
191

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

An Introduction to
5HÌHFWLYH�3HWUL�1HWV

Lorenzo Capra
Università degli Studi di Milano, Italy

Walter Cazzola
Università degli Studi di Milano, Italy

INTRODUCTION

Evolution is becoming a very hot topic in discrete-

event system engineering. Most systems are subject

to evolution during lifecycle. Think e.g. of mobile

ad-hoc networks, adaptable software, business

processes, and so on. Such systems need to be

updated, or extended with new features, during

lifecycle. Evolution can often imply a complete

system redesign, the development of new features

and their integration in deployed systems.

It is widely recognized that taking evolution into

account since the system design phase should be

considered mandatory, not only a good practice. The

design of dynamic/adaptable discrete-event systems

FDOOV�IRU�DGHTXDWH�PRGHOLQJ�IRUPDOLVPV�DQG�WRROV��

ABSTRACT

Most discrete-event systems are subject to evolution during lifecycle. Evolution often implies the devel-

opment of new features, and their integration in deployed systems. Taking evolution into account since

the design phase therefore is mandatory. A common approach consists of hard-coding the foreseeable

HYROXWLRQV�DW�WKH�GHVLJQ�OHYHO��1HJOHFWLQJ�WKH�REYLRXV�GLI¿FXOWLHV�RI�WKLV�DSSURDFK��ZH�DOVR�JHW�V\VWHP¶V�

design polluted by details not concerning functionality, which hamper analysis, reuse and maintenance.

Petri Nets, as a central formalism for discrete-event systems, are not exempt from pollution when facing

evolution. Embedding evolution in Petri nets requires expertise, other than early knowledge of evolution.

The complexity of resulting models is likely to affect the consolidated analysis algorithms for Petri nets.

We introduce 5HÀHFWLYH�Petri nets, a formalism for dynamic GLVFUHWH�HYHQW�V\VWHPV��%DVHG�RQ�D�UHÀHFWLYH�

layout, in which functional aspects are separated from evolution, this model preserves the description

effectiveness and the analysis capabilities of Petri nets. 5HÀHFWLYH�Petri nets are provided with timed

state-transition semantics.

DOI: 10.4018/978-1-60566-774-4.ch009

192

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

Unfortunately, the known well-established formal-

isms for discrete-event systems lack features for

naturally expressing possible run-time changes

to system’s structure.

System’s evolution is almost always emulated

by directly enriching original design information

with aspects concerning possible evolutions. This

approach has several drawbacks:

all possible evolutions are not always ��

foreseeable;

functional design is polluted by details re-��

lated to evolutionary design: formal mod-

els turn out to be confused and ambiguous

since they do not represent a snapshot of

the current system only;

evolution is not really modeled, it is speci-��

¿HG�DV�D�SDUW�RI�WKH�EHKDYLRU�RI�WKH�ZKROH�

system, rather than an extension that could

be used in different contexts;

pollution hinders system’s maintenance ��

and reduces possibility of reuse.

Petri nets, for their static layout, suffer from

these drawbacks as well when used to model

adaptable discrete-event systems. The common

modeling approach consists of merging the Petri

net specifying the base structure of a dynamic sys-

tem with information on its foreseeable evolutions.

A similar approach pollutes the Petri net model

with details not pertinent to the system’s current

configuration. Pollution not only makes Petri net

models complex, hard to read and to manage, it

DOVR�DIIHFWV�WKH�SRZHUIXO�DQDO\VLV�WHFKQLTXHV�WRROV�

that classical Petri nets are provided with.

System evolution is an aspect orthogonal to

system behavior, that crosscuts both system de-

ployment and design; hence it could be subject

to separation of concerns (Hürsch & Videira

Lopes, 1995), a concept traditionally developed

in software engineering. Separating evolution

from the rest of a system is worthwhile, because

evolution is made independent of the evolving

system and the above mentioned problems are

overcome. Separation of concerns could be ap-

plied to a Petri net-based modeling approach as

well. Design information (in our case, a Petri net

modeling the system) will not be polluted by non

pertinent details and will exclusively represent

current system functionality without patches. This

leads to simpler and cleaner models that can be

analyzed without discriminating between what is

and what could be system structure and behavior.

Reflection (Maes, 1987) is one of the mechanisms

that easily permits the separation of concerns.

Reflection is defined as the activity, both

introspection and intercession, performed by

an agent when doing computations about itself

(Maes, 1987). A reflective system is layered in

two or more levels (base-, meta-, meta-meta-level

and so on) constituting a reflective tower; each

layer is unaware of the above one(s). Base-level

entities perform computations on the application

domain entities whereas entities on the meta-level

perform computations on the entities residing on

the lower levels. Computational flow passes from

a lower level (e.g., the base-level) to the adjacent

level (e.g., the meta-level) by intercepting some

events and specific computations (shift-up action)

and backs when meta-computation has finished

(shift-down action). All meta-computations are

carried out on a representative of lower-level(s),

called reification, which is kept causally con-

nected to the original level. For details look at

Cazzola, 1998.

Similarly to what is done in Cazzola, Ghoneim,

& Saake, 2004, the meta-level can be programmed

to evolve the base-level structure and behavior

when necessary, without polluting it with extra

information. In Capra & Cazzola, 2007 we apply

the same idea to the Petri nets domain, defining a

reflective Petri net model (hereafter referred to as

Reflective Petri nets) that separates the Petri net

describing a system from the high-level Petri net

(Jensen & Rozenberg, 1991) that describes how

this system evolves upon occurrence of some

events/conditions. In this chapter we introduce

Reflective Petri nets, and we propose a simple

193

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

state-transition semantics as a first step toward

the implementation of a (performance-oriented)

discrete-event simulation engine. With respect to

other proposals recently appeared with similar

goals (Cabac, Duvignau, Moldt, & Rölke, 2005;

Hoffmann, Ehrig, & Mossakowski, 2005), Re-

flective Petri nets do not define a new Petri net

paradigm, rather they rely upon a combination of

consolidated classes of Petri nets and reflection

concepts. What gives the possibility of using

H[LVWLQJ�WRROV�DQG�DQDO\VLV�WHFKQLTXHV�LQ�D�IXOO\�

orthogonal fashion. The short-time perspective

is to integrate the GreatSPN graphical simula-

tion environment (Chiola, Franceschinis, Gaeta,

& Ribaudo, 1995) to directly support Reflective

Petri nets.

In the rest of the chapter, we briefly present

the (stochastic) Petri net classes used for the

two levels of the reflective model; then we in-

troduce Reflective Petri nets and the associated

terminology, focusing on the (high-level) Petri

net component (called framework) realizing the

causal connection between the logical levels of the

reflective layout; at last we provide a stochastic

state-transition semantics for Reflective Petri nets;

finally we present some related work and draw our

conclusions and perspectives. An application of

Reflective Petri nets to dynamic workflow design

will be presented in the companion chapter (Capra

& Cazzola, 2009).

SWN AND GSPN BASICS

Colored Petri nets (CPN) (Jensen & Rozenberg,

1991) are a major Petri net extension belong-

ing to the high-level Petri nets category. For the

meta-level of Reflective Petri nets we have cho-

sen Well-formed Nets (WN) (Chiola, Dutheillet,

Franceschinis, & Haddad, 1990), a CPN flavor

(enriched with priorities and inhibitor arcs) retain-

ing expressive power, characterized by a structured

syntax. For performance analysis purposes, we are

considering Stochastic Well-formed nets (SWN)

(Chiola, Dutheillet, Franceschinis, & Haddad,

1993). SWN are the high-level counterpart of

Generalized Stochastic Petri nets (GSPN) (Aj-

mone Marsan, Conte, & Balbo, 1984), the Petri

net class used for the base-level. In other words,

the unfolding of a SWN is defined in terms of a

GSPN.

This section introduces SWN semi-formally,

by an example. The GSPN definition is in large

part derived. Figure 1 shows the portion of the

evolutionary framework (Figure 3) that removes

a given node from the base-level PN modeling the

system (reified as a WN marking). The removal

of a node provokes as side-effect the withdrawal

of any arcs connected to the node itself. Trying

to remove a marked place or a not-existing node

cause a restart action. We assume hereafter that

the reader has some familiarity with ordinary

Petri nets.

A S W N i s a 1 1 - t u p l e

(, , , , , , , , , , , ,)1 0T P C C W W H{ }� n C
+ -

F P M O

where P is the finite set of places, T is the finite

set of transitions, =P T� �. With respect to

ordinary Petri nets, places may contain ‘‘colored’‘

tokens of different identity. C C1, ,� n are finite

basic color classes. In the example there are only

two classes C
1
, and C

2
, denoting the base-level

nodes, and the different kinds of connections

between them, respectively. A basic color class

may be partitioned in turn into static sub-classes,

C Ci k
=� i,k

.

C assigns to each s P T� � a color domain,

defined as Cartesian product of basic color classes:

e.g. tokens staying at place BLreif|Arcs are trip-

lets
1 2 1 1 1 2
, ,n n k C C C . A CPN transition

actually folds together many elementary ones, so

one speaks of instances of a colored transition.

In Figure 1 C () 1t C= , for t ¹ delAFromToN ;

delAFromToN
1 1 1 2

() C C C CC . A n

instance of delAFromToN is thus a 4-tuple

1 2 3 1
, , ,n n n k .

A SWN marking M maps each place p to an

element of Bag p(())C . M
0
 denotes the initial

194

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

marking.

W -
, W +

 and H assign each pair (,)t p T P

an (input, output and inhibitor, respectively) arc

function () (())C t Bag pC . Any arc function is

formally expressed as a (linear combination of)

function-tuple(s) 1, , nf f¢ ²� , tuple components

are called class-functions. Each f
i
 is a function,

j() ()C t Bag Co , C
j
 being the color class on i-th

position in C ()p , and is called class-j function.

Letting 1 n: , ,F f f¢ ²� and 1 m: , , ()ct c c t¢ ²�� C ,

then 1 n() = () ()c c cF t f t f tu� , where operator

× denotes the multi-set Cartesian product. Each

f
i
 is expressed in terms of elementary functions:

the only ones appearing in this chapter are the

projection X
k
 (k md), defined as X t cck k() = ,

and the constants S and S
j,k

, mapping any t
c
 to C

j

and C
j,k

, respectively.

2 3 4, ,X X X¢ ² in Figure 1 (surrounding

transition delAFromToN) is a function-tuple

whose 1st and 2nd components are class-1 func-

tions, while the 3rd one is a class-2 function:

2 3 4 1 2 3 1 2 3 1, , (, , ,) = 1 1 1X X X n n n k n n k¢ ² ¢ ² � u � u � ,

that is, 2 3 11 , ,n n k� ¢ ².
-�DVVRFLDWHV�D�JXDUG�[] : () ,g t true falseo { }C

to each transition t. A guard is built upon a

VHW� RI� EDVLF� SUHGLFDWHV� WHVWLQJ� HTXDOLW\� EH-

tween projection applications, and member-

ship to a given static subclass. As an example,

1 2 1 3 1 2 1 1[= =](, , ,) =X X X X n n n k true� ¢ ² .

A transition color instance ()ct t�C has con-

cession in M if and only if, for each place p:

(i) (,)() ()cW t p t p� d M ,

Figure 1. A Well-Formed Net

195

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

(ii) (,)(� ! ()cH t p t pM ,

(iii) ()() =ct t true)

(the operators !� , ,£ + - are here implicitly

extended to multisets). : �T3 o assigns a

priority level to each transition. Level 0 is for

timed transitions, while greater priorities are

for immediate transitions, which fire in zero

time.

t
c
 is enabled in M if it has concession, and no

higher priority transition’s instances have conces-

sion in M. It can fire, leading to M’:

'() = () (,)() (,)()c cp P p p W t p t W t p t� �� � � �M M

Finally, : �TO �o assigns a rate, character-

izing an exponential firing delay, to each timed

transition, and a weight to each immediate transi-

tion. Weights are used to probabilistically solve

conflicts between immediate transitions with

HTXDO�SULRULW\�

The behavior of a SWN model is formally

described by a state-transition graph (or reachabil-

ity-graph), which is built starting from M
0
. As a

result of the SWN time representation, the SWN

reduced reachability graph, which is obtained by

suitably removing those markings (called van-

ishing) enabling some immediate transitions, is

isomorphic to a Continuous Time Markov Chain

(CTMC) (Chiola, Dutheillet, Franceschinis, &

Haddad, 1993).

Special restart transitions, denoted by pre-

fix rest, are used in our models once again for

modeling convenience (we might always trace

it back to the standard SWN definition). While

the enabling rule of restart transitions doesn’t

change, their firing leads a SWN model back to

the initial marking.

The class of Petri nets used for the base-level

correspond to the unfolded (uncolored) version

of SWN, that is, GSPN (Ajmone Marsan, Conte,

& Balbo, 1984). A GSPN is formally a 8-tuple

0(, , , , , , ,)T P W W H O� � 3 m .

With respect to SWN definition, W W H+ -, ,

are functions �T Pu o . Analogously, a mark-

ing m is a mapping �P o . The definitions of

concession, enabling, firing given before are still

valid (guards have disappeared), but for replac-

ing F t p tc(,)() by F(t, p), and interpreting the

operators in the usual way.

SWN Symbolic Marking Notion

The particular syntax of SWN color annota-

tions allows system symmetries to be implicitly

embedded into SWN models. This way efficient

algorithms can be applied, e.g., to build a compact

Symbolic Reachability Graph (SRG) (Chiola,

Dutheillet, Franceschinis, & Haddad, 1997),

with an associated lumped CTMC, or to launch

symbolic discrete-event simulation runs. These

algorithms rely upon the notion of Symbolic

Marking (SM).

A SM provides a syntactical�HTXLYDOHQFH�UH-

lation on ordinary SWN colored markings: two

markings belong to the same SM if and only if

they can be obtained from one another by means

of permutations on color classes that preserve

static subclasses.

Formally, a SM M̂ comprises two parts specifying

the so called dynamic subclasses and the distribution

of colored symbolic tokens (tuples built of dynamic

subclasses) over places, respectively. Dynamic sub-

classes define a parametric partition of color classes

preserving static subclasses: let Ĉi and s
i
 denote the

set of dynamic subclass of C
i
 (in a given M̂), and the

number of static subclasses of C
i
. The j-th dynamic

subclass
i

j i
ˆZ C� refers to a static subclass, denoted

d Z()j

i
,

i

j i1 ()d Z sd d , and has an associated

cardinality | |Z j

i
, i.e., it represents a parametric

set of colors (we shall consider cardinality one

dynamic subclasses). It must hold:

i
j

i

i jj: ()=k
k :1 | |=| |

d Z
s Z C� ¦� i,k .

The token distribution in M̂ is defined by a

196

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

function mapping each place p to a multiset on

the symbolic color domain of p, ˆ()pC , obtained

replacing C
i
 with Ĉi in C ()p .

$PRQJ�VHYHUDO��SRVVLEOH�HTXLYDOHQW�IRUPV��WKH�

SM canonical representative (Chiola, Dutheillet,

Franceschinis, & Haddad, 1997) provides a uni-

vocal representation for SM, based on a lexico-

graphic ordering of dynamic subclass distribution

over places.

REFLECTIVE PETRI NETS

The Reflective Petri nets approach (Capra & Caz-

]ROD��������TXLWH�VWULFWO\�DGKHUHV�WR�WKH�FODVVLFDO�

reflective paradigm (Cazzola, 1998). It permits

anyone having a basic knowledge of ordinary

Petri nets to model a system and separately its

possible evolutions, and to dynamically adapt

system’s model when evolution occurs.

The adopted reflective architecture (sketched

in Figure 2) is structured in two logical layers. The

first layer, called base-level PN, is represented by

the GSPN specifying the system prone to evolve;

whereas the second layer, called meta-level is

represented by the evolutionary meta-program; in

our case the meta-program is a SWN composed

by the evolutionary strategies, which might

drive the evolution of the base-level PN. More

precisely, in the description below we will refer

to the (untimed) carriers of SWN (i.e., WN nets)

and GSPN, respectively, according to (Capra &

Cazzola, 2007). Considering also the stochastic

extension is straightforward, as discussed at the

end of the next sub-section.

We realistically assume that several strategies

Figure 2. A Snapshot of the Reflective Layout

197

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

Figure 3. A Detailed View of the Framework Implementing the Evolutionary Interface

198

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

are possible at a given instant: in such a case

one is selected in non-deterministic way (default

policy). Evolutionary strategies have a transac-

tional semantics: either they succeed, or leave the

base-level PN unchanged.

The reflective framework, realized by a WN

as well, is responsible for really carrying out the

evolution of the base-level PN. It reifies the base-

level PN into the meta-level as colored marking

of a subset of places, called base-level reification,

with some analogy to what is proposed in Valk,

1998. The base-level reification is updated every

time the base-level PN enters a new state, and is

used by the evolutionary meta-program to observe

(introspection) and manipulate (intercession) the

base-level PN. Each change to the reification will

be reflected on the base-level PN at the end of a

meta-program iteration, i.e., the base-level PN

and its reification are causally connected and the

reflective framework is responsible for maintain-

ing this connection.

According to the reflective paradigm, the base-

level PN runs irrespective of the evolutionary

meta-program. The evolutionary meta-program

is activated (shift-up action), i.e., a suiTable

strategy is put into action, under two conditions

non mutually exclusive: i) when triggered by an

external event, and/or ii) when the base-level PN

model reaches a given configuration.

Intercession on the base-level PN is carried

out in terms of basic operations on the base-

level reification suggested by the evolutionary

strategy, called evolutionary interface, which

permit any kind of evolution regarding both the

structure and the current state (marking) of the

base-level PN.

Each evolutionary strategy works on a specific

area of the base-level PN, called area of influ-

ence. A conflict could raise when the changes

induced by the selected strategy are reflected

back (shift-down action) on the base-level, since

influence area’s local state could vary, irrespec-

tive of meta-program execution. To avoid pos-

sible inconsistency, the strategy must explicitly

preserve the state (marking) of this area during its

execution. To this aim the base-level execution is

temporary suspended (using priority levels) until

the reflective framework has inhibited any changes

to the influence area of the selected evolutionary

strategy. The base-level PN afterward resumes.

This approach would favor concurrency between

levels, and in perspective, between evolutionary

strategies as well.

The whole reflective architecture is charac-

terized by a fixed part (the reflective framework

WN), and by a part varying from time to time

(the base-level PN and the WN representing the

meta-program). The framework hides evolution-

ary aspects to the base-level PN. This approach

permits a clean separation between evolutionary

model and evolving system model (look at the

companion chapter (Capra & Cazzola, 2009)

for seeing the benefits), which is updated only

when necessary. So analysis/validation can be

carried out separately on either models, without

any pollution.

Reflective Framework

The framework formalization in terms of (S)WN

allows us to specify complex evolutionary patterns

for the base-level PN in a simple, unambiguous

way.

The reflective framework (Figure 3) driven on

the content of the evolutionary interface performs

a sort of concurrent-rewriting on the base-level

PN, suitably reified as a WN marking.

Places with prefix “BLreif”1 belong to the

base-level reification (BLreif), while those having

prefix “EvInt” belong to the evolutionary interface

(EvInt). Both categories of places represent inter-

faces to the evolutionary strategy sub-model.

While topology and annotations (color do-

mains, arc functions, and guards) of the frame-

work are fixed and generic, the structure of basic

color classes and the initial marking need to be

instantiated for setting a link between meta-level

and base-level. In some sense they are similar to

199

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

formal parameters, which are bound to a given

base-level PN.

Let BL0
: 0 0 0 0 0 0 0(, , , , , ,)P T W W H� � 3 m be the

base-level PN at system start-up. The framework

basic color classes are C
1
: NODE, C

2
: ArcType. We

have Definition 1, where
0 0,P Place T Tran� � .

Class ArcType identifies two types of WN arcs,

input/output and inhibitor. Class NODE collects

the potential nodes of any base-level PN evolu-

tions, therefore it should be set large enough to be

considered as a logically unbounded repository.

The above partitioning of NODE into singleton

static subclasses may be considered as a default

choice, which might be further adapted, depending

on modeling/analysis needs. Symbols p
i
 (t

j
) denote

base-level places (transitions) that can be explic-

itly referred to in a given evolutionary strategy.

Instead symbols x
i
(y

j
) denote anonymous places

(transitions) added from time to time to the base-

level without being explicitly named. To make it

possible the automatic updating of the base-level

UHLILFDWLRQ��DV�H[SODLQHG�LQ�WKH�VHTXHO���DOVR�WKHVH�

elements can be referred to, but only at the net

level, by means of WN constant functions.

Base-Level Reification

The color domains for the base-level PN reifica-

tion are given below.

Definition 2 (Reification Color Domains)

() : \{BLreif | Arcs}

(BLreif | Arcs) : =

p NODE p BLreif

ARC NODE NODE ArcType

� �

u u

C

C

The reification of the base-level into the

framework, i.e., its encoding as a WN marking,

takes place at system start-up (initialization of

the reification), and just after the firing of any

base-level transition, when the current reification

is updated.

Definition 3 (reification marking)The reifica-

tion of Petri net BL : 0(, , , , , ,)P T W W H� � 3 m ,

reif ()BL , is the marking:

0

(BLreif | Nodes) = 1

(BLreif | Prio) = (() 1)

(BLreif | Marking) = ()

n P T

t T

p P

n

t t

p p

� �

�

�

�

3 � �

�

¦

¦

¦

M

M

M m

(BLreif | Arcs)(, , /) = (,)

(BLreif | Arcs)(, , /) = (,)

, (BLreif | Arcs)(, ,) = (,)

(BLreif | Arcs)(, ,) = 0

p t i o W p t

t p i o W p t

p P t T p t h H p t

t p h

�

�

 ¢ ²
°

¢ ²°°
� � � ¢ ²®

° ¢ ²°
°̄

M

M

M

M

The evolutionary framework’s colored initial

marking (M
0
) is the reification of base-level PN at

system start-up (reif ()0BL). Place BLreif| Nodes

holds the set of base-level nodes; the marking of

place BLreif|Arcs encodes the connections be-

tween them: the term 2 12 , , /t p i o¢ ² corresponds

to an output arc of weight 2 from transition t
2
 to

place p
1
.

Transition priorities are defined by the mark-

ing of BLreif|Prio: if t
2
 is associated to priority

level k, there will be the term 2(1)k t� �¢ ² in

BLreif|Prio. The above three places represent the

base-level topology: any change operated by the

Definition 1. (Basic Color Classes)

1 2 1 2 1 2 1 2

= /

=

Named Unnamed Named Unnamedp p t t

Place Tran

ArcType i o h

NODE p p x x t t y y null

�

� � � � � � �
�������� ������ ������ ������

	�������
�������� 	������
�������
� � � ��

200

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

evolutionary strategy to their marking causes a

change to the base-level PN structure that will be

reflected at any shift-down from the meta-level

to the base-level.

The marking of place BLreif|Marking de-

fines the base-level (current) state: the multiset

1 22 3p p¢ ² � ¢ ² represents a base-level marking

where places p
1
 and p

2
 hold two and three tokens,

respectively. At the beginning BLreif|Marking

holds the base-level initial state.

The marking of BLreif|Marking can be modi-

fied by the evolutionary strategy itself, causing

a real change to the base-level current state im-

mediately after the shift-down action.

Conflicts and inconsistencies due to the concur-

rent execution of several strategies are avoided by

defining an influence area for each strategy; such

an influence area delimits a critical region that can

be accessed only by one strategy at a time. More

details on the influence areas are in the section

about the model semantics.

The meaning of each element of the BLreif

interface is summarized in Table 1. Let us only

remark that some places of the interface (e.g.

BLreif|Arcs) hold multisets, while other (e.g.

BLreif|Nodes) logically hold only sets (in such

a case the reflective framework is in charge of

eliminating duplicates).

As subject to change, the base-level reification

needs to preserve a kind of well-definiteness over

the time. Let m be the support of multiset m, i.e.,

the set of elements occurring on m .

Definition 4 (well-defined marking)Let n
1
,

n
2
: NODE, k: ArcType . M is well-defined if

and only if

(BLreif | Marking) (BLreif | Nodes)Place� �M M��

�� (BLreif | Prio) (BLreif | Nodes)Tran{ �M M

if �� n
1
 occur on (BLreif | Arcs)M then

1 (BLreif | Nodes)n �M

1 2, , (BLreif | Arcs)n n k¢ ²� �M��

1 2,n n Place Tran¢ ²� u �

1 2,n n Tran Place¢ ²� u � = /k i o

The other way round, a well-defined WN

marking provides a univocal representation for

the base-level PN.

Definition 5 (base-level mapping)The

G S P N bl() :M
0(, , , , , ,)P T W W H� � 3 m ,

associated to a well-defined M, is such

t h a t : = (BLreif | Nodes)P Place�M ,

= (BLreif | Nodes)T Tran�M , p P� �
0 () = (BLreif | Marking)()p pm M , t T� �
() = (BLreif | Prio)() 1t t3 �M , finally W W H- +, ,

DUH�VHW�DV�LQ�'HILQLWLRQ����UHDGLQJ�HTXDWLRQV�IURP�

right to left).

From definitions above it directly follows

bl reif(()) =BL BL . By the way M
0
 is assumed

well-defined. Through the algebraic structural

calculus for WN introduced in Capra, De Pierro,

& Franceschinis, 2005 it has been verified that

well-definiteness is an invariant of the evolution-

DU\�IUDPHZRUN��)LJXUH�����DQG�FRQVHTXHQWO\�RI�

the whole reflective model. The proof, involving

a lot of technicalities, is omitted.

Including the time information of GSPN and

SWN in the reflective model is immediate, once

we restrict to integer values for transition rate/

ZHLJKWV��DV�LI���ZKHUH�D�PDSSLQJ� �T �o). The

encoding of transition parameters then would

be analogous to transition priorities. The BLreif

interface (and of course also EvInt) would include

an additional place BLreif|Param (EvInt| Param),

with domain NODE. A base-level transition t
1
 with

firing rate k would be reified by a token 1k t� ¢ ² on

place BLreif|Param.

Evolutionary Framework Behavior

The evolutionary framework WN model imple-

ments a set of basic transformations (rewritings)

on the base-level PN reification. Its structure is

modular, being formed by independent subnets

(easily recognizable) sharing interface BLreif,

each implementing a basic transformation.

The behavior associated to the evolutionary

framework is intuitive. Every place labeled by the

EvInt prefix holds a (set of) basic transformation

201

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

command(s) issued by the evolutionary strategy

sub-model. Every time a (multiset of) token(s) is

SXW�RQ�RQH�RI�WKHVH�SODFHV��D�VHTXHQFH�RI�LPPHGL-

ate transitions implementing the corresponding

command(s) is triggered. A succeeding command

results in changing the base-level reification, that

is, the marking of BLreif places.

The implemented basic transformations are:

adding/removing given nodes (EvInt|newNode,

EvInt|delNode), adding anonymous nodes

(EvInt|newPlace, EvInt|newTran), adding/re-

moving given arcs (EvInt|newA, EvInt|delA),

increasing/decreasing the marking of given places

(EvInt|incM, EvInt|decM), flushing tokens out

from places (EvInt|FlushP), finally, setting the

priority of transitions (EvInt|setPrio). The color

domain of each place (either NODE or ARC)

corresponds to the type of command argument,

except for EvInt|newPlace, EvInt|newTran, which

are uncolored places.

Term 12 p¢ ² occurring on place EvInt|incM

is interpreted as ‘‘increase the current marking

of place p
1
 of two units’‘. Many commands of

the same kind can be issued simultaneously,

e.g. 1 32 1p p¢ ² � ¢ ² on EvInt|incM. Depending on

their meaning, some commands are encoded by

multisets (as in the last examples), while other

are encoded by sets. Interface EvInt is described

on Table 1 and is implemented by the net on

Figure 3.

In some cases command execution result must

be returned back: places whose prefix is Res hold

command execution results, e.g., places Res|newP

and Res|newT record references to the last nodes

that have been added to the base-level reification

anonymously. Initially they hold a null reference.

As interface places, they can be acceded by the

evolutionary strategy sub-model.

Single commands are carried out in consistent

and atomic way, and they may have side effects.

Table 1. The Evolutionary Interface API and the Base-Level Reification Data Structure

Evolutionary Interface (the asterisk means that the marking is a set)

EvInt| newTran*

 adds an anonymous transition to the base-level reification.

EvInt| newPlace*

 adds an anonymous place to the base-level reification.

EvInt| newNode*

 adds a given new node in the base-level reification.

EvInt| FlushP*

 flushes out the current marking of a place in the base-level reifica-

tion.

EvInt| IncM

 increments the marking of a place in the base-level.

EvInt| decM

 decrements the marking of a place in the base-level.

EvInt| newA

 adds a new arc between a place and a transition in the base-

level reification.

EvInt| delA

 deletes an arc between a place and a transition in the base-level

reification.

EvInt| delNode*

 deletes a given node in the base-level reification (places

must be empty).

EvInt| setPrio

 changes the priority to a node in the base-level reification.

EvInt| shiftDown*

 instructs the framework to reflect the changes on the base-

level.

Reification (the asterisk means that the marking is a set)

BLreif| Nodes*

 the content of this place represents the nodes of the base-

level PN.

BLreif| Marking

 the content of this place represents the current marking of the base-

level PN.

BLreif| Arcs

 the content of this place represents the arcs of the base-level

PN.

BLreif|Prio

 the content of this place represents the transition priorities of the

base-level PN.

202

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

Let us consider for instance deletion of an exist-

ing node, which is implemented by the subnet

depicted (in isolation) in Figure 1. Assume that

a token n
1
 is put in place EvInt|delNode. First

the membership of n
1
 to the set of nodes cur-

rently reified as not marked is checked (transi-

tion startDelN). In case of positive check the

node is removed, then all surrounding arcs are

removed (transition delAfromToN), last (if n
1

is a transition) its priority is cleared (transition

clearPrio
x1

). Otherwise the command aborts and

the whole meta-model composed by the reflec-

tive framework and the evolutionary strategy is

restarted, ensuring a transactional execution of

WKH�HYROXWLRQDU\�VWUDWHJ\��$�XQLTXH�UHVWDUW�WUDQVL-

tion appears in Figure 3, with input arcs having

an ‘‘OR’‘ semantics.

Different priority levels are used to guarantee

WKH�FRUUHFW�ILULQJ�VHTXHQFH��DOVR�LQ�FDVH�RI�PDQ\�GH-

OHWLRQ�UHTXHVWV��WRNHQV��SUHVHQW�LQ�(Y,QW_GHO1RGH�

simultaneously. Boundedness is guaranteed by the

fact that each token put on this place is eventually

consumed.

The other basic commands are implemented

in a similar way. Let us only remark that newly

introduced base-level transitions are associated

to the default priority 0 (encoded as 1).

Priority levels in Figure 3 are relative: after

composing the evolutionary framework WN

model to the evolutionary strategy WN model, the

minimum priority in the evolutionary framework

is set greater than the maximum priority level used

in the evolutionary strategy.

Any kind of transformation can be defined as

a combination of basic commands: for example

‘‘replacing the input arc connecting nodes p and

t by an inhibitor arc of cardinality three’‘ corre-

sponds to put the token , , /p t i o¢ ² on EvInt|delA

and the term 3 , ,p t h¢ ² on place EvInt|newA.

Who designs a strategy (the meta-programmer)

LV�UHVSRQVLEOH�IRU�VSHFLI\LQJ�FRQVLVWHQW�VHTXHQFHV�

of basic commands, e.g., he/she must take care

of flushing the contents of a given place before

removing it.

Base-level Introspection. The evolutionary

framework includes basic introspection com-

mands. Observation and manipulation of base-

level PN reification are performed passing through

the framework evolutionary interface; what

enhances safeness and robustness of evolution-

ary programming. Figure 4 shows (from left to

right) the subnets implementing the computation

of the cardinality (thereupon the kind) of a given

arc, the preset of a given base-level node, and the

current marking of a given place (subnets comput-

ing transition priorities, post-sets, inhibitor-sets,

and checking existence of nodes, have a similar

structure).

As for the basic transformation commands,

each subnet has a single entry-place belonging

to the evolutionary interface EvInt and performs

atomically. Introspection result is recorded on

places having the Res| prefix, accessible by the

evolutionary strategy: regarding e.g., preset com-

putation, a possible result (after a token p
1
 has been

put in place EvInt|PreSet) is 1 2 1 3, ,p t p t¢ ² � ¢ ²,
meaning the preset of p

1
 is {t

2
, t

3
} (other results are

encoded as multisets). Since base-level reification

could be changed in the meanwhile, every time a

new command is issued any previously recorded

result about command’s argument is cleared

(transitions prefixed by string “flush”).

The Evolutionary Strategy

The adopted model of evolutionary strategy

(only highlighted in Figure 2) specifies a set of

arbitrarily complex, alternative transformation

patterns on the base-level (each denoted hereafter

as i-th strategy or st
i
), which can be fired when

some conditions (checked on the base-level PN

reification by introspection) hold and/or some

external events occur.

Since a strategy designer is usually unaware

of the details about the WN formalism, we have

provided him/her with a tiny language that allows

everyone to specify his own strategy in a simple and

formal way. As concerns control structures the lan-

203

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

guage syntax is inspired by Hoare’s CSP (Hoare,

1985), enriched with a few specific notations. As

concerns data types, a basic set of built-in’s and

constructors is provided for easy manipulation of

nets. The use of a CSP-like language to specify

a strategy allows its automatic translation into a

corresponding WN model. We will provide some

examples of mapping from pieces of textual strat-

egy descriptions into corresponding WN models.

In Petri nets literature there are lot of examples

of formal mappings from CSP-like formalisms

(e.g. process algebras) to (HL)Petri nets models

(e.g. Best, 1986 and more recently Kavi, Sheldon,

Shirazi, & Hurson, 1995), from which we have

been inspired.

The evolutionary meta-program scheme cor-

responds to the CSP pseudo-code2 in Figure 6.

The evolutionary strategy as a whole is cyclically

activated upon a shift-up, here modeled as an

input command. A non-deterministic selection of

guarded commands then takes place. Each guard is

evaluated on base-level reification by using ‘‘ad-

KRF¶µ�ODQJXDJH�QRWDWLRQV�GHVFULEHG�LQ�WKH�VHTXHO��

Guard true means the corresponding strategy may

be always activated at every shift-up. A guard op-

tionally ends with an input command simulating

the occurrence of some external events.

A more detailed view of this general schema in

terms of Petri nets is given in Figure 5. Figure 5(a)

shows the non-deterministic selection, whereas

Figure 5(b) shows the structure of i-th strategy.

Color domain definitions are inherited from the

evolutionary framework WN. An additional basic

color class (STRAT = 1 nst st��) represents pos-

sible alternative evolutions

Focusing on Figure 5(a), we can observe

that any shift-up is signaled by a token in the

homonym place, and guards (the boxes on the

picture, which represent the only not fixed parts

of the net) are evaluated concurrently, accordingly

to the semantics of CSP alternative command.

After the evaluation process has been completed

one branch (i.e., a particular strategy) is chosen

(transition chooseStrat) among those whose guard

Figure 4. Basic introspection functions

204

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

was successfully evaluated (place trueEval). By

the way, introspection has to be performed with

priority over base-level activities, so the low-

est priority in Figure 5(a) is set higher than any

base-level PN transition, when the whole model

is built. In case every guard is valued false the

selection command is restarted just after a new

shift-up occurrence transition noStratChoosen),

avoiding any possible livelock. Occurrence of

external events is modeled by putting tokens in

particular ‘‘open’‘ places (e.g. External|event
k
 in

Figure 5(a). The idea is that such places should

be shared with other sub-models simulating the

external event occurrence. If one is simply in-

terested in interactively simulating the reflective

model, he/she might think of such places as a sort

RI�EXWWRQV�WR�EH�SXVKHG�E\�UHTXHVW�

(a) The Strategy Selection Submodel

(b) The Strategy Structure

Figure 5. Meta-Program Generic Schema

205

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

The ith Strategy. The structure of the WN model

implementing a particular evolutionary strategy is

illustrated in Figure 5(b). It is composed of fixed

and programmable (variable) parts, which may be

easily recognized in the picture. It realizes a sort

of two-phases approach: during the first phase

(subnet freeze(«pattern
i
»)) the meta-program sets

the local influence area of the strategy, a portion

of the base-level Petri Net reification potentially

subject to changes. This area is expressed as a

language’s “pattern”, that is, a parametric set of

base-level nodes defined through the language

notations, denoted by a colored homonym place

in Figure 5(b). The pattern contents are flushed at

any strategy activation. A simple isolation algo-

rithm is then executed, which freezes the strategy

influence area reification, followed by a shift-down

action as a result of which freezing materializes at

the base-level PN. The idea is that all transitions

belonging to the pattern, and/or able to change the

marking of places belonging to it, are temporary

inhibited from firing, until the strategy execution

has terminated (the place pattern* holds a wider

pattern image after this computation).

>VKLIW�XS�"�VK�XS�RFFXUUHG�:�

[

JXDUGB��� HYHQWB�� "� HYHQWB��RFFXUUHG�:�

strategy_1()

§

JXDUGB��:�strategy_2()

§

true�:�strategy_3()

§

...

]

]

During the freezing phase the base-level model

is ‘‘suspended’‘ to avoid otherwise possible incon-

sistencies and conflicts: this is achieved by forcing

transitions of freeze(«pattern
i
») subnet to have a

higher priority than base-level PN transitions. The

freeze(«pattern
i
») sub-model is decomposed in

turn in two sub-models that implement the influ-

ence area identification and isolation, respectively.

While the latter has a fixed structure, the former

might be either fixed or programmable, depending

on designer needs (e.g. it might be automatically

derived from the associated guard).

After the freezing procedure terminates the

evolutionary algorithm starts (box labeled by

dostrategy
i
 in Figure 5(b)), and the base-level

resumes from the ‘‘suspended’‘ state: what is

implicitly accomplished by setting no depen-

dence between the priority of dostrategy
i
 subnet

transitions (arbitrarily assigned by the meta-

Figure 6. CSP code for the meta-program scheme

206

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

programmer) and the priority of base-level PN

transitions (in practice: setting the base-level

31�ORZHVW�SULRULW\�HTXDO�WR�WKH�SULRULW\�OHYHO��DV-

sumed constant, of dostrategy
i
 subnet). The only

forced constraint is that dostrategy
i
 submodel can

exclusively manipulate (by means of framework’s

evolutionary interface) the nodes of base-level

reification belonging to the pattern previously

computed (this constraint is graphically expressed

in Figure 5(b) by an arc between dostrategy
i
 box

and place «pattern
i
»). As soon as the base-level

PN enters a new state (marking), the newly entered

base-level state is instantaneously reified into

the meta-level. This reification does not involve

the base-level area touched by the evolutionary

strategy, which can continue operating without in-

consistency. Before activating the final shift-down

(which ends the strategy and actually operates the

base-level evolution planned by the strategy) the

temporary isolated influence area is unfrozen in

a very simple way.

The described approach is more flexible than a

brute-force blocking one (where the base-level is

suspended for the whole duration of the strategy)

while guaranteeing a sound and consistent system

evolution. It better adheres to the semantics and

the behavior of most real systems (think e.g. of

a traffic control system), which cannot be com-

pletely suspended while their evolution is being

planned.

Casually Connecting the Base-
Level and the Meta-Program

The base-level and the meta-program are (re-

ciprocally) causally connected via the reflective

framework.

Shift-up action. The shift-up action is realized

for the first time at system start-up. The idea (il-

lustrated in Figure 7) is to connect in transparent,

fully automatic way the base-level PN to the evo-

lutionary framework interface by means of colored

input/output arcs drawn from any base-level PN

transition to place BLreif | Marking of base-level

reification. Any change of state at base-level PN

provoked by transition firing is instantaneously

reproduced on the reification, conceptually

maintaining base-level unawareness about the

meta-program. The firing of base-level transition

t
1
 results in withdrawing one and two tokens from

places p
1
 and x

1
, respectively, and in putting one

in p
2
.While token consumption is emulated by

a suitable input arc function (1 12S p S x¢ ² � � ¢ ²),
token production is emulated by an output arc

function (2S p¢ ²). The complete splitting of class

NODE allows anonymous places introduced into

the base-level (x
1
) to be referred to by means of

SWN constant functions. The occurrence of transi-

tion t
1
 is signaled to the meta-program by putting

one token in the uncolored boundary-place ShUp|

shift-up (Figure 5(a)).

Shift-down action. The shift-down action is the

only operation that cannot be directly emulated

at Petri nets (WN) level, but that should be man-

aged by the environment supporting the reflective

architecture simulation. This is not surprising,

UDWKHU� LV� D� FRQVHTXHQFH� RI� WKH� DGRSWHG� FKRLFH�

of a traditional Petri nets paradigm to model an

evolutionary architecture. The shift-down action

takes place when the homonym uncolored (meta-)

transition of the framework (Figure 3) is enabled.

This transition has the highest priority within the

whole reflective model, its occurrence replaces the

current base-level PN with the Petri net described

by the current reification, according to Definition

5. After a shift-down the base-level restarts from

the (new) base-level initial marking, while the

meta-program continues executing from the state

preceding the shift-down.

Putting all together. The behavior of the whole

reflective model (composed of the base-level

PN, the evolutionary framework interface and

the meta-program) between consecutive shift-

downs can be represented using a uniform, Petri

net-based approach. We are planning to extend the

GreatSPN tool (Chiola, Franceschinis, Gaeta, &

Ribaudo, 1995), which supports the GSPN and

SWN formalisms, to be used as editing/simula-

207

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

tion environment of Reflective Petri nets. For that

purpose it should be integrated with a module

implementing the causal-connection between

base-level and meta-program.

The reflective framework, the evolutionary

meta-program, and the base-level are separated

sub-models, sharing three disjoint sets of bound-

ary places: the base-level reification, the evolu-

tionary interface, and the places holding basic

command results. Their interaction is simply

achieved through superposition of homonym

places. This operation is supported by the Algebra

module (Bernardi, Donatelli, & Horvàth, 2001)

of GreatSPN.

Following the model composition, absolute

priority levels must be set, respecting the reciprocal

constraints between components earlier discussed

(e.g. framework’s lowest priority must be grater

than meta-program’s highest priority). Finally, the

whole model’s initial marking is set according to

Definition 3 as concerns base-level reification,

putting token null in both places Res|newP and

Res|newT (Figure 4), and one uncolored token in

place startMetaProgram (Figure 5(a)).

Meta-Language Basic Elements

The meta-programming language disposes of four

built-in types NAT, BOOL, NODE, ArcType and

the Set and Cartesian product (×) constructors. The

arc (ARC: NODE × NODE × ArcType), arc with

multiplicity (ArcM: ARC × NAT), and marking

(Mark: NODE × NAT) types are thus introduced,

this way a multi-set can be represented as a set.

Place, Tran and static subclass names can be used

to denote subtypes or constants (in case of single-

tons), and new types can be defined on-the-fly by

using set operators.

Each strategy is defined in terms of basic

actions, corresponding to the basic commands

previously described. Their signatures are:

Figure 7. Reification implemented at Petri net level

208

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

newNode(Set(NODE)), newPlace(), ��

newTran(), remNode(Set(NODE));

ÀXVK�6HW�3ODFH����

addArc(Set(ArcM)), remArc(Set(Arc));��

incMark(Set(Mark)), decMark(Set(Mark))��

setPrio(Set(Tran))��

A particular version of repetitive command can

be used. Letting E
i
 be a set (Grammar 1):

*(e
1
 in E

1
, ..., e

n
 in E

n
)[«command»]

makes the instruction «command» be executed

iteratively for each e
1
� E

1
,.., e

n
� E

n
; at each

iteration, variables e
1
,.., e

n
 are bound to par-

ticular elements of E
1
,.., E

n
, respectively. If E

1

is a color (sub-)class, then we implicitly refer

to its elements that belong to the base-level

reification.

The meta-programmer can refer to base-level

elements either explicitly, by means of constants,

or implicitly, by means of variables.

By means of the assignments p=newPlace(),

t=newTran(), it is also possible to add unspecified

nodes to the base-level, afterwards referred to by

variables p,t.

Base-level introspection is carried out by means

of simple net-expressions allowing the meta-

programmer to specify patterns, i.e., parametric

EDVH�OHYHO�SRUWLRQV�PHHWLQJ�VRPH�UHTXLUHPHQWV�

on base-level’s structure/marking.

The syntax for patterns and guards is shown in

Grammar 1. The symbols: pre(n), post(n), inh(n),

#p, card(a) denote the pre/post-sets of a base-level

PN node n, the set of elements connected to n via

inhibitor arcs, the current marking of place p, and

the multiplicity of an arc a, respectively. They are

translated into introspection commands (Figure

4). A pattern example is:

{p:Place|#p > #p1 and isempty

(pre(p)��inh(p))},

where p1 is a constant, and p is a variable.

Below is an example of guard is (in the cur-

UHQW�YHUVLRQ�RI� WKH� ODQJXDJH�TXDQWLILHUV�FDQQRW�

be nested):

exists t:Tran|isempty (pre(t) �
inh(t)).

Having at our disposal a simple meta-program-

ming language, it becomes easier specifying (even

complex) parametric base-level evolutions, such as

‘‘for each marked place p belonging to the preset

of t, if there is no inhibitor arc connecting p and

W��DGG�RQH�ZLWK�FDUGLQDOLW\�HTXDO�WR�WKH�PDUNLQJ�

of p’‘, which becomes:

�S�LQ�SUH�W���>��S!��DQG�FDUG��S�W�K!� ��:��

DGG$UF��S�W�K��S!�@�

The code of the freezing algorithm act-

ing on a precomputed influence area (box

isolate(«pattern
i
») in Figure 5(b)), which is one

of the fixed parts of the meta-program, is given in

Figure 8. all base-level transitions that belong to

the pattern, or that can change its local marking

(state), are temporarily prevented from firing by

adding a new (marked) place to the base-level

reification, to which pattern transitions are con-

nected via inhibitor arcs. A shift-down action

is then activated to freeze the base-level PN.

Unfreezing is simply achieved by removing the

artificially introduced inhibitor place at the end

of the evolutionary strategy (Figure 5(b)).

[

isempty�SDWWHUQ��:�skip

§

not(isempty�SDWWHUQ���:�

pattern* = {};

isolating_pattern = newPlace();

incMark��LVRODWLQJBSDWWHUQ��!��

*(p in Pattern ��Place)

[true�:�SDWWHUQ��� = pre(p) ��post(p)];

(t in pattern ��Tran)

209

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

[true�:newArc��LVRODWLQJBSDWWHUQ�W�K��!�@�

shiftDown;

]

A MARKOV-PROCESS FOR
REFLECTIVE PETRI NETS

The adoption of GSPN (Ajmone Marsan, Conte,

& Balbo, 1984) and SWN (Chiola, Dutheillet,

Franceschinis, & Haddad, 1993) for the base- and

meta- levels of the reflective layout, respectively,

has revealed a convenient choice for two reasons:

first, the timed semantics of Reflective Petri nets

is in large part inherited from GSPN (SWN); sec-

ondly, the symbolic marking representation the

SWN formalism is provided with can be exploited

WR�HIILFLHQWO\�KDQGOH�WKH�LQWULJXLQJ�TXHVWLRQ�UHODWHG�

WR�KRZ�LGHQWLI\LQJ�HTXLYDOHQFHV�GXULQJ�D�5HIOHF-

tive Petri net model evolution.

On the light of the connection set between

base- and meta- levels, the behavior of a Reflec-

tive Petri net model between any meta-level

DFWLYDWLRQ�DQG�WKH�FRQVHTXHQW�VKLIW�GRZQ�LV�IXOO\�

described in terms of a SWN model, the meta-level

PN, including (better, suitably connected to) an

uncolored part (the base-level PN). This model

will be hereafter denoted base-meta PN. Hence,

we can naturally set the following notion of state

for Reflective Petri nets:

Definition 6 (state). A state of a Reflective

Petri net is a marking M
i
of the base-meta PN

obtained by suitably composing the base-level PN

(a GSPN) and the meta-level PN (a SWN).

Then, letting t z shiftdown be any transition

(color instance) enabled in M
i
, according to the

SWN (GSPN) firing rule, and M
j
 be the mark-

ing reached upon its firing, we have the labeled

state-transition

()

i j,
tO

oM M

where �(t) denotes a weight, or an exponential

rate, associated with t, depending on whether t is

timed or immediate.

There is nothing to do but consider the case

where M
f
 is a vanishing marking enabling the

pseudo-transition shift-down: then,

=1

0 ,
w

f
coM M

0
cM being the marking of the base-meta PN

obtained by first replacing the (current) base-level

PN with the GSPN isomorphic to the reification

marking (once it has been suitably connected to

Figure 8. CSP Code for the Isolating-Pattern Subnet (Language’s Keywords are in Bold)

210

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

the meta-level PN), then firing shift-down as it

were a normal immediate transition.

8VLQJ� WKH� VDPH� WHFKQLTXH� IRU� HOLPLQDWLQJ�

vanishing states as it is employed in the reduced

reachability graph algorithm (Ajmone Marsan,

Conte, & Balbo, 1984), it is possible to build a

CTMC for the Reflective Petri net model.

Recognizing Equivalent Evolutions

The state-transition graph semantics just intro-

duced precisely defines the (timed) behavior of a

Reflective Petri net model, but suffers from two

evident drawbacks. First, it is highly inefficient:

the state description is exceedingly redundant,

comprising a large part concerning the meta-level

PN, which is unnecessary to describe the evolv-

ing system. The second concern is even more

critical, and indirectly affects efficiency: there

is no way of recognizing whether the modeled

system, during its dynamics/evolution, reaches

HTXLYDOHQW�VWDWHV��7KH�DELOLW\�RI�GHFLGLQJ�DERXW�

a system’s state-transition graph finiteness and

strongly-connectedness, of course strictly related

WR�WKH�DELOLW\�RI�UHFRJQL]LQJ�HTXLYDOHQW�VWDWHV��LV�

in fact mandatory for performance analysis: we

know that the most important sufficient condition

for a finite CTMC to have stationary solution

(steady-state) is to include one maximal strongly

connected component.

0RUH� JHQHUDOO\�� PRVW� WHFKQLTXHV� EDVHG� RQ�

state-space inspection rely on the ability above.

Table 2.

Grammar 1 BNF for language expressions.

Element ::= NODE | Arc†

NODE ::= «variable» | «constant» | singleton (NodeSet)

Arc ::= < NODE , NODE , «arc_type» >

Expression ::= «digit» | BasicExpr

BasicExpr ::= # «place»‡ | card(Set) | card (Arc) | prio («transition»)

Predicate ::= BasicExpr RelOp Expression | kind (Arc)�(T2S�©arc_type» | NODE InExpr | NODE is connected to

NODE | isempty (Set)

RelOp ::= < | > | =

(T2S ::= =\= | =

Set ::= { } | { ArcList } | NodeSet | «static_subclass» | «color_class» | Element | Set SetOp Set

SetOp ::= �� |�� | \

ArcList ::= Arc | ArcList , Arc

NodeSet ::= { } | { NodeList } | Pattern | AlgOp (NodeSet) | NODE

NodeList ::= NODE | NodeList , NODE

AlgOp ::= pre | post | inh

Pattern ::= { «variable» InExpr | Guard }

Guard ::= Predicate | LogOp «variable» InExpr Predicate |

not (Guard)

InExpr ::= � | in «place» | in NodeSet

LogOp ::= exists | foreach

BoolOp ::= and | or

† Terminals are in bold font, non-terminals are in normal font. ‡ Terms in «» represent elements whose meaning can be inferred from the

model.

211

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

5HFRJQL]LQJ� HTXLYDOHQW� HYROXWLRQV� LV� D� WULFN\�

TXHVWLRQ��)RU�H[DPSOH��LW�PD\�KDSSHQ�WKDW��DSSDU-

HQWO\��GLIIHUHQW�VWUDWHJLHV�FDXVH�LQ�WUXWK�HTXLYDOHQW�

transformations to the base-level PN (the evolving

system), which cannot be identified by Definition

���<HW��WKH�FRPELQHG�HIIHFW�RI�GLIIHUHQW�VHTXHQFHV�

of evolutionary strategies might produce the same

effects. Even more likely, the internal dynamics of

WKH�HYROYLQJ�V\VWHP�PLJKW�OHDG�WR�UHDFK�HTXLYDOHQW�

FRQILJXUDWLRQV��7KH�DERYH�TXHVWLRQ��ZKLFK�IDOOV�

into a graph isomorphism sub-problem, as well as

the global efficiency of the approach, are tackled

by resorting to the peculiar characteristic of SWN:

the symbolic marking notion (Chiola, Dutheillet,

Franceschinis, & Haddad, 1997).

For that purpose, we refer to the following

static partition of class NODE:

1 k 1 n= .

Named Namedp t

p t

TranPlace

NODE p p Unnamed t t Unnamed� � � � �
�������� ������

	�������
��������	��������
���������
� �

Symbols p
i
, t

j
 denote singleton static subclasses.

Conversely, Unnamed
p
 and Unnamed

t
 are static

subclasses collecting all anonymous (i.e., indis-

tinguishable) places/transitions. Behind there is a

simple intuition: while some (“named”) nodes, for

the particular role they play, preserve the identity

during base-level evolution, and may be explicitly

referred to during base-level manipulation, oth-

ers (“unnamed”) are indistinguishable from one

another. In other words any pair of “unnamed”

places (transitions) might be freely exchanged on

the base-level PN, without altering the model’s

semantics. There are two extreme cases: Named
p

(Named
t
) = � and, opposite, Unnamed

p
 (Un-

named
t
) = �. The former meaning all places/

transitions can be permuted, the latter instead all

nodes are distinct.

It is remarkable that the static partition of

class NODE actually used for the base-meta PN

is different from the previous one, given that

any places of base-level PN must be explicitly

referred to when connecting the base-level PN

to the meta-level PN (Figure 7).

7KH�WHFKQLTXH�ZH�XVH�WR�UHFRJQL]H�HTXLYDOHQW�

base-level evolutions relies on the base-level

reification and the adoption of a symbolic state

representation for the base-meta PN that, we recall,

results from composing in transparent way the

base-level PN and the meta-level PN.

We only have to set as initial state of the

Reflective Petri net model a symbolic marking

(0M̂) of the base-meta PN, instead of an ordinary

one: any dynamic subclass of Unnamed
p
 (Un-

named
t
) will represent an arbitrary “unnamed”

place (transition) of the base-level PN.

Because of the simultaneous update mecha-

nism of the UHLILFDWLRQ��DQG�WKH�FRQVHTXHQW�RQH�

to-one correspondence along the time between

the current base-level PN and the reification at

the meta-level, we can state the following:

Definition 7 (equivalence relation) Let iM̂ ,

jM̂ be two symbolic states of the Reflective Petri

net model. i j
ˆ ˆ

i {M M if and only if their restric-

tions on the reification set of places have the same

canonical representative.

Lemma 1. Let i j
ˆ ˆ

i {M M . Then the base-level

PNs at states iM̂ and
jM̂ are isomorphic.

Consider the very simple example in Figure 9,

which depicts three base-level PN configurations,

at different time instants. The hypothesis is that

while symbol t
2
 denotes a ‘‘named’‘ transition,

symbols x
i
 and y

j
 denote ‘‘unnamed’‘ places

and transitions, respectively. Since there are no

inhibitor arcs we assume that arcs are reified as

tokens (2-tuples) belonging to NODE × NODE.

We assume that all transitions have the same

priority level, so we disregard the reification of

priorities.

We can observe that the Petri nets on the left

and on the middle are nearly the same, but for their

current marking: we can imagine that they represent

a possible (internal) dynamics of the base-level PN.

Conversely, we might think of the right-most Petri

net as an (apparent) evolution of the base-level PN

on the left, in which transition y
2
 has been replaced

by the (new) transition y
3
, new connections are set,

and a new marking is defined.

212

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

Nevertheless, the three base-level configura-

WLRQV�DUH�HTXLYDOHQW��DFFRUGLQJ�WR�'HILQLWLRQ����,W�

is sufficient to take a look at their respective reifi-

cations, which are encoded as symbolic markings

(multisets are expressed as formal sums): consider

for instance the base-level PN on the left and on

the middle of Figure 9, whose reification are:

1 2 2 1 2 3 4
ˆ (BLreif | Nodes) = y y t x x x x� � � � � �M ,

1 4
ˆ (BLreif | Marking) = x x�M ,

1 2 2 3 3 1 1 1 2 2
ˆ (BLreif | Arcs) = , , , , ,x t t x x y y x x t¢ ² � ¢ ² � ¢ ² � ¢ ² � ¢ ² �M

2 4 4 2 2 2, , ,t x x y y x¢ ² � ¢ ² � ¢ ²

and

1 2 2 1 2 3 4
ˆ (BLreif | Nodes) = y y t x x x xc � � � � � �M ,

3 2
ˆ (BLreif | Marking) = x xc �M ,

1 2 2 3 3 1 1 1
ˆ (BLreif | Arcs) = , , , ,x t t x x y y xc ¢ ² � ¢ ² � ¢ ² � ¢ ² �M

2 2 2 4 4 2 2 2, , , ,x t t x x y y x¢ ² � ¢ ² � ¢ ² � ¢ ²

respectively. They can be obtained from one an-

other by the following permutation of “unnamed”

places and transitions (we denote by a bl the

bidirectional mapping: ,)a b b ao o :

1 2 3 4 1 2{ , , },x x x x y yl l l

WKXV��WKH\�DUH�HTXLYDOHQW�

With similar arguments, the left-most and the

right-most Petri nets of Figure 9 are shown to

EH�HTXLYDOHQW��7KH�OHIW�PRVW�3HWUL�QHW¶V�reifica-

tion is:

1 3 2 1 2 3 4
ˆ (BLreif | Nodes) = y y t x x x xcc � � � � � �M ,

1 2
ˆ (BLreif | Marking) = x xcc �M ,

1 2 2 3 3 1 1 1
ˆ (BLreif | Arcs) = , , , ,x t t x x y y xcc ¢ ² � ¢ ² � ¢ ² � ¢ ² �M

2 3 3 4 4 2 2 2, , , ,x y y x x t t x¢ ² � ¢ ² � ¢ ² � ¢ ²

M̂ and ˆ ccM can be obtained from one another

through the following permutation:

2 4 3 2{ , },x x y yl l

7KH�FDQRQLFDO�UHSUHVHQWDWLYH�IRU�WKHVH�HTXLYD-

lent base-level PN’s reifications (i.e., states of the

Reflective Petri net model), computed according

to the corresponding SWN algorithm, turns out

to be M̂.

RELATED WORKS

Although many other models of concurrent and

distributed systems have been developed, Petri

Nets are still considered a central model for con-

current systems with respect to both the theory

and the applications due to the natural way they

Figure 9. Equivalent Base-Level Petri Net Evolutions

213

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

allow to represent reasoning on concurrent active

objects which share resources and their chang-

ing states. Despite their modeling power (Petri

QHWV� ZLWK� LQKLELWRU� DUFV� DUH� 7XULQJ�HTXLYDOHQW��

however, classical Petri nets are often consid-

ered unsuiTable to model real systems. For that

reason, several high-level Petri nets paradigms

(Colored Petri nets, Predicate/Transition Nets,

Algebraic Petri nets) have been proposed in the

literature (Jensen & Rozenberg, 1991) over the

last two decades to provide modelers with a more

flexible and parametric formalism able to exploit

the symmetric structure of most artificial discrete-

event systems.

Modern information systems are more and

more characterized by a dynamic/reconfigurable

(distributed) topology and they are often conceived

as self-evolving structures, able to adapt their

behavior and their functionality to environmental

changes and new user needs. Evolutionary design

is now a diffuse practice, and there is a growing

demand for modeling/simulation tools that can

better support the design phase. Both Petri nets

and HLPN are characterized by a fixed structure

(topology), so many research efforts have been

devoted, especially in the last two decades, in

trying to extend Petri nets with dynamical fea-

tures. Follows a non-exhaustive list of proposals

appeared in the literature.

In Valk, 1978, the author is proposing his

pioneering work, self-modifying nets. Valk’s

self-modifying nets introduce dynamism via self

modification. More precisely the flow relation

between a place and a transition is a linear func-

WLRQ�RI�WKH�SODFH�PDUNLQJ��7HFKQLTXHV�RI�OLQHDU�

algebra used in the study of the structural proper-

ties of Petri nets can be adapted in this extended

framework. Only simple evolution patterns can

be represented using this formalism. Another

major contribution of Valk is the so-called nets-

within-nets paradigm (Valk, 1998), a multi-layer

approach, where tokens flowing through a net are

in turn nets. In his work, Valk takes an object as

a token in a unary elementary Petri net system,

whereas the object itself is an elementary net sys-

tem. So, an object can migrate across a net system.

This bears some resemblance with logical agent

mobility. Even if in the original Valk’s proposal

no dynamic changes are possible, many dynamic

architectures introduced afterward (including in

some sense also the approach proposed in this

chapter) rely upon his paradigm.

6RPH�TXLWH� UHFHQW� SURSRVDOV� KDYH� H[WHQGHG�

Valk’s original ideas. Badouel & Darondeau, 1997

introduces a subclass of self-modifying nets. The

considered nets appear as stratified sums of ordi-

nary nets and they arise as a counterpart to cascade

products of automata via the duality between au-

tomata and nets. Nets in this class, called stratified

nets, cannot exhibit circular dependences between

places: inscription on flow arcs attached to a given

place depends at most on the content of places in

the lower layers. As an attempt to add modeling

flexibility, Badouel & Oliver, 1998 defines a class

of high-level Petri nets, called reconfigurable nets,

that can dynamically modify their own structure

by rewriting some of their components. Bound-

edness of a reconfigurable net can be decided by

calculating its covering tree. Moreover such a net

can be simulated by a self-modifying Petri net.

The class of reconfigurable nets thus provides a

subclass of self-modifying Petri nets for which

boundedness can be decided.

Modeling mobility, both physical and logical,

is another active subject of ongoing research.

Mobile and dynamic Petri nets (Asperti & Busi,

1996) integrate Petri nets with RCHAM (Reflec-

tive Chemical Abstract Machine) based process

algebra. In dynamic nets tokens are names for

places, an input token of a transition can be used

in its postset to specify a destination, and more-

over the creation of new nets during the firing of a

transition is also possible. Mobile Petri nets handle

mobility expressing the configuration changing of

communication channels among processes.

Tokens in Petri nets, even in self-modifying,

mobile/dynamic and reconfigurable nets, are pas-

sive, whereas agents are active. To bridge the gap

214

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

between tokens and agents, or active objects, many

authors have proposed variations on the theme of

nets-within-nets. In Farwer & Moldt, 2005, objects

are studied as higher-level net tokens having an

individual dynamical behavior. Object nets behave

like tokens, i.e., they are lying in places and are

moved by transitions. In contrast to ordinary

tokens, however, they may change their state.

By this approach an interesting two-level system

PRGHOLQJ�WHFKQLTXH�LV�LQWURGXFHG��;X��<LQ��'HQJ��

& Ding, 2003 proposes a two-layers approach.

From the perspective of system’s architecture, it

presents an approach to modeling logical agent

mobility by using Predicate Transition nets as

formal basis for the dynamic framework. Refer-

ence nets proposed in Kummer, 1998 are another

formalism based on Valk’s work. Reference nets

are a special high level Petri net formalism that

provide dynamic creation of net instances, ref-

erences to other reference nets as tokens, and

communication via synchronous channels (Java

is used as inscription language).

Some recent proposals have some similarity

with the work we are presenting in this chapter

or, at least, are inspired by similar aims. In Cabac

et al., 2005 the authors present the basic concepts

for a dynamic architecture modeling (using nets-

within-nets) that allows active elements to be

nested in arbitrary and dynamically changeable

hierarchies and enables the design of systems at

different levels of abstractions by using refine-

ments of net models. The conceptual modeling of

such architecture is applied to specify a software

system that is divided into a plug-in management

system and plug-ins that provide functionality

to the users. By combining plug-ins, the system

can be dynamically adapted to the users needs. In

Hoffmann et al., 2005 the authors introduce the

new paradigm of nets and rules as tokens, where

in addition to nets as tokens also rules as tokens

are considered. The rules can be used to change

the net structure and behavior. This leads to the

new concept of high-level net and rule systems,

which allows to integrate the token game with

rule-based transformations of P/T-systems. The

new concept is based on algebraic nets and graph

transformation systems. Finally, in Odersky, 2000

the author introduces functional nets, which com-

bine key ideas of functional programming and Petri

nets to yield a simple and general programming

notation. They have their theoretical foundation in

join calculus. Over the last decade an operational

view of program execution based on rewriting

has become widespread. In this view, a program

is seen as a term in some calculus, and program

execution is modeled by stepwise rewriting of the

term according to the rules of the calculus.

All these formalisms, however, set up new

hybrid (high-level) Petri net-based paradigms.

While the expressive power has increased, the

cognitive simplicity, which is the most important

advantage of Petri nets, has decreased as well. In

Badouel, 1998 the authors argued that the intri-

cacy of these models leaves little hope to obtain

significant mathematical results and/or automated

verification tools in a close future. The approach

we are presenting differs from the previous ones

mainly because it achieves a satisfactory com-

promise between expressive power and analysis

FDSDELOLW\�� WKURXJK�D�TXLWH� ULJRURXV�DSSOLFDWLRQ�

of classical reflection concepts in a consolidated

(high-level) Petri net framework.

CONCLUSION AND FUTURE WORK

Most discrete-event systems are subject to evo-

lution, and need to be updated or extended with

new characteristics during lifecycle. Covering the

evolutionary aspects of systems since the design

phase has been widely recognized as a crucial

challenge. A good evolution has to pass through the

evolution of the design information of the system

itself. Petri nets are a central formalism for the

modeling of discrete-event systems. Unfortunately

classical Petri nets have a static structure, so Petri

net modelers are forced to hard-code all the fore-

seeable evolutions of a system at the design level.

215

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

7KLV�FRPPRQ�SUDFWLFH�QRW�RQO\�UHTXLUHV�PRGHOLQJ�

expertise, it also makes system’s design be polluted

by lot of details that do not regard the (current)

system functionality, and affect the consolidated

3HWUL�QHWV�DQDO\VLV�WHFKQLTXHV�

We have faced the problem through the

definition of a Petri net-based reflective archi-

tecture, called Reflective Petri Nets, structured

in two logical levels: the base-level, specifying

the evolving system, and the evolutionary meta-

program (the meta-level). The meta-program is

in charge of observing in transparent way, then

(if necessary) transforming, the base-level PN.

With this approach the model of the system and

the model of the evolution are kept separated,

granting, therefore, the opportunity of analyzing

the model without useless details. The evolutionary

aspects are orthogonal to the functional aspects

of the system.

In this chapter we have introduced Reflective

Petri nets, and we propose an effective timed

state-transition semantics (in terms of a Markov

process) as a first step toward the implementation

of a (performance-oriented) discrete-event simu-

lation engine for Reflective Petri nets. Ongoing

research is in different directions. We are planning

to extend the GreatSPN tool to directly support

Reflective Petri nets, both in the editing and in

the analysis/simulation steps. We are investigat-

ing other possible semantic characterizations (in

terms of different stochastic processes), on the

perspective of improving the analysis capability.

We are currently using two different formalisms for

the base- and meta- levels (ordinary and colored

stochastic Petri nets). It might be convenient to

adopt the same formalism for both levels, what

would give origin to the reflective tower allowing

the designer to model also the possible evolution

of the evolutionary strategies.

REFERENCES

Asperti, A., & Busi, N. (1996, May). Mobile Petri

Nets (Tech. Rep. No. UBLCS-96-10). Bologna,

Italy: Università degli Studi di Bologna.

Badouel, E., & Darondeau, P. (1997, September).

Stratified Petri Nets. In B. S. Chlebus & L. Czaja

(Eds.), Proceedings of the 11th International

Symposium on Fundamentals of Computation

Theory (FCT’97) (p. 117-128). Kraków, Poland:

Springer.

Badouel, E., & Oliver, J. (1998, January). Recon-

figurable Nets, a Class of High Level Petri Nets

Supporting Dynamic Changes within Workflow

Systems (IRISA Research Report No. PI-1163).

IRISA.

Bernardi, S., Donatelli, S., & Horvàth, A. (2001,

September). Implementing Compositionality for

Stochastic Petri Nets. Journal of Software Tools

for Technology Transfer, 3(4), 417–430.

Best, E. (1986, September). COSY: Its Relation

to Nets and CSP. In W. Brauer, W. Reisig, & G.

Rozenberg (Eds.), Petri Nets: Central Models and

Their Properties, Advances in Petri Nets (Part II)

(p. 416-440). Bad Honnef, Germany: Springer.

Cabac, L., Duvignau, M., Moldt, D., & Rölke,

H. (2005, June). Modeling Dynamic Architec-

tures Using Nets-Within-Nets. In G. Ciardo &

P. Darondeau (Eds.), Proceedings of the 26th

International Conference on Applications and

Theory of Petri Nets (ICATPN 2005) (p. 148-167).

Miami, FL: Springer.

Capra, L., & Cazzola, W. (2007, December).

Self-Evolving Petri Nets. Journal of Universal

Computer Science, 13(13), 2002–2034.

Capra, L., & Cazzola, W. (2009). Trying out

Reflective Petri Nets on a Dynamic Workflow

Case. In E. M. O. Abu-Atieh (Ed.), Handbook of

Research on Discrete Event Simulation Environ-

ments Technologies and Applications. Hershey,

PA: IGI Global.

216

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

Capra, L., De Pierro, M., & Franceschinis, G.

(2005, June). A High Level Language for Struc-

tural Relations in Well-Formed Nets. In G. Ciardo

& P. Darondeau (Eds.), Proceeding of the 26th

international conference on application and theory

of Petri nets (p. 168-187). Miami, FL: Springer.

Cazzola, W. (1998, July 20th-24th). Evaluation

of Object-Oriented Reflective Models. In Pro-

ceedings of ecoop workshop on reflective object-

oriented programming and systems (ewroops’98).

Brussels, Belgium.

Cazzola, W., Ghoneim, A., & Saake, G. (2004,

July). Software Evolution through Dynamic Ad-

aptation of Its OO Design. In H.-D. Ehrich, J.-J.

Meyer, & M. D. Ryan (Eds.), Objects, Agents and

Features: Structuring Mechanisms for Contempo-

rary Software (pp. 69-84). Heidelberg, Germany:

Springer-Verlag.

Chiola, G., Dutheillet, C., Franceschinis, G.,

& Haddad, S. (1990, June). On Well-Formed

Coloured Nets and Their Symbolic Reachability

Graph. In Proceedings of the 11th international

conference on application and theory of Petri

nets, (p. 387-410). Paris, France.

Chiola, G., Dutheillet, C., Franceschinis, G., &

Haddad, S. (1993, November). Stochastic Well-

Formed Coloured Nets for Symmetric Modeling

Applications. IEEE Transactions on Computers,

42(11), 1343–1360. doi:10.1109/12.247838

Chiola, G., Franceschinis, G., Gaeta, R., & Ribau-

do, M. (1995, November). GreatSPN 1.7: Graphi-

cal Editor and Analyzer for Timed and Stochastic

Petri Nets. Performance Evaluation, 24(1-2),

47–68. doi:10.1016/0166-5316(95)00008-L

Farwer, B., & Moldt, D. (Eds.). (2005, August).

Object Petri Nets, Process, and Object Calculi.

Hamburg, Germany: Universität Hamburg, Fach-

bereich Informatik.

Hoare, C. A. R. (1985). Communicating Sequen-

tial Processes. Upper Saddle River, NJ: Prentice

Hall.

Hoffmann, K., Ehrig, H., & Mossakowski, T.

(2005, June). High-Level Nets with Nets and

Rules as Tokens. In G. Ciardo & P. Darondeau

(Eds.), Proceedings of the 26th International

Conference on Applications and Theory of Petri

Nets (p. 268-288). Miami, FL: Springer

Hürsch, W., & Videira Lopes, C. (1995, February).

Separation of Concerns (Tech. Rep. No. NUCCS-

95-03). Northeastern University, Boston.

Jensen, K., & Rozenberg, G. (Eds.). (1991). High-

Level Petri Nets: Theory and Applications. Berlin:

Springer-Verlag.

Kavi, K. M., Sheldon, F. T., Shirazi, B., & Hurson,

A. R. (1995, January). Reliability Analysis of

CSP Specifications Using Petri Nets and Markov

Processes. In Proceedings of the 28th Annual

Hawaii International Conference on System Sci-

ences (HICSS-28) (p. 516-524). Kihei, Maui, HI:

IEEE Computer Society.

Kummer, O. (1998, October). Simulating Syn-

chronous Channels and Net Instances. In J. Desel,

P. Kemper, E. Kindler, & A. Oberweis (Eds.),

Proceedings of the Workshop Algorithmen und

Werkzeuge für Petrinetze (Vol. 694, pp. 73-78).

Dortmund, Germany: Universität Dortmund,

Fachbereich Informatik.

Maes, P. (1987, October). Concepts and Ex-

periments in Computational Reflection. In N. K.

Meyrowitz (Ed.), Proceedings of the 2nd confer-

ence on object-oriented programming systems,

languages, and applications (OOPSLA’87) (Vol.

22, p. 147-156), Orlando, FL.

Odersky, M. (2000, March). Functional Nets. In

G. Smolka (Ed.), Proceedings of the 9th European

Symposium on Programming (ESOP 2000) (p.

1-25). Berlin, Germany: Springer.

217

$Q�,QWURGXFWLRQ�WR�5HÀHFWLYH�3HWUL�1HWV

Valk, R. (1978, July). Self-Modifying Nets, a

Natural Extension of Petri Nets. In G. Ausiello

& C. Böhm (Eds.), Proceedings of the Fifth Col-

loquium on Automata, Languages and Program-

ming (ICALP’78), (p. 464-476). Udine, Italy:

Springer.

Valk, R. (1998, June). Petri Nets as Token Objects:

An Introduction to Elementary Object Nets. In J.

Desel & M. Silva (Eds.), Proceedings of the 19th

International Conference on Applications and

Theory of Petri Nets (ICATPN 1998) (p. 1-25).

Lisbon, Portugal: Springer.

Xu, D., Yin, J., Deng, Y., & Ding, J. (2003, Janu-

ary). A Formal Architectural Model for Logical

Agent Mobility. IEEE Transactions on Soft-

ware Engineering, 29(1), 31–45. doi:10.1109/

TSE.2003.1166587

KEY TERMS AND DEFINITIONS

Evolution: Attitude of systems to change

layout/functionality.

Dynamic Systems: Discrete-event systems

subject to evolution.

Petri Nets: Graphical formalism for discrete-

event systems.

Reflection: Activity performed by an agent

when doing computations about itself.

Base-Level: Logical level of a reflective model

representing the system prone to evolve.

Meta-Level: Logical level of a reflective

model representing the evolutionary strategy.

State-Transition Graph: Graph describing

the behavior of a system in terms of states and

transitions between them.

ENDNOTES

1 Labels taking the form place_name | postfix

denote boundary-places
2 Recall that: i) CSP is based on guarded-

commands; ii) structured commands are

LQFOXGHG�EHWZHHQ�VTXDUH�EUDFNHWV��DQG�LLL��

symbols ?, *, and §�denote input, repetition

and alternative commands, respectively.

