
Neverlang Tutorial
Walter Cazzola, Edoardo Vacchi Università degli Studi di Milano

In this tutorial we will show how to implement a simple domain-specific
language using Neverlang. The objective of this tutorial is to show that Neverlang
makes possible to define a complete language implementation in a modular way.
Each component can be compiled separately and independently from the others.
The Neverlang framework is built on top of the Java runtime. It fits nicely in the
Java ecosystem, using the tools that are native to this platform, and providing an
environment that is easy and comfortable to use to the Java developer.

1 LogLang

LogLang is a simple DSL that describes tasks for a log rotating tool, similar to
the logrotate Unix utility. A program written in LogLang is a list of tasks
that should be performed on log files. Each task is a list of file system commands
such as file removal or renaming.

This is how an input file for the LogLang interpreter should look like.

task DoSomething {
backup "/foo/bar.txt" "/backup/bar.bak"
rename "/foo/bar.txt" "/foo/bar.txt.old"
remove "/faz.dat"

}

Listing 1: The input file for our first LogLang iteration

Each task is identified by a name, and each command is followed by one
or more paths, enclosed within quotes. For instance, the backup command
is followed by two string literals, because the backup copy of the source file
should be placed on a different destination path. On the other hand, the remove
command operates only on the path of the source file.
We will now show how to implement the interpreter for this script using Neverlang.

1.1 The Neverlang Architecture
Neverlang implements the syntax-directed translation technique [1] in a modular
way. In the syntax-directed translation technique, the compiler (or the interpreter)
for a language generates a parse tree for an input program, and then it visits
this tree several times, attaching attributes to the nodes. Each visit is called a
compilation phase. The final result is the execution of the program in the case of
an interpreter, or executable code in the case of a compiler.

In Neverlang, each feature is defined in a separate module. Each module
contains a section that defines the syntax for the feature, and it may contain one or
more role definitions. A role is the part of a compilation phase that is bound to a
particular syntactic feature. Consequently, each role contains only those semantic
actions that should be performed when that part of the syntax is recognized by the
interpreter.

Each feature is then described by a slice. A slice ties together related syntax
definitions and roles, possibly coming from different modules.

Finally, the language descriptor lists every slice that the language implemen-
tation requires, and defines an order for the roles. Because every slice represents
a feature, and every role represents a phase, the language descriptor actually
describes the full language implementation.

1.2 Implementing LogLang v.1
The input file for the first version of our language (Listing 6) includes the definition
for a task as a list of commands, and only three built-in commands: backup
that copies a file to a long-term storage location, rename, that moves a file, and
remove, that unlinks the file.

module neverlang.examples.loglang.Task {

reference syntax {
[TASK] Task ^ "task" Identifier "{" CmdList "}";

CmdList ^ Cmd CmdList ;
CmdList ^ Cmd ;

}
role (execution) {

[TASK](1) .{ System.out.println("executing task "+ $TASK[1].identifier); }.
}

}

Listing 2: The Task module

module neverlang.examples.loglang.Backup {
imports {

neverlang.examples.loglang.utils.*;
}
reference syntax {

[BKP] Backup ^ "backup" String String;
Cmd ^ Backup;

}
role(execution) {

[BKP] .{
String src = $BKP[1].string;
String dest = $BKP[2].string;

$$FileOp.backup(src, dest);
}.

}
}

Listing 3: The Backup module

Module The reference syntax section defines the syntax for our feature,
represented as a BNF grammar. Unquoted identifiers represent nonterminals,
while quoted strings are terminals. By convention, nonterminals always begin
with a capital letter. There is also a way to define patterns using regular expressions
that we will not show here. You may have noticed that there nonterminals that are
not defined within this grammar. This is because they are expected to be defined
in other modules. For instance, the String nonterminal should resolve to the
definition for the quoted string literal that we use in the backup command. The
second line is saying that the first grammar rule describes a command. All of
these missing nonterminal definitions should be resolved at the end, when write
the language descriptor.

The same module may define one or more semantic roles that refer that syn-
tax definition. In this case, we are defining a role execution that should be
executed whenever the backup command is encountered in an input file. The
binding between actions and the syntax definition is made using numbers. Non-
terminals are numbered from left to right, and from top to bottom, starting from
0. In this case, we are hooking a semantic action to nonterminal number 0 (that
is, Backup). Inside the action we can refer to other logically-related nodes (the
children) using the same numbering scheme. Inside the action, numbers must be
prefixed using the $ symbol. The familiar dot-notation can be used to set and
retrieve the value of an attribute of a node. In this case we are referring to the
attribute string of nonterminal number 1 and 2 (that is String, with capital
‘S’).

The default strategy of visit is the so-called post-order, that is, first the children
of the tree are visited, and then the corresponding rule is executed. Even though
we will not show it here, it is also possible to visit the tree in pre-order. In that
case first the rule is executed, then the visit proceeds to the children. Because in
this case we are doing post-order, then we can expect other attributes to have been
set during the depth-first visit. In this case, we expect the string attributes to
be set.

1

The $$-prefixed identifier is used in Neverlang to refer a singleton instance of
an object that provides some services. In this case, it is a library that provides file
system manipulation primitives. The implementation for this object is defined in
a separate component that is called an endemic slice. We will not show the
details on how to implement an endemic slice in this tutorial, but you can find
more on that in Neverlang’s documentation.

Modules can be compiled to source files using the nlgc tool. If you do not
specify otherwise, the tool generates regular Java source files. Once the source
files are generated, you can then compile them using javac. Once your modules
are finalized and compiled, you will not need to re-compile them anymore, because
the framework is designed to be modular at the class-file level. Components can
be pre-compiled, packaged and distributed as bytecode.

$ nlgc -s out Backup.nl
Backup.nl
neverlang/examples/loglang/Backup$role$syntax.java
neverlang/examples/loglang/Backup$role$execution$0.java
neverlang/examples/loglang/Backup.java

$ javac -d bin out/neverlang/examples/loglang/*.java

It is worth noticing that the tool generates Java source files by default, but
semantic actions can be written using any language supported by the Java Virtual
Machines that compiles into bytecode. Neverlang comes bundled with support for
Scala, but any JVM language that compiles into bytecode can be supported, by
writing a plugin, using a very simple extension mechanism. If you are interested
in the details, we refer you to [2, 3].

Slice The slice construct ties together every component that is used in the
implementation of a feature. In this case, both the syntax definition and the
semantic role are defined within the same module. Therefore, the slice looks like
Listing 4.

slice neverlang.examples.loglang.v1.BackupSlice {
concrete syntax from neverlang.examples.loglang.Backup
module neverlang.examples.loglang.Backup with role execution

}

Listing 4: BackupSlice

You may have noticed that modules define a reference syntax; on the
other hand, slices declare a concrete syntax. In Neverlang, the syntax
definition is a component like any other. Therefore, although a semantic role may
refer to a particular syntax definition, the feature implementation may actually
use a different concrete syntax coming from a different module. For instance,
a language implementation may use English for its keywords, but then it could
be possible to localize the interpreter by choosing a different, localized concrete
syntax in the slice.

The first line of the slice construct always declares a concrete syntax. Every
subsequent line is a role declaration. The order in which roles are executed in
specified in language descriptor.

Even slices can be compiled separately by the other components, and modules
are not required to be compiled contextually to the slices that use them.

$ nlgc -s out BackupSlice.nl
BackupSlice.nl
neverlang/examples/loglang/v1/BackupSlice.java

$ javac -d bin out/neverlang/examples/loglang/*.java

language neverlang.examples.loglang.v1.LogLang {
slices

neverlang.examples.loglang.TaskSlice
neverlang.examples.loglang.v1.RenameSlice
neverlang.examples.loglang.v1.RemoveSlice
neverlang.examples.loglang.v1.BackupSlice
neverlang.examples.loglang.Main
neverlang.commons.SimpleTypes

endemic slices
neverlang.examples.loglang.FileOpEndemic

roles syntax < terminal-evaluation < execution
}

Listing 5: The language definition for the first iteration of LogLang

Language The language descriptor lists every slice that the language uses
and defines the order in which roles should be executed. You may notice that
neverlang.commons.SimpleTypes is a slice that comes bundled with
Neverlang, that defines common literals. In particular it defines quoted strings,
that we used in the commands of our language. This slice also defines a role called
terminal-evaluation that we therefore execute prior to the execution
role that we defined in our commands. This way, we ensure that the phase that

evaluates the terminals defined inside SimpleTypes will be executed before
execution.

Even in this case, modules and slices can be pre-compiled, and the language
descriptor can be compiled separately, provided that the other class files are on
the class path.

$ nlgc -s out LogLang.nl
LogLang.nl
neverlang/examples/loglang/LogLang.java

$ javac -d bin out/neverlang/examples/loglang/*.java

Executing the interpreter Neverlang generates simple, readable Java source
files. For instance, this is how the language descriptor looks like, once compiled:

package neverlang.examples.loglang.v1;
import neverlang.runtime.*;
public class LogLang extends Language {

public LogLang() {
importSlices(
"neverlang.examples.loglang.TaskSlice",
"neverlang.examples.loglang.v1.RenameSlice",
"neverlang.examples.loglang.v1.RemoveSlice",
"neverlang.examples.loglang.v1.BackupSlice",
"neverlang.examples.loglang.Main",
"neverlang.commons.SimpleTypes"

);
importEndemicSlices(
"neverlang.examples.loglang.FileOpEndemic"

);
declare(
role(Role.Flags.POSTORDER, "terminal_evaluation"),
role(Role.Flags.POSTORDER, "execution")

);

}
}

As you can see, the generated language descriptor is nothing but a subclass of
the Language class found in the neverlang.runtime package. This class
can be instantiated by user code, and it provides an API to parse and execute
program files. However, in order to test language implementations immediately,
the Neverlang framework provides two bundled tools: the nlgi interactive
interpreter and the nlg laucher.

The nlg launcher requires the user to provide the canonical class name for a
language implementation and a series of input files. The launcher will then inter-
pret or compile the given input file using the language implementation provided
by the specified class. Optionally, it is possible to specify a classpath using the
-cp command line switch. In this tutorial, we will omit this detail.

$ nlg neverlang.examples.loglang.v1.LogLang ../tests/loglang-input-1.txt
executing task DoSomething
`\color{blue}{backup: /foo/bar.txt --> /backup/bar.bak}`
`\color{blue}{rename: /foo/bar.txt --> /foo/bar.txt.old}`
`\color{blue}{unlink: /faz.dat}`

1.3 Implementing LogLang v.2

In a new iteration of the LogLang interpreter, we want to introduce the merge
command, that was previously unavailable.

task DoSomething {
backup "/foo/bar.txt" "/backup/bar.bak"
rename "/foo/bar.txt" "/foo/bar.txt.old"
merge "/baz/qux1.txt" "/baz/qux2.txt"
remove "/faz.dat"

}

Listing 6: The input file for the second LogLang iteration

In fact, if we try to execute this input file with our interpreter we will get a syntax
error.

$ nlg neverlang.examples.loglang.v1.LogLang ../tests/loglang-input-2.txt
`\color{red}{4:5: Unexpected identifier: 'merge'. Expected: symbol '\}'.}`

The merge command has a similar syntax to the one for the backup com-
mand, and it is really easy to implement.

We can now write a new language descriptor that includes the new components.
As you will probably notice, the slice names that we used in the previous

version are again found in this version. This is because we are actually using the
pre-compiled slices that composed the previous iteration.

The new version of the interpreter obviously supports both the new input file
and the old one.

Neverlang Tutorial • LogLang’s Implementation Step by Step page 2 of 4

module neverlang.examples.loglang.Merge {
imports {

neverlang.examples.loglang.utils.*;
}
reference syntax {

[MRG] Merge ^ "merge" String String;
Cmd ^ Merge;

}

role(execution) {
[MRG] .{

String src = $MRG[1].string;
String dest = $MRG[2].string;

$$FileOp.merge(src, dest);
}.

}
}

slice neverlang.examples.loglang.v2.MergeSlice {
concrete syntax from neverlang.examples.loglang.Merge
module neverlang.examples.loglang.Merge with role execution

}

Listing 7: Merge implementation.

language neverlang.examples.loglang.v2.LogLang {

slices neverlang.examples.loglang.v1.BackupSlice
neverlang.examples.loglang.v1.RemoveSlice
neverlang.examples.loglang.v1.RenameSlice
neverlang.examples.loglang.v2.MergeSlice // new feature
neverlang.examples.loglang.Task
neverlang.examples.loglang.Main
neverlang.commons.SimpleTypes

endemic slices neverlang.examples.loglang.FileOpEndemic

roles syntax < terminal-evaluation < execution

}

Listing 8: The language definition for the second iteration of LogLang

$ nlgc -s out *.nl
[output omitted]
$ javac -d bin out/**/*.java
$ nlg neverlang.examples.loglang.v2.LogLang ../tests/loglang-input-2.txt
executing task DoSomething
`\color{blue}{backup: /foo/bar.txt --> /backup/bar.bak}`
`\color{blue}{rename: /foo/bar.txt --> /foo/bar.txt.old}`
`\color{blue}{merge: /baz/qux1.txt + /baz/qux2.txt}`
`\color{blue}{unlink: /faz.dat}`

1.4 Implementing LogLang v.3

In the third version of our interpreter we want to show off another feature that is
peculiar to Neverlang. Using slices, it is possible to define in separate modules
further processing phases, but, again, in separate components. The original pre-
compiled units do not need to be modified. In this version of the interpreter, we
want to add a permission check phase, in which file permissions are checked. If
the tool runs at an insufficient level of permissions, the execution of the program
is aborted. Moreover, we want to add logging capabilities to the utility, so that
each time a task is performed, we can keep track of the operations in a transcript.

In order to do this, we can define new modules: one for each role
and each feature that we want to implement. For instance, we can define
BackupPermCheck for permissions and BackupLogging for logging.

module neverlang.examples.loglang.BackupPermCheck {
imports {

neverlang.examples.loglang.utils.*;
}
reference syntax from neverlang.examples.loglang.Backup
role(permissions) {

[BKP] .{
String f1 = $BKP[1].string;
String f2 = $BKP[2].string;
if (! $$Permission.canRead(f1) || ! $$Permission.canWrite(f2)) {

throw new Error("cannot perform backup operation: wrong permissions.");
}

}.
}

}

Listing 9: The new Permission Check module for the third iteration of LogLang

As you may notice, the reference syntax section is shortened so that it
points to the definition found in the original module. This is required to resolve
the numbers in the role definitions to the correct nonterminals. You may also
notice that new endemic slices are being used. We will need to indicate them in
our new language definition.

module neverlang.examples.loglang.BackupLogging {
imports {

java.util.logging.Logger;
}
reference syntax from neverlang.examples.loglang.Backup
role(logging) {

[BKP] .{
$$Logger.info("Backup: "+$BKP[1].string+" --> "+$BKP[2].string);

}.
}

}

Listing 10: The new Logging module for the third iteration of LogLang

slice neverlang.examples.loglang.v3.BackupSlice {
concrete syntax from neverlang.examples.loglang.Backup
module neverlang.examples.loglang.Backup with role execution
module neverlang.examples.loglang.BackupPermCheck with role permissions
module neverlang.examples.loglang.BackupLogging with role logging

}

Listing 11: BackupSlice3

The new slice for backup reflects that new roles and new modules are now
involved. You will also notice that even in this case, we are still using the pre-
compiled modules that we used in the previous iterations.

language neverlang.examples.loglang.v3.LogLang {

slices neverlang.examples.loglang.v3.BackupSlice
neverlang.examples.loglang.v3.RemoveSlice
neverlang.examples.loglang.v3.RenameSlice
neverlang.examples.loglang.v3.MergeSlice
neverlang.examples.loglang.Task
neverlang.examples.loglang.Main
neverlang.commons.SimpleTypes

endemic slices neverlang.examples.loglang.FileOpEndemic
neverlang.examples.loglang.PermEndemic
neverlang.examples.loglang.LoggerEndemic

// roles syntax < terminal-evaluation < logging < permissions < execution
roles syntax < terminal-evaluation < logging : permissions : execution

}

Listing 12: Third version of LogLang

The new language definition includes the endemic slices that implement the
permission check operations and the logging library. In this example we are spec-
ifying that logging should be performed before every other file-related operation.
Then, we execute the permission checks, and finally, if everything went right, we
can proceed with executing the task. The commented line is defining an alternate
execution order. We will get back to that in a moment, but, first, we will compile
this version of the language.

Using Ant for build automation. In this version of the language, we will
use ant to automate the build. Neverlang comes bundled with an ant task that
the Neverlang developer can use to automate builds. In this case, Neverlang .nl
source files are usually put in a nlg-src directory, and generated source files
go inside the src directory.

To use this task, we just add a task definition at the top of our build script:

<taskdef name="nlgc"
classname="neverlang.tools.ant.NlgcTask">↪

<classpath>
<pathelement path="${classpath}"/>
<pathelement location="path/to/Neverlang.jar"/>

</classpath>
</taskdef>

Listing 13: Task definition for the Ant build script

A typical Ant build script for Neverlang first compiles every Neverlang source
file to Java source code and then compiles all the Java source files to bytecode.
This build script (Listing 14) also generates a jar file in the dist/ directory. We
can launch the generated interpreter with the usual command.

Neverlang Tutorial • LogLang’s Implementation Step by Step page 3 of 4

$ nlg neverlang.examples.loglang.v3.LogLang ../tests/loglang-input-1.txt
INFO: Backup: /foo/bar.txt --> /backup/bar.bak
INFO: Rename: /foo/bar.txt --> /foo/bar.txt.old
INFO: Remove: /faz.dat
`\color{green}{canRead: /foo/bar.txt}`
`\color{green}{canWrite: /backup/bar.bak}`
`\color{green}{canRead: /foo/bar.txt}`
`\color{green}{canWrite: /foo/bar.txt.old}`
`\color{green}{canWrite: /faz.dat}`
executing task DoSomething
`\color{blue}{backup: /foo/bar.txt --> /backup/bar.bak}`
`\color{blue}{rename: /foo/bar.txt --> /foo/bar.txt.old}`
`\color{blue}{unlink: /faz.dat}`

As you can see, the output of each role has been colored so that it is easy to
spot which is being executed. As we expected, first, the logging role prints on
the screen information about the command that is going to be executed, then the
permission check phase (in green) is performed, and finally the actual actions (in
blue) are executed.

Interleaved execution We want to finally show another order of execution
for roles. In fact, strict sequentiality is not the only way to execute a compilation
phase. For instance, we might want the execution of a role to be interleaved to
another. In the interleaved execution, instead of executing one role at a time for
each traversal of the tree, we execute in sequence every action that is attached
to a node. In our case, previously we made the interpreter execute a full tree
traversal for each of the logging, permissions and execution phases. If we use the
alternate ’:’ syntax, we specify to Neverlang that we want the execution of the
roles to be interleaved. Therefore, if we uncomment the last line and comment the
second last, and we re-compile the language descriptor, we obtain an interleaved
execution of the phases, that you can easily spot, by looking at the colored lines.

$ nlg neverlang.examples.loglang.v3.LogLang ../tests/loglang-input-1.txt
executing task DoSomething
INFO: Backup: /foo/bar.txt --> /backup/bar.bak
`\color{green}{canRead: /foo/bar.txt}`
`\color{green}{canWrite: /backup/bar.bak}`
`\color{blue}{backup: /foo/bar.txt --> /backup/bar.bak}`
INFO: Rename: /foo/bar.txt --> /foo/bar.txt.old
`\color{green}{canRead: /foo/bar.txt}`
`\color{green}{canWrite: /foo/bar.txt.old}`
`\color{blue}{rename: /foo/bar.txt --> /foo/bar.txt.old}`
INFO: Remove: /faz.dat
`\color{green}{canWrite: /faz.dat}`
`\color{blue}{unlink: /faz.dat}`

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison Wesley, Reading, Massachusetts, 1986.

[2] Walter Cazzola and Edoardo Vacchi. Neverlang 2: Componentised Language
Development for the JVM. In Walter Binder, Eric Bodden, and Welf Löwe,
editors, Proceedings of the 12th International Conference on Software Com-
position (SC’13), Lecture Notes in Computer Science 8088, pages 17–32,
Budapest, Hungary, 19th of June 2013. Springer.

[3] Edoardo Vacchi and Walter Cazzola. Neverlang: A Framework for Feature-
Oriented Language Development. Computer Languages, Systems & Struc-
tures, 43(3):1–40, October 2015.

<project name="LogLangV3" default="dist" basedir=".">
<description> LogLang v3 build file </description>

<property name="src" location="src"/>
<property name="nlg-src" location="nlg-src"/>
<property name="build" location="build"/>
<property name="dist" location="dist"/>

<taskdef name="nlgc" classname="neverlang.tools.ant.NlgcTask">
<classpath>

<pathelement path="${classpath}"/>
<pathelement location="dist/Neverlang.jar"/>

</classpath>
</taskdef>

<target name="pre-compile">
<nlgc destdir="${src}" >

<fileset id="nlg-src" dir="${nlg-src}" includes="**/*.nl"
/>↪

</nlgc>
</target>

<target name="init"> <mkdir dir="${build}"/> </target>

<target name="compile" depends="init,pre-compile"
description="compile the sources" >↪

<!-- Compile the java code from ${src} into ${build} -->
<javac includeantruntime="true" srcdir="${src}"
destdir="${build}" classpath="${classpath}"/>

</target>

<target name="dist" depends="compile" description="generate the
distribution" >↪

<mkdir dir="${dist}"/>
<jar jarfile="${dist}/LogLangV3.jar" basedir="${build}"/>

</target>

<target name="clean"
description="clean up" >

<!-- Delete the ${build} and ${dist} directory trees -->
<delete dir="${build}"/>
<delete dir="${dist}"/>

</target>
</project>

Listing 14: Ant build.xml file

Neverlang Tutorial • LogLang’s Implementation Step by Step page 4 of 4

