ,

Del_A, denote the base level nodes/arcs added to

and removed from PN, respectively.

We assume that _ _ =New A Del A� �. No

other assumptions are made: for example “mov-

ing” a given node across the base-level Petri net

might be simulated by first deleting the node, then

putting it again setting new connections.

As explained in (Capra & Cazzola, 2009),

the evolutionary framework (a transparent meta-

level’s component) being in charge of carrying

out evolution rejects a proposed change if not

consistent with respect to the current base-level’s

reification.

Finally, NO_ADJ, NO_BYPS denote the

tasks not preserving adjacency and the non-

bypassable tasks, respectively (of course,

_ _NO ADJ NO BYPS�). Some of the symbols

just introduced will be used as names for the

evolutionary strategy parameters.

Definition 4 (adjacent set). Let t be a transi-

tion. The set of adjacent transitions A
t
 is:

() () \{ }t t t t tx x x x x x� � � .

Definition 5 (adjacency preserving task). Let

_t Old T� , t T c� . Task t is adjacency preserv-

ing if and only if _ , tt
x Old T x A x A� � � � �

and there exist a bijection : t t t tI x x x x� o �

such that

tx A y t tx x� � � � � , ()y x y xIx x� � � and

()y x y xIx x� � �

If t is adjacency preserving then all its cau-

sality/conflict relationships to adjacent tasks are

maintained. A case where Definition 5 holds, and

another one where it does not, are illustrated in

Figure 3 (the black bar denotes a new task, t’ is

used instead of t). In case (b) the original input

connections of t are maintained (output connec-

tions are unchanged): if the occurrence of t is made

possible by the occurrence of some preceding tasks

it, the same may happen in the new situation. That

is not true in case (c): the occurrence of the new

task represents in fact an additional precondition

IRU�DQ\�VXEVHTXHQW�RFFXUUHQFH�RI�t.

Checking definition 5 is computationally

very expensive. However, if useless changes are

forbidden, e.g., “deleting a given place p, then

adding p’ inheriting from p all connections”, or

“adding an arc ,p t¢ ², then deleting p or t ”, check’s

complexity can be greatly reduced.

Lemma 1 states some rules for identifying a

superset of tasks N
a
 not preserving adjacency.

It can be easily translated to an efficient meta-

program’s routine. Almost always it comes to be

_aN NO ADJ{ .

Lemma 1. Consider set N
a
, built as follows

_ ap Del P p p Nx x� � � �

_ () () at Del T t t Nx x x x� � � �

, _ , _ ap t Del A t p Del A p p Nx x¢ ²� � ¢ ²� � � �

, _ _ { } ap t New A t Old N t D N¢ ²� � � � � �

where =D p px x� if _p Old N� , else =D �

Then _ aNO ADJ N� .

The evolutionary meta-program if formalized

in Figure 4. The use of a CSP-like syntax (Hoare,

1985; Capra & Cazzola, 2009) makes it possible

its automatic translation to a high-level Petri net

227

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

(the logical meta-level of the Reflective Petri

nets layout). The meta-program is activated at

any transition of state on the current workflow

instance (shift-up), reacting to three different types

of events. In the case of deadlock, a signal is sent

to HQ, represented by a CSP process identifier.

If the current instance has finished, and a “new

instance” message is received, the workflow is

activated. Instead if there is an incoming evolution-

ary message from HQ, the evolutionary strategy

starts running.

*[

 VAR p, t, n: NODE;

 VAR New_P,New_T,Old_N,Del_N, NO_BYPS:

SET(NODE);

 VAR New_A,Del_A: SET(ARC);

 //receiving an evolutionary signal

 HQ ? change-msg() -> [

 //receiving the evolutionary commands

 HQ ? New_P; HQ ? New_T; HQ ? New_A; HQ

? Del_A; HQ ? Del_N;

 //getting the WF-net reification

 Old_N = ReifiedNodes();

 //computing the non-bypassable tasks

 NO_BYPS = ccTo(notAdjPres());

//changing the current reification

 newNode(New_P � New_T);newArc(New_A);

deleteArc(Del_A); delNode(Del_N);

 //checking the (new) WF-net’s well-def-

initeness

 checkWfNet(); checkFc();

 /*there might be a deadlock, or a non-

bypassable task is causally

 Connected to a pending one ...*/

 !exists t in Tran, enab(t) or (exists t

in Tran @�2OGB1��enab(t) and

 !isEmpty(ccBy�W��@�12B%<36����!�>re-

start()] //rejecting changeshiftDown() //

reflecting change

]

[]

 #end=0 and !exists t in Tran, enab(t)

-> [HQ ! notify-deadlock()]

[]

 #end=1; HQ ? newInstance-msg() ->

[flush(end); incMark(begin)]

]

Just after an evolutionary signal, HQ com-

municates the workflow nodes/connections to

Figure 3. Definition 5 Illustrated

228

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

be removed/added. For the sake of simplicity we

assume that change can only involve workflow’s

topology. The (super)set of non-bypassable tasks

is then computed.

After operating the evolutionary commands

on the current workflow reification, definition

2 and free-choiceness are tested on the newly

changed reification. Following, the strategy

checks by reification introspection whether the

suggested workflow change might cause a dead-

lock, or there might be any non-bypassable tasks

causally-connected to an old task which is cur-

rently pending. In either case, a restart procedure

takes the workflow reification back to the state

before strategy’s activation. Otherwise, change

is reflected to the base-level (shift-down). The

scheme just described might be adopted for a

wide class of evolutionary patterns.

Language’s keywords and routine calls are

in bold. We recall (Capra & Cazzola, 2009) that

type NODE represents a (logically unbounded)

recipient of base-level nodes, and is partitioned

into Place and Tran subtypes . The exists�TXDQ-

tifier is used to check whether a net element is

currently reified. The built-in routine ReifNodes

computes the nodes belonging to the current

base-level reification. The routine notAdjPres

initializes the set of non-bypassable tasks to N
a

according to lemma 1. The routines ccTo and ccBy

compute the set of nodes the argument is causally

connected to, and that are causally connected to

routine’s argument, respectively.

Figure 4. Workflow’s evolutionary strategy

229

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

On-the-Fly Structural Check

The structural changes proposed from time to time

to a dynamic workflow can be validated by means

of classical 3HWUL�QHWV�DQDO\VLV�WHFKQLTXHV��9DOLGD-

tion is accomplished on the workflow reification

“on-the-fly”, i.e., while the evolutionary strategy

is in progress. Thanks to a restart mechanism, po-

tentially dangerous changes are discarded before

they are reflected to the base-level, at the end of

a meta-computation.

Routines checkWfNet, checkFc test the pres-

ervation of base-level Petri nets well-definiteness

(definition 2) and free-choiceness, respectively.

Their calls are located in the meta-program just

after the evolutionary commands, which operate

on the base-level workflow reification.

 [

 VAR t,tx: Tran;

 VAR p: Place;

 *(<p,t> in New_A � Del_A)

 [

 exists(p) and exists(t) ->

 [

 *(tx in post(pre(t))/{t})

 [pre(t) <> pre(tx) -> restart();]

]

]

]

Free-choiceness preservation, in particular,

may be checked in a simple, efficient way.

Figure 5 expands the corresponding routine.

It works under the following assumptions and

principles:

�� the initial base-level Petri net is a free-

choice WF-net (conservative hypothesis)

variables New_A, Del_A record �� all the

arcs which are added/deleted to/from the

base-level UHL¿FDWLRQ�GXULQJ�WKH�HYROXWLRQ-

ary strategy’s execution; they are cleared at

any meta-program activation;

the only operations affecting free-choice-��

ness, under a conservative hypothesis, are

the addition/removal of an input arc ¢p,t²

(the removal of a node produces as a side-

effect the withdrawal of all adjacent arcs, so

it is fair, with respect to free-choiceness)

for each arc �� ¢p,t² which has been added/

removed we only have to check the free-

choiceness between t and every transition

sharing with t some input places.

Putting the Strategy to the Test

Let us explain how the strategy works, considering

again Figures 1-2, upon receiving the evolution-

ary commands:

New_P={}

New_T={ RealizationRejected}

Del_A={ ¢p13, ProductChange²�}

Del_N={}

New_A={¢p6, Realization Rejected², ¢p13,

Archiving², ¢Realization Rejected, p5²}.

The non-bypassable tasks come to be: {Report,

Archiving, ProductChange, OnSiteRealization,

CaseClosure}. In the workflow instance running

on the modified template (Figure 2) tasks (tran-

sitions) Report and ProductChange are pending

(enabled) in the current state (marking) m:{p
11

,

p
14

}. All preexisting completed tasks that are caus-

ally connected to one of them can be bypassed,

so the new workflow has not to be restarted from

scratch, saving a lot of work.

The approach just described ensures a de-

pendable evolution of workflows, while being

enough flexible. We have not intended to propose

a general solution to the particular problem ad-

dressed in Qiu & Wong, 2007. Better policies

do probably exist. Rather, we have tried to show

that an approach merging consolidated reflec-

tion concepts to classical 3HWUL�QHWV�WHFKQLTXHV�

can suitably address the criticisms of dynamic

workflow change.

230

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

Structural Base-Level Analysis. The base-

level is guaranteed to be a free-choice WF-net

all over its evolution: that makes is possible to

use polynomial algorithms to check workflow’s

VRXQGQHVV��,Q�SDUWLFXODU�WHFKQLTXHV�EDVHG�RQ�WKH�

calculus of flows (invariants) are elegant and very

efficient. In general they are highly affected by

the base-level Petri net complexity. The separa-

tion between evolutionary and functional aspects

encourages their usage.

For instance, by operating the structural algo-

rithms of GreatSPN tool (Chiola, Franceschinis,

Gaeta, & Ribaudo, 1995), it is possible to discover

that both nets depicted in Figures 1-2 are covered

by place-invariants. A lot of interesting properties

thereby descend: in particular boundedness and

liveness, i.e., workflow soundness.

Counter Example

Assume that evolution occurs when the only

pending task is OnSiteRealization, i.e., consider

as current marking of the net in Figure 1 6' :{ }pm .

That means, among the other things, tasks Pro-

ductChange, VersionMerging and Report have

been completed: change in that case is discarded

after having verified that there are some non-

bypassable tasks which are causally connected

to the pending one. If the suggested change were

really carried out (reflected) on the base-level,

without doing any consistency control, a deadlock

would be eventually entered (state {p
8
}) after

the workflow instance continues its run on the

modified template. The problem is that 'm is not a

reachable state of (;{ })PN beginc , but reachability

is NP-complete also in live and safe free-choice

Petri nets, so it would make no sense checking

reachability directly at meta-program level.

Current Limitations

The proposed reflective model for dynamic work-

flows suffers from a major conceptual limitation:

only the control-flow perspective is considered.

Let us shortly discuss this choice. We abstract from

the resource perspective because in most workflow

management systems it is not possible to specify

that several (human) resources are collaborating

in executing a task. Even if multiple persons are

executing a task, only one is allocated to it from

the WMS perspective: who selected the work item

from the in-basket. In contrast to other application

domains such as flexible manufacturing systems,

anomalies resulting from locking problems are

not possible (it is reasonable to assume that each

task will be eventually executed by the person

having in charge it). Therefore, from the view-

point of workflow verification, we can abstract

Figure 5. Meta-program’s routine checking free-choiceness

231

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

from resources. However, if collaborative features

will be explicitly supported by WMS (through

a tight integration of groupware and workflow

technology), then the resource perspective should

be taken into account. We partly abstract from the

data perspective. Production data can be changed

at any time without notifying the WMS. Their

existence does not even depend upon the work-

flow application and they may be shared among

different workflows. The control data used to

route cases are managed by the WMS. Some of

these data are set or updated by humans or ap-

plications. Clearly, some abstraction is needed to

incorporate the data perspective when verifying

a given workflow. The abstraction currently used

is the following. Since control data (workflow at-

tributes such as the customer id, the registration

date, etc.) are only used for the routing of a case,

we model each decision as a non-deterministic

choice. If we are able to prove soundness for the

situation without workflow attributes, it will also

hold for the situation with attributes. Abstracting

from triggers and workflow attributes fits in the

usage of ordinary Petri nets for the base-level of

the reflective model: this is preferable because of

the availability of efficient and powerful analysis

tools.

CONCLUSION

Industrial/business processes are an example of

discrete-event systems which are increasingly

subject to evolution during life-cycle. Covering

the intrinsic dynamism of modern processes has

been widely recognized as a challenge by designers

of workflow management systems. Petri nets are

a central model of workflows, but traditionally

they have a fixed structure. We have proposed

and discussed the adoption of Reflective Petri nets

as a formal model for sound dynamic workflows.

The clean separation between (current) workflow

template and evolutionary strategy on one side,

and the use of classical Petri nets notions (free-

choiceness) on the other side, make it possible

to efficiently check preservation of workflow’s

structural properties, which in turn permit sound-

ness -a major behavioral property- to be checked

in polynomial time. All is done while evolution is

in progress. An algorithm is delivered to soundly

transferring workflow instances from an old to a

new template, redoing already completed work-

flow’s task only when strictly necessary. The

approach formalizes and improves a procedure

currently implemented in an industrial workflow

management system. We are studying the possibil-

ity of using even more general structural notions

than free-choiceness, in particular S-coverability

(Aalst, 1996), that provides in most practical cases

a structural characterization of soundness.

REFERENCES

Agostini, A., & De Michelis, G. (2000, Au-

gust). A Light Workflow Management System

Using Simple Process Models. Computer Sup-

ported Cooperative Work, 9(3-4), 335–363.

doi:10.1023/A:1008703327801

Badouel, E., & Oliver, J. (1998, January). Recon-

figurable Nets, a Class of High Level Petri Nets

Supporting Dynamic Changes within Workflow

Systems (IRISA Research Report No. PI-1163).

IRISA.

Cabac, L., Duvignau, M., Moldt, D., & Rölke,

H. (2005, June). Modeling Dynamic Architec-

tures Using Nets-Within-Nets. In G. Ciardo &

P. Darondeau (Eds.), Proceedings of the 26th

International Conference on Applications and

Theory of Petri Nets (ICATPN 2005) (p. 148-167).

Miami, FL: Springer.

Capra, L., & Cazzola, W. (2007a, on 26th-29th

of September). A Reflective PN-based Approach

to Dynamic Workflow Change. In Proceedings

of the 9th International Symposium in Symbolic

and Numeric Algorithms for Scientific Computing

(SYNASC’07) (p. 533-540). Timisoara, Romania:

IEEE CS.

232

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

Capra, L., & Cazzola, W. (2007b, December).

Self-Evolving Petri Nets. Journal of Universal

Computer Science, 13(13), 2002–2034.

Capra, L., & Cazzola, W. (2009). An Introduction

to Reflective Petri Nets. In E. M. O. Abu-Atieh

(Ed.), Handbook of Research on Discrete Event

Simulation Environments Technologies and Ap-

plications. Hershey, PA: IGI Global.

Chiola, G., Franceschinis, G., Gaeta, R., & Ribau-

do, M. (1995, November). GreatSPN 1.7: Graphi-

cal Editor and Analyzer for Timed and Stochastic

Petri Nets. Performance Evaluation, 24(1-2),

47–68. doi:10.1016/0166-5316(95)00008-L

Desel, J., & Esparza, J. (1995). Free Choice Petri

Nets (Cambridge Tracts in Theoretical Computer

Science Vol. 40). New York: Cambridge Univer-

sity Press.

Ellis, C., & Keddara, K. (2000, August). ML-

DEWS: Modeling Language to Support Dynamic

Evolution within Workflow Systems. Computer

Supported Cooperative Work, 9(3-4), 293–333.

doi:10.1023/A:1008799125984

ENOVIA. (2007, September). Dassault systèmes

plm solutions for the mid-market [white-paper].

Retrieved from. http:/www.3ds.com/fileadmin/

brands/enovia/pdf/whitepapers/CIMdata-DS_

PLM_for_the_MidMarket-Program_review-

Sep2007.pdf)

Hicheur, A., Barkaoui, K., & Boudiaf, N. (2006,

September). Modeling Workflows with Recursive

ECATNets. In Proceedings of the Eighth Inter-

national Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNACS’06)

(p. 389-398). Timisoara, Romania: IEEE CS.

Hoare, C. A. R. (1985). Communicating Sequen-

tial Processes. Upper Saddle River, NJ: Prentice

Hall.

Hoffmann, K., Ehrig, H., & Mossakowski, T.

(2005, June). High-Level Nets with Nets and Rules

as Tokens. In G. Ciardo & P. Darondeau (Eds.),

Proceedings of the 26th International Conference

on Applications and Theory of Petri Nets (ICATPN

2005) (pp. 268-288). Miami, FL: Springer.

Maes, P. (1987, October). Concepts and Ex-

periments in Computational Reflection. In N. K.

Meyrowitz (Ed.), Proceedings of the 2nd confer-

ence on object-oriented programming systems,

languages, and applications (OOPSLA’87) (Vol.

22, pp.147-156), Orlando, FL.

Qiu, Z.-M., & Wong, Y. S. (2007, June). Dynamic

Workflow Change in PDM Systems. Computers

in Industry, 58(5), 453–463. doi:10.1016/j.com-

pind.2006.09.014

Reichert, M., & Dadam, P. (1998). ADEPTflex

- Supporting Dynamic Changes in Workflow

Management Systems without Losing Control.

Journal of Intelligent Information Systems, 10(2),

93–129. doi:10.1023/A:1008604709862

Reisig, W. (1985). Petri nets: An introduction

(EATCS Monographs in Theoretical Computer

Science Vol. 4). Berlin: Springer.

Salimifard, K., & Wright, M. B. (2001, November).

Petri Net-Based Modeling of Workflow Systems:

An Overview. European Journal of Operational

Research, 134(3), 664–676. doi:10.1016/S0377-

2217(00)00292-7

van der Aalst, W. M. P. (1996). Structural Char-

acterizations of Sound Workflow Nets (Computing

Science Reports No. 96/23). Eindhoven, the Neth-

erlands: Eindhoven University of Technology.

van der Aalst, W. M. P., & Basten, T. (2002,

January). Inheritance of Workflows: An Approach

to Tackling Problems Related to Change. Theo-

retical Computer Science, 270(1-2), 125–203.

doi:10.1016/S0304-3975(00)00321-2

233

7U\LQJ�2XW�5HÀHFWLYH�3HWUL�1HWV�RQ�D�'\QDPLF�:RUNÀRZ�&DVH

van der Aalst, W. M. P., & Jablonski, S. (2000,

September). Dealing with Workflow Change:

Identification of Issues and Solutions. Interna-

tional Journal of Computer Systems, Science, and

Engineering, 15(5), 267–276.

KEY TERMS AND DEFINITIONS

Evolution: attitude of systems to change

layout/functionality.

Dynamic Workflows: models of industrial/

business processes subject to evolution.

Petri Nets: graphical formalism for discrete-

event systems.

Reflection: activity performed by an agent

when doing computations about itself.

Workflow Nets: Petri net-based workflow

models.

Soundness: behavioral property of a well-

defined workflow net.

Structural Properties: properties derived

from the incidence matrix of Petri nets.

Free-Choiceness: typical structural property

which can be efficiently tested.

ENDNOTES

1 If we assume, as it is reasonable in the work-

flow context, a strong notion of fairness: in

HYHU\�LQILQLWH�ILULQJ�VHTXHQFH��HDFK�WUDQVLWLRQ�

fires infinitely often.
2 We recall that in Reflective Petri nets any

evolutionary strategy is defined in terms of

basic operations on base-level’s elements

