
Client-Server Computing in Mobile Environments
JIN JING

GTE Laboratories Incorporated

ABDELSALAM (SUMI) HELAL

University of Florida

AND

AHMED ELMAGARMID

Purdue University

Recent advances in wireless data networking and portable information appliances
have engendered a new paradigm of computing, called mobile computing, in which
users carrying portable devices have access to data and information services
regardless of their physical location or movement behavior. In the meantime,
research addressing information access in mobile environments has proliferated. In
this survey, we provide a concrete framework and categorization of the various
ways of supporting mobile client-server computing for information access. We
examine characteristics of mobility that distinguish mobile client-server computing
from its traditional counterpart. We provide a comprehensive analysis of new
paradigms and enabler concepts for mobile client-server computing, including
mobile-aware adaptation, extended client-server model, and mobile data access. A
comparative and detailed review of major research prototypes for mobile
information access is also presented.

Categories and Subject Descriptors: C.2.4 [Computer-Communication
Networks]: Distributed Systems

General Terms: Algorithms, Design

Additional Key Words and Phrases: Application adaptation, cache invalidation,
caching, client/server, data dissemination, disconnected operation, mobile
applications, mobile client/server, mobile computing, mobile data, mobility
awareness, survey, system adaptation

1. INTRODUCTION

Advances in wireless networking tech-
nology and portable information appli-
ances have engendered a new paradigm

of computing, called mobile computing,
in which users who carry portable de-
vices have access to information ser-
vices through a shared infrastructure,

Authors’ addresses: J. Jing, GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02454; A.
Helal, Computer and Information Science and Engineering Department, University of Florida, Gaines-
ville, FL 32611; email: helal@cise.ufl.edu; A. Elmagarmid, Computer Sciences, Purdue University, West
Lafayette, IN 47907.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1999 ACM 0360-0300/99/0600–0117 $5.00

ACM Computing Surveys, Vol. 31, No. 2, June 1999

regardless of their physical location or
movement behavior. Such a new envi-
ronment introduces new technical chal-
lenges in the area of information access.
Traditional techniques for information
access are based on the assumptions
that the location of hosts in distributed
systems does not change and the con-
nection among hosts also does not
change during the computation. In a
mobile environment, however, these as-
sumptions are rarely valid or appropri-
ate.

Mobile computing is distinguished
from classical, fixed-connection comput-
ing due to (1) the mobility of nomadic
users and their computers and (2) the
mobile resource constraints such as lim-
ited wireless bandwidth and limited
battery life. The mobility of nomadic
users implies that the users might con-
nect from different access points
through wireless links and might want
to stay connected while on the move,
despite possible intermittent disconnec-
tion. Wireless links are relatively unre-
liable and currently are two to three
orders of magnitude slower than wire-
line networks. Moreover, mobile hosts
powered by batteries suffer from limited
battery life constraints. These limita-
tions and constraints leave much work
to be done before mobile computing is

fully enabled. This remains true despite
the recent advances in wireless data
communication networks and hand-held
device technologies.

There has been a recent proliferation
of research addressing issues of mobile
systems and applications, especially for
the purpose of mobile information ac-
cess. In this survey, we attempt to pro-
vide a concrete framework and categori-
zation of various methods of supporting
such applications and information ac-
cess from the viewpoint of client-server
computing. The scope of this survey cov-
ers techniques and methods in support
of components above the transport layer
of networks. In a mobile client-server
information system, a loose or tight col-
lection of trusted information servers
are connected via a fixed network to
provide information services to a much
larger collection of untrusted mobile cli-
ents over wireless and mobile networks.

1.1 Paradigms of Mobile Client-Server
Computing

In this section, we briefly examine the
impacts of mobility on information ser-
vices and applications, and the new par-
adigms of client-server computing
needed to deal with these impacts. A
categorization of these computing para-
digms is given below. This examination
should facilitate our analysis and re-
view of the various proposed techniques
for mobile information access.

Existing research on mobile client-
server computing can be categorized
into the following three paradigms: (1)
mobile-aware adaptation, (2) extended
client-server model, and (3) mobile data
access.

Mobile-aware Adaptation: The dy-
namics of mobile environments and the
limitations of mobile computing re-
sources make adaptation a necessary
technique when building mobile sys-
tems and applications. The paradigm of
mobile-aware adaptation covers various
strategies and techniques in how sys-
tems and applications respond to the
environmental changes and the re-

CONTENTS

1. Introduction
1.1 Paradigms of Mobile Client-Server Computing
1.2 Organization of this Paper

2. Mobile-Aware Adaptation
2.1 Application-Transparent Adaptation
2.2 Application-Aware Adaptation

3. Extended Client-Server Model
3.1 Thin Client Architecture
3.2 Full Client Architecture
3.3 Flexible Client-Server Architecture

4. Mobile Data Access
4.1 Server Data Dissemination
4.2 Client Cache Management

5. Case Studies
5.1 Bayou
5.2 Odyssey
5.3 Rover
5.4 Summary

6. Conclusion

118 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

source requirements. It also suggests
the necessary system services that
could be utilized by mobile-aware appli-
cations.

Extended Client-Server Model: The
extended client-server model facilitates
mobile client-server information access.
One distinguishing feature is the dy-
namic partitioning of client-server func-
tionality and responsibilities. The ex-
tended client-server model provides a
way to support the adaptation of mobile
systems and applications. The paradigm
of the extended client-server model in-
cludes various client-server computing
architectures that enable the functional
partitioning of applications between cli-
ents and servers.

Mobile Data Access: Mobile data ac-
cess addresses issues such as how
server data can be delivered to client
hosts, how data over wireless and mo-
bile networks is structured, and how the
consistency of client cache is ensured
effectively. The adaptive strategies for
mobile data access depend largely on
the type of communication links, the
connectivity of mobile hosts, and the
consistency requirements of applica-
tions. In our view, mobile data access
provides another way to characterize
the impact of mobile computing con-
straints on information access.

It should be noted that these new
paradigms are closely related to each
other. For example, the implementation
for data delivery strategies and ex-
tended client-server architectures may
involve the use of adaptation solutions.
Extended client-server architectures
might be needed to take advantage of
new data delivery strategies. The cate-
gorization of new paradigms in this sur-
vey paper provides a comprehensive
way to understand and analyze various
proposed techniques in building mobile
client-server information systems.

1.2 Organization of this Paper

The remainder of this paper is orga-
nized as follows. In Section 2, we dis-
cuss the paradigm of mobile client-

server computing, namely, mobile-
aware adaptation. The emphasis in this
section is on understanding how adap-
tation strategies can be built into sys-
tem and application components. In
Section 3, we describe how the client-
server model has been extended to
adapt to the dynamic environments. In
Section 4, we examine proposed tech-
niques for mobile data access, including
server data dissemination and client
cache management. Finally, Section 5
reviews and analyzes three research
prototypes of mobile client-server infor-
mation systems, namely, Bayou, Odys-
sey, and Rover. Concluding remarks are
offered in Section 6.

2. MOBILE-AWARE ADAPTATION

Mobile clients could face wide varia-
tions and rapid changes in network con-
ditions and local resource availability
when accessing remote data. In order to
enable applications and systems to con-
tinue to operate in such dynamic envi-
ronments, the mobile client-server sys-
tem must react by dynamically
adjusting the functionality of computa-
tion between the mobile and stationary
hosts. In other words, the computation
of clients and servers has to be adaptive
in response to the changes in mobile
environments [Katz 1994].

In Satyanarayanan [1996], the range
of strategies for application and system
adaptation is identified, as shown in
Figure 1. The range is delimited by two
extremes. At one extreme, adaptation is
entirely the responsibility of individual
applications. This approach, called
laisse-faire adaptation, avoids the need
for system support. The other extreme,
called application-transparent adapta-
tion, places the entire responsibility for
adaptation on the system. A typical case
of this approach is to use proxies to
perform adaptation on behalf of applica-
tions. Between these two extremes lies
a spectrum of possibilities that are re-
ferred to as application-aware adapta-
tion. This approach supports collabora-
tive adaptation between the

Client-Server Computing in Mobile Environments • 119

ACM Computing Surveys, Vol. 31, No. 2, June 1999

applications and the system. That is,
the applications can decide how to best
adapt to the changing environment
while the system provides support
through the monitoring of resources and
the enforcing of resource allocation deci-
sions. This section will discuss different
proposed adaptation approaches.

2.1 Application-Transparent Adaptation

Many existing client-server applications
are built around the assumption that
the environment of a client does not
change. These applications are usually
unaware of the mobility and make cer-
tain assumptions about the resource
availability. The approach of applica-
tion-transparent adaptation attempts to
make these applications work with no
modification in mobile environments.
This is done by having the system
shield or hide the differences between
the stationary and mobile environments
from applications. Examples of this ap-
proach include Coda [Satyanarayanan
et al. 1990; Kistler and Satyanarayanan
1992], Little Work [Honeyman et al.
1992], and WebExpress [Housel and
Lindquist 1996; Chang et al. 1997]. In
these examples, a local proxy runs on
the mobile host and provides an inter-
face for regular server services to the
applications. The proxy attempts to mit-
igate any adverse effects of mobile envi-
ronments.

2.1.1 File System Proxy. The basic
idea is to use a file system proxy to hide
mobile issues from applications and to
emulate file server services on the mo-

bile computers (see Figure 2). The Coda
file system [Kistler and Satyanaray-
anan 1992], pioneering this approach,
uses a file system proxy to make exist-
ing applications work with no modifica-
tion. The proxy logs all updates to the
file system during disconnection and re-
plays the log on reconnection. Auto-
matic mechanisms for conflict resolu-
tion using optimistic concurrency
control are provided for directories and
files through the proxy and the file
server. The file system proxy in Coda
facilitates the following features:

Disconnected Operations: A small col-
lection of trusted Coda servers exports a
location-transparent UNIX file name
space to a larger collection of untrusted
clients. On each client, a user-level pro-
cess, Venus, manages a file cache on the
local disk. Venus acts as a file system
proxy and bears the brunt of discon-
nected operations. Venus operates in
one of three states: hoarding, emulat-
ing, and reintegrating. In the hoarding
state, server files are pre-fetched onto
the mobile computer. Upon disconnec-
tion, Venus enters the emulating state
and begins logging updates in a client
modify log. In this state, Venus per-
forms log optimizations to improve per-
formance and reduce resource usage.
Upon reconnection, Venus enters the re-
integrating state, where it synchronizes
its cache with the servers, propagates
updates from the client modify log, and
returns to the hoarding state.

In anticipation of disconnection, users
may hoard data in the cache by provid-
ing a prioritized list of files in a per-

Laissez faire
(No system support)

Application-transparent
(No changes to applications)

Application-awareness
(collaboration)

Figure 1. Range of adaptation strategies.

120 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

client hoard database. Venus combines
the hoard database information with
LRU (Least Recently Updated) informa-
tion to implement a cache management
policy. Periodically, Venus walks the
cache to ensure that the highest priority
items are present and consistent with
the servers. A user may also explicitly
request a hoard walk at any time. Since
consistency is based on optimistic rep-
lica control, update conflicts may occur
upon reintegration. The system ensures
the detection and confinement of update
conflicts and provides mechanisms to
help the users recover from them.

Weakly Connected Operations: The
file system proxy pre-fetches server
data into the client cache and uses ob-
ject or volume1 callbacks for the cache
validation in order to support weak con-
nectivity. Volume call back is pessimis-
tic in that invalidating a volume invali-
dates all the objects in this volume.
However, the gain is in reducing cache
invalidation information that needs to
be communicated between the client
and the server. The file system proxy
can determine, based on factors such as
cached data structures and connectivity
changes, whether object or volume call-
backs are best for a particular connec-
tion. The variable granularity of call-
back attempts to minimize the cost of
validation and invalidation to provide

effective support of operations for
weakly connected clients.

Isolation-only Transactions: Discon-
nected operations may result in data
inconsistency due to conflicting opera-
tions on multiple disconnected comput-
ers. Isolation-only Transaction (IOT) is
proposed to automatically detect read/
write conflicts. The execution of IOT is
realized by the file system proxy code in
the Coda system. An IOT provides con-
sistency guarantees depending on the
system connectivity conditions. Unlike
traditional transactions, it does not
guarantee failure atomicity and only
conditionally guarantees permanence.

When an IOT is completed, it enters
either the committed or the pending
state, depending on the connectivity
condition (see Figure 3). If the execution
of an IOT does not contain any parti-
tioned file access, it is committed and
its result is made visible on the servers.
Otherwise, it enters the pending state
for later validation. The result is tempo-
rarily held within the client’s local
cache and is visible only to subsequent
processes on the same client. When the
relevant partitions are repaired, the
IOT is validated according to the isola-
tion consistency criteria, namely, serial-
izability. If the validation succeeds, the
result will be immediately reintegrated
and committed to the servers. Other-
wise, the IOT enters the resolution
state. When it is automatically or man-1A volume is a collection of related objects.

Fixed NetworkMobile Host

File Server

Mobile

File System Proxy

Applications

Mobile File System APIs

File

System

APIs

Figure 2. File system proxy.

Client-Server Computing in Mobile Environments • 121

ACM Computing Surveys, Vol. 31, No. 2, June 1999

ually resolved, it will commit the new
result to the server.

In addition to the Coda project, other
projects address similar adaptation is-
sues for mobile file system applications.
In the Rover project, a file system proxy
is added to the Rover Toolkit’s object-
based model [Joseph et al. 1996; 1997].
It allows the Rover Toolkit to support
both a file model and an object model
for mobile applications. The file system
proxy in Rover Toolkits also addresses a
number of issues related to file caching,
prefetching, and conflict detection and
resolution. These issues are similar to
those addressed by the Coda file sys-
tem, except that they are associated
with integrating a file system model
with an object-based model. The Rover
file system proxy consists of two compo-
nents: a user-level installable local file
system proxy located on the client and a
remote file system proxy running on a
Rover server. The two components work
together with the use of Rover’s queued
communication mechanism that sup-
ports automatic message compression
and batching. The Ficus file system is
another file system supporting discon-
nected operations with application-
transparent adaptation, but relies on
version vectors to detect conflicts [Hei-
demann et al. 1992]. The Little Work
project caches files for smooth discon-
nection from an AFS file system [Hon-

eyman et al. 1992]. Conflicts are de-
tected and reported to the user for
manual resolution.

2.1.2 Web Proxy. Web proxy enables
Web browsing applications to function
over wireless links without imposing
changes on browsers and servers. Web
proxy can be used to prefetch and cache
Web pages to the mobile client’s ma-
chine, to compress and transform image
pages for transmission over low-band-
width links, and to support discon-
nected and asynchronous browsing op-
erations.

WebExpress [Housel and Lindquist
1996] uses this approach to intercept
and control communications over the
wireless link for the purposes of reduc-
ing traffic volume and optimizing the
communication protocol to reduce la-
tency. Two components are inserted into
the data path between the Web client
and the Web server: the Client Side
Intercept (CSI) process that runs in the
client mobile device and the Server Side
Intercept (SSI) process that runs within
the wired and fixed network (see Figure
4).

The CSI intercepts HTTP requests
and, together with the SSI, performs
optimizations to reduce bandwidth con-
sumption and transmission latency over
the wireless link. From the viewpoint of
the browser, the CSI appears as a local

user invocation Committed

file accesses

without partitioned

& reintegration

validation succeed

Resolution

validation fail

Pending
file accesses

with partitioned

Running

Figure 3. A state transition diagram for IOT execution.

122 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

Web proxy that is co-resident with the
Web browser. On the mobile host, the
CSI communicates with the Web
browser over a local TCP connection
(using the TCP/IP “loopback” feature)
via the HTTP protocol. Therefore, no
external communication occurs over the
TCP/IP connection between the browser
and the CSI. No changes to the browser
are required other than specifying the
(local) IP address of the CSI as the
browser’s proxy address. The CSI com-
municates with an SSI process over a
TCP connection using a reduced version
of the HTTP protocol. The SSI reconsti-
tutes the HTML data stream and for-
wards it to the designated CSI Web
server (or proxy server). Likewise, for
responses returned by a Web server (or
a proxy server), the CSI reconstitutes
an HTML data stream received from the
SSI and sends it to the Web browser
over the local TCP connection as though
it came directly from the Web server.

The proxy approach implemented in
WebExpress offers the transparency ad-
vantage to both Web browsers and Web
servers (or proxy servers) and, there-
fore, can be employed with any Web
browser. The CSI/SSI protocols facili-
tate highly effective data reduction and
protocol optimization without limiting
any of the Web browser functionality or
interoperability. WebExpress optimiza-
tion methods are summarized below:

Caching: Both the CSI and SSI cache
graphics and HTML objects. If the URL
specifies an object that has been stored
in the CSI’s cache, it is returned imme-
diately as the response. The caching
functions guarantee cache integrity
within a client-specified time interval.
The SSI cache is populated by responses
from the requested Web servers. If a
requested URL received from a CSI is
cached in the SSI, it is returned as the
response to the request.

Differencing: CSI requests might re-
sult in responses that normally vary for
multiple requests to the same URL
(e.g., a stock quote server). The concept
of differencing is to cache a common
base object on both the CSI and SSI.
When a response is received, the SSI
computes the difference between the
base object and the response and then
sends the difference to the CSI. The CSI
then merges the difference with its base
form to create the browser response.
This same technique is used to deter-
mine the difference between HTML doc-
uments.

Protocol reduction: Each CSI connects
to its SSI with a single TCP/IP connec-
tion. All requests are routed over this
connection to avoid the costly connec-
tion establishment overhead. Requests
and responses are multiplexed over the
connection.

Fixed NetworkMobile Hosts

TCP/IP Connection

(or Proxy Server)

Web Server

Side Intercept (SSI)

Web Express Server
Side Intercept (CSI)

Web Express Client

(TCP/IP)HTTP
(TCP/IP)

HTTP

Web Browser

Figure 4. The WebExpress intercept model.

Client-Server Computing in Mobile Environments • 123

ACM Computing Surveys, Vol. 31, No. 2, June 1999

Header reduction: The HTTP protocol
is stateless, requiring that each request
contain the browser’s capabilities. For a
given browser, this information is the
same for all requests. When the CSI
establishes a connection with its SSI, it
sends its capabilities only on the first
request. This information is maintained
by the SSI for the duration of the con-
nection. The SSI includes the capabili-
ties as part of the HTTP request that it
forwards to the target server (in the
wire line network).

The Mowgli project [Kojo et al. 1994]
also uses a similar approach to support
Web applications over wireless links
(see Figure 5). A specialized HTTP
agent and a specialized HTTP proxy are
applied to: (1) reduce unnecessary mes-
sage exchange, (2) reduce the volume of
data transmitted over the wireless link,
and (3) support disconnected opera-
tions. The HTTP agent acts as a local
Web proxy on mobile client hosts while
the HTTP proxy is located in the fixed
network. With the agent-proxy ap-
proach, neither Web clients nor servers
need to be modified. The HTTP agent
intercepts requests generated by the
Web client on the mobile node. It com-
municates with the HTTP proxy in the
fixed network. Both the agent and the
proxy maintain a cache of their own to
improve performance over low-band-
width links.

2.2 Application-Aware Adaptation

The approach of application-transpar-
ent adaptation does not require chang-

ing existing applications to run in mo-
bile environments. However, it could
sacrifice functionality and performance.
As applications are shielded from deal-
ing with mobility, it might be very hard
for the system to make adaptation deci-
sions that meet the needs of different
and diverse applications. As a result, it
may have to require some manual inter-
vention by the user (e.g., having the
user indicate which data to pre-fetch
onto the mobile device) to make applica-
tions run smoothly. Such user-adminis-
tered manual actions could be less agile
to adapt to the changing environment.
To address these problems, application-
aware adaptation has been developed.

Application-aware adaptation allows
applications or their extensions to react
to the mobile resource changes. One
way to realize the application-aware ad-
aptation is through the collaboration be-
tween the system and individual appli-
cations. The system monitors resource
levels, notifies applications of relevant
changes, and enforces resource alloca-
tion decisions. Each application inde-
pendently decides how best to adapt
when notified. In a video player applica-
tion, for example, such adaptation al-
lows the video player system to scale
back quality (and resource consump-
tion) when application performance is
poor and to attempt to discover addi-
tional resources by optimistically scal-
ing up usage.

Depending on where the adaptive ap-
plication logic resides, the approaches of
application-aware adaptation can be di-

WWW
Client

Mowgli Socket

Mowgli

MDCS

Wireless
Interface

HTTP
Agent

WWW

Wireless
Interface

Network
InterfaceInterface

Virtual

Mobile IP

TCP / UDP

Socket

HTTP
Mowgli

Proxy

Server

Socket

TCP / UDP

IP

Network
Interface

Fixed HostMobile-Connection Host

Mobil e Node

... ...

Fixed Net

MDCS

Figure 5. The Mowgli wireless Web browsing architecture.

124 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

vided into the following categories: cli-
ent-based application adaptation, client-
server application adaptation, and
proxy-based application adaptation. The
client-based adaptation allows the ap-
plications on mobile clients to react to
the environmental changes, while cli-
ent-server adaptation might have appli-
cations on both client and server to
adapt to the changes. The proxy-based
adaptation supports application-specific
adaptation on the proxy server in the
fixed networks. The application-specific
proxies have been used as an intermedi-
ary between existing servers and heter-
ogeneous mobile clients [Brooks et al.
1996; Brewer et al. 1998]. The proxies
can perform aggressive computation
and storage on behalf of mobile clients.
These approaches can be complemen-
tary for a client-server information sys-
tem. For example, both client-based and
proxy-based adaptation can be used to-
gether in a single system to deal with
the mobility.

2.2.1 Client-Based Application Adap-
tation. The Odyssey project [Noble et
al. 1997] demonstrates a client-based
collaborative adaptation approach for
applications on mobile clients. In the
collaborative adaptation, the system
provides the mechanisms of adaptation,
while the applications are free to specify
adaptation policy. The division of re-
sponsibility addresses the issues of ap-
plication diversity and concurrency. In a
mobile information system, application
data can be diverse in terms of data
formats and consistency requirements.
For example, the application data may
be stored in one or more general-pur-
pose repositories such as file servers,
SQL servers, or Web servers. Alterna-
tively, it may be stored in more special-
ized repositories such as video libraries,
query-by-image-content databases, or
back ends of geographical information
systems. The application data can also
have different dimensions for the speci-
fication and representation. For exam-
ple, video data can have at least two
specification dimensions: frame rate

and image quality of individual frames.
Spatial data, such as topographical
maps, has dimensions of minimum fea-
ture size and resolution. Furthermore,
concurrent applications can be very use-
ful for mobile users. For example, an
information filtering application may
run in the background monitoring data
such as stock prices and alert the user
as appropriate. The collaborative adap-
tation accommodates the application di-
versity by allowing applications to de-
termine how application data presented
at a client matches the reference copy at
the server based on resource levels. It
also supports the application concur-
rency by allowing the system to retain
control of resource monitoring and arbi-
tration.

The application-aware adaptation in
Odyssey is performed through the use of
type-specific operations between the
system and applications. The type-
awareness is incorporated into both the
system for efficient resource usage and
the applications for differential han-
dling of data types. The system-level
knowledge of data types facilitates the
optimization of the resource usage for
different and diverse applications. For
example, the size distribution and con-
sistency requirements of data from an
NFS server differ substantially from
those of relational database records. Im-
age data may be highly compressible
using one algorithm, but not another.
Video data can be efficiently shipped
using a streaming protocol that drops
rather than retransmits lost data; in
contrast, only reliable transmissions are
acceptable for file or database updates.

Odyssey incorporates type-awareness
via specialized code components called
wardens. A warden encapsulates the
system-level support at a client to effec-
tively manage a data type. To fully sup-
port a new data type, an appropriate
warden has to be written and incorpo-
rated into Odyssey at each client. The
wardens are subordinate to a type-inde-
pendent component called the viceroy,
which is responsible for centralized re-
source management. The collaborative

Client-Server Computing in Mobile Environments • 125

ACM Computing Surveys, Vol. 31, No. 2, June 1999

relationship in the application-aware
adaptation is thus realized in two parts.
The first, between the viceroy and its
wardens, is data-centric: it defines the
consistency levels for each data type
and factors them into resource manage-
ment. The second, between applications
and Odyssey, is action-centric: it pro-
vides applications with control over the
selection of consistency levels supported
by the wardens.

A number of similar approaches have
also been discussed in the literature. In
the Prayer system [Bharghavan and
Gupta 1997], the application-aware ad-
aptation is supported with the use of
abstractions: QoS classes and adapta-
tion blocks. A QoS class is defined by
specifying the upper and lower bounds
for resources. An application divides its
execution into adaptation blocks. An ad-
aptation block consists of a set of alter-
native sequences of execution, each as-
sociated with a QoS class. At the
beginning of an adaptation block, an
application specifies the QoS classes
that it is prepared to handle, along with
a segment of code associated with each
class and an action to take should the
QoS class be violated within the code
segment.

In Welling and Badrinath [1998], ap-
plication-aware adaptation is imple-
mented under an event delivery frame-
work. In the framework, a notification
subsystem, called event channel, deliv-
ers different events that are generated
by the environment monitor to applica-
tions based on delivery policies. For ex-
ample, a low memory event may be de-
livered to each application in series
until enough memory is freed for other
uses, while a low bandwidth event can
be delivered to each application in par-
allel. The applications are notified of
the events to react to the environmental
changes.

2.2.2 Client-Server Application Adap-
tation. The Rover Toolkit [Joseph et
al. 1996; 1997] supports the application-
aware adaptation through the use of
relocatable dynamic object (RDO). The

key task of the programmer when im-
plementing an application-specific ad-
aptation with Rover is to define RDOs
for the data types manipulated by the
application and for the data transported
between the client and the server. The
programmer divides the program that
contains the RDOs into portions that
run on the client and portions that run
on the server; these parts communicate
by means of queuing RPC. The pro-
grammer also defines the methods that
update objects, including code for con-
flict detection and resolution.

At the level of RDO design, applica-
tion designers have semantic knowledge
that is very useful in implementing ap-
plication-aware adaptation. By tightly
coupling data with program code, appli-
cations can manage resource utilization
more carefully than possible with a clas-
sic file or object system that handles
only generic data. For example, an RDO
can include compression and decom-
pression methods along with com-
pressed data in order to obtain applica-
tion-specific and situation-specific
compression, reducing both network
and storage utilization. The RDO ap-
proach provides a generic framework to
implement type-specific or application-
specific operations for application-
aware adaptation.

The application that consists of these
RDO modules actively cooperates with
the runtime system of the Rover Toolkit
to import RDOs onto the local machine,
invoke well-defined methods on those
objects, export logs of method invoca-
tions on RDOs to servers, and reconcile
the client’s copies of the objects with the
server’s.

In Davis et al. [1998], a tuple space
based platform, called L2imbo, is pro-
posed to support mobile distributed ap-
plications and adaptation. The platform
offers an asynchronous programming
model and architecture for reporting
and propagating QoS information about
mobile environments. The L2imbo ar-
chitecture supports mechanisms of ad-
aptation with the use of system and

126 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

application agents that interact with
the tuple space.

2.2.3 Proxy-Based Application Adap-
tation. The application-specific proxy
has been proposed as an intermediary
between clients and servers to perform
computation intensive and storage in-
tensive tasks, such as data type specific
lossy compression, on behalf of clients
[Brooks et al. 1996; Brewer et al. 1998;
Zenel and Duchamp 1997]. This proxy
architecture reduces the bandwidth de-
mands on the infrastructure through
lossy compression and allows legacy and
other nonstandard (including thin) cli-
ents to inter-operate with existing serv-
ers. The proxy-based application adap-
tation allows the proxy agents to react
to the environmental changes on behalf
of mobile clients. This approach avoids
inserting adaptation machinery at each
origin server. From the client’s perspec-
tive, the proxy is simply a server that
gets the data from someplace else.

In the BARWAN project [Brewer et
al. 1998], the application specific proxy
uses the transcoders (i.e., proxy agents)

to optimize the quality of service for the
client in real time (see Figure 6). To use
transcoding to adapt to network varia-
tion, the proxy must have an estimate of
the current network conditions along
the path from the proxy to the client.
SPAND (Shared Passive Network Per-
formance Discovery), a network mea-
surement system, allows a measure-
ment host to collect the actual
application-to-application network per-
formance (e.g., available bandwidth and
latency) between proxies and clients.
SPAND monitors end-to-end bandwidth
and connectivity to the clients (and
servers) and notifies the proxy of any
changes, which may result in changes in
transcoding to adjust the quality of ser-
vice. The original servers are unaware
of the transformations or of the limited
capabilities of the clients or networks.

Compact HTML [CompactHTML 1998]
is a W3C submission of a standard for
small information appliances. It defines
a subset of HTML for small information
appliances, such as smart phones, smart
communicators, and mobile PDAs. The

App Support

Client app

App Support

Client app

Video

Server

Proxy

SPAND

Transcoders

Image

PostScript

Audio

bandwidth
Medium

bandwidth
High

Low
bandwidth

Figure 6. A proxy-based adaptation architecture.

Client-Server Computing in Mobile Environments • 127

ACM Computing Surveys, Vol. 31, No. 2, June 1999

standard is intended as guidelines for
manufacturers of small information de-
vices, service providers, carriers, and soft-
ware developers. Another similar lan-
guage (which is relatively less compliant
to the W3C HTML recommendation) is
the Hand-held Device Markup Language
(HDML) [HDML 1997]. The HDML stan-
dard has been adapted into the Wireless
Markup Language (WML), which makes
up the application and presentation lay-
ers of the Wireless Application Protocol
(WAP) stack, whose specification is being
developed by the WAP forum [WAP
1996], as a de facto standard. WAP uses
WML and provides third party proxies
(via a session-layer protocol) as a means
to negotiate device capabilities in terms of
content characteristics. The WAP archi-
tecture is shown in Figure 7. The WAP
proxies are capable of adapting to the
mobile devices by negotiating and filter-
ing the HTML Web content. Filtering is
performed as a translation to and from a
compact subset of the HTML language.
The filtering process itself can be pre-
scribed or automated, based on capability
negotiation.

3. EXTENDED CLIENT-SERVER MODEL

Another way to characterize the client-
server computing in mobile environ-
ments is to examine the effect of mobil-
ity on the client-server computing
model. In a client-server information
system, a server is any machine that
holds a complete copy of one or more
databases. A client is able to access data
residing on any server with which it can
communicate. Classic client-server sys-
tems assume that the location of client
and server hosts does not change and
the connection among them also does
not change. As a result, the functional-
ity between client and server is stati-
cally partitioned. In a mobile environ-
ment, however, the distinction between
clients and servers may have to be tem-
porarily blurred [Satyanarayanan
1996], resulting in an extended client-
server model shown in Figure 8. The
resource limitations of clients may re-
quire certain operations normally per-
formed on clients to be performed on
resource-rich servers. Conversely, the
need to cope with uncertain connectivity
requires clients to sometimes emulate

WAP
Proxy

Filter

Web
Server

Filter
WAP Proxy

Binary
WML

WML

WML

Binary
WML

Wireless
Network

HTML

WTA
Server

Binary
WML

HTML

Defined by WAPAP

Not defined by WAPAP

Figure 7. The WAP architecture.

128 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

the functions of a server. An extreme
case is called the thin client architecture
that offloads most application logic and
functionality from clients to stationary
servers. In the thin client architecture,
applications in stationary servers are
usually mobile-aware and optimized for
mobile client devices. The thin client
architecture is especially suitable for
dumb terminal or small PDA applica-
tions. The other extreme case is the full
client architecture. The full client archi-
tecture emulates server functions on the
client devices and, therefore, is able to
minimize the uncertainty of connectiv-
ity and communications.

3.1 Thin Client Architecture

The InfoPad project [Le et al. 1994]
demonstrates the approach of thin cli-
ent architecture. The InfoPad system is
composed of four layers shown in Figure
9: Pad, InfoNet, Type Servers, and Ap-
plications. The Pad is a low power, por-
table multimedia terminal that is capa-
ble of displaying text and graphics,
playing audio and compressed video, re-
cording audio, and capturing pen input.

The InfoNet layer presents the soft-
ware layer above the Pad with an ab-
straction in which each pad appears as
a stationary, network-connected, multi-
media terminal. This layer contains the
routing algorithms to make mobility
seamless and the routines to manage
the wireless network resources (e.g., al-
location of frequencies to pads).

The type servers make the pad appear
as a typical workstation to applications;
this allows for compatibility with stan-

dard workstation software. The type
servers shield applications from knowl-
edge of the mobile environments and
terminal hardware. However, applica-
tions are optimized for use on the pad.
The optimization takes advantage of the
special characteristics of the pad, such
as small screen size, lack of a keyboard,
and support for handwriting and speech
recognition.

While applications in the InfoPad sys-
tem are customized for the characteris-
tics of the pad, they do not contain code
that allows them to dynamically adapt
to changes in mobile networks. Instead,
mobile-aware adaptation is largely per-
formed in the InfoNet and type server
layers. In this sense, the adaptation in
the InfoPad system can be characterized
as application-transparent adaptation
rather than application-aware adapta-
tion.

The thin client architecture from CIT-
RIX Corporation allows a variety of re-
mote computers, regardless of their plat-
form, to connect to a Windows NT
terminal server to remotely access a pow-
erful desktop and its applications [CIT-
RIX 1998]. A server called MetaFrame
runs under Windows NT in the desktop
machine and communicates with the thin
clients executing at the remote computers
using the Independent Computing Archi-
tecture protocol (ICA). The ICA client and
the MetaFrame server collaborate to dis-
play the virtual desktop on the remote
computer screen. They also collaborate to
process mouse and keyboard events, and
to execute programs and view data stored
at the server. All executions are remote
and none takes place at the client porta-
ble computer. A research project at Mo-
torola [Duran and Laubach 1999] ex-
tended CITRIX’s thin client architecture
so that it is optimized in the wireless
environment. The work pointed out that
bandwidth limitation is not as detrimen-
tal to the thin client performance as net-
work latency. This is because the thin
clients’ use of bandwidth is limited.

W4 [Bartlett 1994] applies the tech-
nique of dividing application functional-
ity between a small PDA and a power-

Fixed Network

Mobile Host

Client
Code

Code
Code Server

Server

Code
Client

Figure 8. Extended client-server model.

Client-Server Computing in Mobile Environments • 129

ACM Computing Surveys, Vol. 31, No. 2, June 1999

ful, stationary host for Web browsing.
Other thin client examples include the
Top Gun Wingman and Top Gun Media-
Board applications in the BARWAN
project [Brewer et al. 1998].

3.2 Full Client Architecture

Mobile clients must be able to use net-
works with rather unpleasant charac-
teristics: intermittence, low bandwidth,
high latency, or high expense. The con-
nectivity with one or more of these prop-
erties is referred to as weak connectiv-
ity. In the extreme case, mobile clients
will be forced to work under the discon-
nected mode. The ability to operate in
disconnected mode can be useful even
when connectivity is available. For ex-
ample, disconnected operations can ex-
tend battery life by avoiding wireless
transmission and reception. It can re-
duce network charges, an important
feature when charge rates are high. It
allows radio silence to be maintained, a
vital capability in military applications.

Finally, it is a viable fallback position
when network characteristics degrade
beyond usability.

A full client architecture can be used
to effectively support the disconnected
or weakly connected clients. Compared
to a thin client architecture, the full
client architecture is at the other ex-
treme of the range of extended client-
server model. The full client architec-
ture supports the emulation of functions
of servers at the client host so that
applications can be executed without
fully connecting to remote servers. The
emulation can be supported through a
proxy or a “lightweight” server residing
on client hosts. For example, a proxy
can emulate some database operations
to allow mobile users to work in a dis-
connected mode. Systems, enabling the
full client architecture, include CODA
and WebExpress.

Pad

InfoNet

Applications

Type Server
Type Server

X11

Type Server

AudioFile

Application

Generic X

Application

X Telephone

Figure 9. InfoPad system layering.

130 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

3.3 Flexible Client-Server Architecture

Flexible client-server architecture gen-
eralizes both thin client and full client
architectures in that the roles of clients
and servers and application logic can be
dynamically relocated and performed on
mobile and stationary hosts (see Figure
10). In the flexible architecture, the dis-
tinction between clients and servers
may be temporarily blurred for pur-
poses of performance and availability.
Furthermore, the connection between
clients and servers can be dynamically
established during the execution of ap-
plications (e.g., for the service hand-
offs).

3.3.1 Mobile Objects. Mobile objects
(also known as mobile agents) are pro-
gramming entities that can freely roam
the network. Mobile objects enable cli-
ent functions to run not only on mobile
hosts, but also on stationary hosts
as well. Furthermore, mobile objects
allow clients to download the server
code to the mobile host for execution.
Mobile objects can contain threads and,
therefore, be active. They can maintain
state information and make intelligent
decisions using it. They differ from
downloadable applets in that they can
independently roam among different
machines and are not limited to being
downloaded once from server to client.

AgentTcl (developed at Dartmouth Col-
leage) [Gray 1995], Odyssey (developed
by General Magic) [General Magic
1997], and Aglets (developed by IBM)
[IBM 1997] are examples of language
tools that can be used to develop mobile
objects.

One of the challenges to using mobile
objects in wireless environments is how
to implement the object transportation
in a frequently disconnected or a weakly
connected environment. The Rover Tool-
kit [Joseph et al. 1996; 1997] provides
mobile application support based on the
mobile object idea. In the Rover Toolkit,
a relocatable dynamic object (RDO) is
an object (code and data) with a well-
defined interface that can be dyna-
mically loaded into a client computer
from a server computer, or vice versa, to
reduce client-server communication re-
quirements.

3.3.2 Collaborative Groups. A com-
monly occurring case may be several
users disconnected from the rest of the
system while actively collaborating; a
canonical example is a group of col-
leagues taking a business trip together.
Rather than giving the members of this
disconnected working group access only
to the data that they had the foresight
to copy to their personal machine, a
collaborative group architecture grants

Client

User

Interface

Application Logic

Data

Server

Figure 10. A flexible client-server computing.

Client-Server Computing in Mobile Environments • 131

ACM Computing Surveys, Vol. 31, No. 2, June 1999

any group member access to any data
that is available to the group.

The architecture is based on a divi-
sion of functionality between servers,
which store data, and clients, which
read and write data managed by serv-
ers. A server is any machine (e.g., a
mobile host) that holds a complete copy
of one or more databases. A client is
able to access data residing on any
server to which it can communicate; and
conversely, any machine holding a copy
of a database, including personal lap-
tops, should be willing to service read
and write requests from other nearby
machines.

In this architecture, portable comput-
ers can be servers for some databases
and clients for others. The Bayou sys-
tem [Demers et al. 1994; Terry et al.
1995] is an example that implements
the collaborative group architecture.

3.3.3 Application-Specific Proxy. The
application-specific proxy acts as an
intermediary between clients and serv-
ers to perform computation-intensive
and storage-intensive tasks on behalf of
clients. An application-specific proxy on
a stationary host supports proxy agents
(which can be fixed or mobile) to dynam-
ically “transcode” or “distill” application
data to reduce the bandwidth consump-
tion between the proxy and the mobile
client. This proxy allows legacy and
other nonstandard (including thin) cli-
ents to inter-operate with existing serv-
ers. From the client’s perspective, the
proxy is simply a server that gets the
data from someplace else. The examples
of application-specific proxies are dis-
cussed in Brooks et al. [1996], Brewer et
al. [1998], and Zenel and Duchamp
[1997].

3.3.4 Virtual Mobility of Servers. In
a wireless information system, informa-
tion (data) servers are connected via
fixed networks to provide information
services to mobile users. The replication
(or partition) of information services
could help reduce the latency of remote
operations and balance the workloads of

data servers in a distributed and multi-
ple networks environment. The replica-
tion of information services in different
networks can be used to support the
application service handoffs for moving
mobile clients.

In a wireless environment, the client
moves around, perhaps to areas it has
never visited before; once in a new mi-
lieu (or a new network environment), it
will negotiate with some nearby ma-
chine to become a new coordinator to
continuously provide services for its op-
erations. The movement of mobile hosts
may result in a long path of communica-
tions in fixed networks because the
physical distance may not necessarily
reflect network and service distance be-
tween the client and the server, espe-
cially when the movement crosses the
boundary of different networks. The
long path of communication in fixed net-
works will increase the traffic and la-
tency of transactional services. If the
new coordinator could always use a
nearby or local information service site
as the client’s data server, the traffic
and latency in fixed networks can be
reduced for the continuous interaction
between the client and the information
service server. Therefore, the mobility
of the client introduces the concepts of
virtual mobility of servers and applica-
tion service handoffs.

An issue of supporting the virtual mo-
bility of servers is to minimize the over-
head of application service handoffs for
synchronous multi-server operations.
The work in Tait and Duchamp [1991;
1992] investigates how to maintain rep-
licas in a distributed file system that
supports mobile clients. This work as-
sumes that (1) clients’ movements can-
not be constrained, although patterns of
movement may exist; (2) the latency of
remote operations increases as the dis-
tance between hosts increases; (3) se-
quential sharing workload is not un-
common, but simultaneous sharing
(other than read-read) workload is rare;
and (4) a file cache of modest size is
maintained by each client. The design
goals in this work include: minimizing

132 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

synchronous multi-server operations;
easing the addition and deletion of
server sites; and allowing for incomplete
replication.

To achieve these goals, a primary-
secondary server hierarchy architecture
is proposed, as shown in Figure 11. Typ-
ically, the client need not contact any
(remote) server, but it communicates
synchronously with the (local) primary
server only. All updates are stored in
the client’s cache. The primary server
makes periodic pickups from the clients
it is currently servicing and propagates
updates back to the secondary servers
asynchronously. This pickup strategy
allows the client’s write operation to
return immediately after placing the
new value in its cache.

The primary servers are used as in-
termediaries between clients and sec-
ondary servers. Because the system
supports replica addition/deletion and
incomplete replication, a primary server
must learn about mapping from the file
system to the secondary servers. The
mapping is provided by calling a map-
ping server function specified by the cli-
ent. For example, someone from New
York who is visiting Seattle would call
the Seattle matchmaker to obtain a lo-
cal primary server site. The locally-cho-
sen primary server then calls the map-
ping server in New York to locate files
that the client wishes to access. After
the handoff of primary servers, the new
primary server can lazily copy the cli-
ent’s file from the old cache in the old

primary server. Therefore, this method
always connects the mobile client to the
local primary server for information ac-
cess in a distributed file system.

The work in Krishnakumar and Jain
[1994]; Jain and Krishnakumar [1994]
presents a system architecture and ap-
plication service handoff protocols for
virtual mobility of servers. The architec-
ture is based on replicated distributed
servers connected to users via a per-
sonal communication services (PCS)
network. Under this architecture, as the
user moves out of one service area into
another, the local server at the new
service area takes over providing the
service. This service handoff for the vir-
tual mobility of the server is broadly
analogous to the PCS call handoff proce-
dure and also requires that service con-
tinuation is transparent with no inter-
ruptions.

For the application services handoffs,
a service coordinator, when informed
that the user has moved, initiates the
set-up of a conference call between the
current server, the mobile host, and the
new server so that the service can be
transparently handed off to the new
server. The coordinator can then termi-
nate the call with the old server.

Before the new server takes over dur-
ing a service handoff, it has to know
what the mobile user is currently doing
with the service, that is., the context of
the user with respect to the service.
Context information is the information
associated with a user and a service so

Matchmaker

Server
Mapping

Secondary 2

Secondary 1

PrimaryClient

Figure 11. The primary-secondary server hierarchy.

Client-Server Computing in Mobile Environments • 133

ACM Computing Surveys, Vol. 31, No. 2, June 1999

that the user can access different serv-
ers transparently. Part of the context is
static, including password and access
rights that do not change as the user
accesses information. However, the con-
text also includes dynamic session-spe-
cific data information such as how much
data has been read or modified by the
user, whether the changes are meant to
be transactional, whether the user holds
any locks to access the data, and so on.
In Elmagarmid et al. [1995], an ap-
proach called Reservation Algorithm
(RA) is proposed to avoid transaction log
transfer and the use of global commit
protocol.

4. MOBILE DATA ACCESS

Mobile data access enables the delivery
of server data and the maintenance of
client-server data consistency in a mo-
bile and wireless environment. Efficient
and consistent data access in mobile
environments is a challenge research
area because of weak connectivity and
resource constraints. The data access
strategies in a mobile information sys-
tem can be characterized by delivery
modes, data organizations, and consis-
tency requirements, etc. The mode for
server data delivery can be server-push,
client-pull, or hybrid. The server-push
delivery is initiated by server functions
that push data from the server to the
clients. The client-pull delivery is initi-
ated by client functions which send re-
quests to a server and “pull” data from

the server in order to provide data to
locally running applications. The hybrid
delivery uses both server-push and cli-
ent-pull delivery. The data organiza-
tions include mobility-specific data or-
ganizations like mobile database
fragments in the server storage and
data multiplexing and indexing in the
broadcast disk. The consistency require-
ments range from weak consistency to
strong consistency. Figure 12 illustrates
the new paradigm of mobile data access
for mobile information access. In this
section, we will examine various pro-
posed approaches that offer the new
paradigm of data access in mobile cli-
ent-server information systems.

4.1 Server Data Dissemination

In many applications (e.g., Web access),
the downstream data volume from serv-
ers to clients is much greater than the
upstream data volume from clients back
to servers. The unbalanced communica-
tions are referred to as asymmetrical
communications between clients and
servers. Application examples of asym-
metrical communications in wireless en-
vironments include Hughes’s DirectPC
(www.hns.com) and CAI’s Wireless In-
ternet Access (www.caiwireless.net),
where clients at mobile hosts usually
have a lower bandwidth cellular or
PSTN link while servers at fixed hosts
may have relatively high bandwidth
broadcast capability.

A challenge problem in supporting ap-

Databases Cache

Push

Server Push

Client Pull

Client Pull
Broadcast

Channel
Server

ClientServer

Figure 12. A mobile data access paradigm.

134 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

plications with asymmetrical communi-
cations is how to deliver server data and
information to a large number of clients.
To address this scalability problem, a
new information system architecture
that exploits broadcast-based dissemi-
nation capability of communications has
been proposed [Herman et al. 1987; Imi-
elinski and Badrinath 1994; Acharya et
al. 1995, 1997; Su and Tassiulas 1998].
The central idea is that the servers ex-
ploit the downstream communication
capacity in bandwidth by broadcasting
data to multiple clients. This arrange-
ment is called a push-based architec-
ture where data is pushed from the
server to the clients. In contrast, most
traditional client-server information
systems use pull-based data delivery to
provide data to locally running applica-
tions.

4.1.1 Broadcast Disks. When a server
continuously and repeatedly broadcasts
data to a client community, the broadcast
channel becomes a “disk” from which cli-
ents can retrieve data as it goes by. The
broadcasting data can be organized as
multiple disks of different sizes and
speeds on the broadcast medium
[Acharya et al. 1995]. The broadcast is
created by multiplexing chunks of data
from different disks onto the same broad-
cast channel. The chunks of each disk are
evenly interspersed with each other. The
chunks of the fast disks are repeated
more often than the chunks of the slow
disks (see Figure 13). The relative speeds
of these disks can be adjusted as a param-
eter to the configuration of the broadcast.
This use of the channel effectively puts

the fast disks closer to the client while at
the same time pushing the slower disks
further away.

This technique presents an opportu-
nity to more closely match the broadcast
to the workload at the client. Assuming
that the server has an indication of the
client access patterns (either by watch-
ing their previous activity or from a
description of intended future use from
each client), then hot pages or pages
that are more likely to be of interest to a
larger part of the client community can
be brought closer while cold pages can
be pushed further away. This, in effect,
creates an arbitrarily fine-grained
memory hierarchy, as the expected de-
lay in obtaining an item depends upon
how often that item is broadcast. The
broadcast disk technique, therefore,
provides improved performance for non-
uniformly accessed data.

In the simplest scenario, the server
can broadcast different items at the
same frequency. With the “flat” broad-
cast, the expected delay required prior
to obtaining an item is the same for all
items broadcast (namely, half a broad-
cast period) regardless of their relative
importance to the clients. This “flat”
approach has been adopted in earlier
work on broadcast-based information
system such as Datacycle [Herman et
al. 1987] and the work in Imielinski et
al. [1994a; 1994b]. By comparison, the
server can broadcast different items
with differing frequency; important
items can be broadcast more often than
others.

A A

A
A

F
E

D

CB
A

Figure 13. A broadcast program.

Client-Server Computing in Mobile Environments • 135

ACM Computing Surveys, Vol. 31, No. 2, June 1999

Similar to the broadcast disk concept,
a pyramid broadcasting method is used
to provide Video-On-Demand services to
mobile users [Vishwanath and Imielin-
ski 1995]. In pyramid broadcasting, the
most frequently requested movies are
multiplexed on the broadcast network,
resulting in radical improvement of ac-
cess time and efficient bandwidth utili-
zation.

4.1.2 Indexing on Air. In the “push-
based” approach, servers periodically
broadcast most frequently requested
data items (hot spots). The server
should dynamically adjust the content
of the broadcast hot spot, depending on
the periodically measured demand dis-
tribution. The client is lazy in that it
transmits only when necessary. The cli-
ent could also stay in the doze mode
(turning the power off) as much as pos-
sible. To minimize wake-up time, clients
can use selective tuning capabilities in
the broadcasting channel. In Imielinski
et al. [1994a; 1994b], the authors dis-
cuss basic methods for data organiza-
tion on the broadcast channel that pro-
vide selective tuning capabilities for
clients. In these methods, index infor-
mation is broadcast together with the
data. The index is structured so that the
following two parameters are mini-
mized:

—Query Time: Amount of time that it
takes for a client to issue a query
until the answer is received by the
client.

—Listening Time: Amount of time spent
by the client listening to the channel.

Query time is proportional to the overall
size of the broadcast data. Therefore,
the presence of the index increases the
query time since the presence of the
index increases the overall broadcast
size. However, the presence of the index
reduces the listening time. This, in
turn, reduces energy consumption be-
cause clients can use the selective lis-
tening capabilities in broadcasting
channels to stay in the doze mode and

minimize wake-up time, as demon-
strated in Imielinski et al. [1994a;
1994b].

4.2 Client Cache Management

Caching of frequently-accessed data
items is an important technique that
reduces contention and improves query
response times on narrow bandwidth
wireless links. The cached data can also
support disconnected or intermitted
connected operations. However, cache
pre-fetching and consistency strategies
can be greatly affected by the disconnec-
tion or weak connectivity of mobile cli-
ents. The weak connectivity makes
cache coherence expensive due to com-
munication latency and intermittent
failures. Pre-fetching (or hoarding) data
into the client cache prior to disconnec-
tion is a difficult challenge in mobile
client-server computing. This subsec-
tion describes an automated hoarding
approach and two cache validation
mechanisms.

4.2.1 Automated Hoarding. A useful
solution to support disconnected opera-
tions is hoarding, in which nonlocal files
are cached on the client cache prior to
disconnection. The difficult issue for
hoarding is which files should be se-
lected and stored locally. Possible solu-
tions include choosing the most recently
referenced files or asking the user to
participate at least peripherally in man-
aging hoard contents. The former ap-
proach might be wasteful of scarce
hoard space, while the latter requires
more expertise and involvement that
most users are willing to offer.

In the SEER system, an automated
predictive hoarding approach is devel-
oped [Kuenning and Popek 1997]. The
automated predictive hoarding is based
on the idea that a system can observe
user behavior, make inferences about
the semantic relationships between
files, and use those inferences to aid the
user. In SEER, an observer component
watches the user’s behavior and file ac-
cesses, classifying each access according

136 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

to type, converting path names to abso-
lute format, and feeding the results to a
correlator component. The correlator
component evaluates the file references,
calculating the semantic distances
among various files. These semantic
distances drive a clustering algorithm
that assigns each file to one or more
projects. When new hoard contents are
to be chosen, the correlator component
examines the projects to find those that
are currently active, and selects the
highest-priority projects until the maxi-
mum hoard size is reached. In this way,
SEER is able to operate without user
intervention (though the user might in-
volve informing the computer that a
disconnection is imminent).

The fundamental assumption of
SEER is that there is semantic locality
in user behavior. By detecting and ex-
ploiting this locality, a system can make
inferences about the relationships be-
tween various files. Once these relation-
ships are known, it is possible to auto-
mate the hoarding. To detect semantic
locality, SEER uses a concept known as
semantic distance. Conceptually, se-
mantic distance attempts to quantify a
user’s intuition about the relationship
between files. A low semantic distance
suggests that the files are closely re-
lated and thus are probably involved in
the same project, while a large value
indicates relative independence and dif-
ferent projects.

The semantic distance is based on
measurements of individual file refer-
ences, rather than looking at the files
themselves. The distance between refer-
ences is then summarized to produce a
value that is relevant to the individual
files. Several semantic distance mea-
surement methods are defined based on
file references in Kuenning and Popek
[1997].

4.2.2 Varied Granularity of Cache Co-
herence. Consistency methods in tradi-
tional client-server architecture can be
divided into two categories: (1) callback
approach when servers send invalida-
tion messages directly to the clients

that have cached the data items to be
updated and (2) detection approach
when clients send queries to servers to
validate cached data. The difficulty of
using these traditional methods in mo-
bile environments is due to the discon-
nection and weak connectivity of clients.
Frequently disconnected clients make it
very ineffective to use the detection ap-
proach. On the other hand, the classic
callback approach may also be very ex-
pensive, due to network latency or in-
termittent failures. After a long discon-
nection, many data items at the server
side may have been updated. In this
case, the time for the callback invalida-
tion of each data item can be substan-
tial on a low network.

In the Coda system [Satyanarayanan
et al. 1990; Kistler and Satyanarayanan
1992; Mummert and Satyanarayanan
1994], clients can track the server state
at multiple levels of granularity. A
server maintains version stamps for
each of its file volumes, in addition to
stamps on individual objects (or items).
When an object is updated, the server
increments the version stamp of the ob-
ject and that of its containing volume.
Clients cache volume version stamps in
anticipation of disconnection.

When connectivity is restored after a
network failure, the client presents vol-
ume stamps for validation. If a volume
stamp is still valid, then so is every
object cached from the volume. If a vol-
ume stamp is not valid, cached objects
from the volume need to be validated
individually. Even in this case, perfor-
mance is no worse than in the original
scheme [Mummert and Satyanarayanan
1994]. On the other hand, if the valida-
tion for each individual data item is not
possible due to slow connections, the
client can assume that all items in the
volume are invalid or defer the valida-
tion until the time when the item is
used. The experiments and measure-
ments from the Coda system confirm
that the varied granularity of cache co-
herence dramatically improve the speed
of cache validation [Mummert and Saty-
anarayanan 1994].

Client-Server Computing in Mobile Environments • 137

ACM Computing Surveys, Vol. 31, No. 2, June 1999

4.2.3 Cache Invalidation Reports. A
dissemination-based approach to the
problem of invalidating caches in wire-
less environments is proposed in Bar-
bara and Imielinski [1994] by utilizing
wireless broadcast channels. In this ap-
proach, a server periodically broadcasts
an invalidation report that reports data
items which have been changed. Rather
than querying a server directly regard-
ing the validation of cached copies, cli-
ents listen to these invalidation reports
over broadcast channels. This approach
is attractive because a server does not
need to know the location and connec-
tion status of its clients, and the clients
do not need to establish an “uplink”
connection to the server to invalidate
their caches.

Three algorithms are presented in
Barbara and Imielinski [1994], namely,
the Broadcasting Timestamps (TS), Am-
nesic Terminals (AT), and Signatures
(SIG). In the TS algorithm, the invalida-
tion report includes only the informa-
tion regarding the data items that have
been updated within the preceding w
seconds. The report includes the names
of these items and the timestamps at
which they were updated. The invalida-
tion report in the AT algorithm includes
the identifiers of data items that were
updated during the last broadcast pe-
riod L. In both the TS and AT algo-
rithms, clients must invalidate their en-
tire cache when their disconnection
period exceeds a specified length (w sec-
onds for TS and L seconds for AT). In
the SIG algorithm, the report contains a
set of combined signatures of data
items.2 The structure and size of these
signatures are designed to diagnose up

to f differing items. If more than f dif-
ferent items (it does not matter whether
these items had been cached or not) are
updated in the data server since the
combined signatures were last cached,
most items cached by the clients will be
invalidated by the SIG algorithm, al-
though many are in fact valid.

An improved invalidation report
method called Bits-Sequences (BS) is
proposed in Jing et al. [1997]; this
method adapts to long disconnected cli-
ents. In the Bit-Sequences (BS) algo-
rithm, the server broadcasts a set of bit
sequences. Each sequence consists of a
series of binary bits and is associated
with a timestamp. Each bit represents a
data item in a database. A bit “1” in a
sequence means that the item repre-
sented by the bit has been updated
since the time specified by the times-
tamp of the sequence. A bit “0” means
that that item has not been updated
since that time.

Clients must check the invalidation
report before they can use their caches
for query processing. If a bit sequence
among the sequence set with the most
recent timestamp equals to or predates
the disconnection time of the client, the
sequence will be used to invalidate its
caches. The data items represented by
these “1” bits in the sequence will be
invalidated. If there is no such sequence
(i.e., the disconnection time precedes
the timestamp of the highest sequence),
the entire cache in the client will be
invalidated.

Consider a database consisting of 16
data items. Figure 14 shows a Bit-Se-
quences (BS) structure reported by a
server at the time 250. Suppose a client
listens to the report after having slept
for 80 time units. That is, the client
disconnected at the time 170 (5250-80),
which is larger than TS~B2! but less
than TS~B1!. The client will then use
B2 to invalidate its caches. To locate the
items denoted by the two “1” bits in B2,
the client will check both B3 and B4
sequences, using the following proce-

2Signatures are checksums computed over the
value of data items in the database. A combined
signature is the Exclusive OR of a set of individ-
ual signatures. Each combined signature, there-
fore, represents a subset of data items. In the SIG
algorithm, m combined signatures are computed
such that an item i is in the set of combined
signature Sj (1 # j # m) with probability 1/~f
1 1!, where f is the number of differing items up
to which the algorithm can diagnose.

138 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

dure. To locate the second bit that is set
to “1” in B2, check the position of the
second “1” bit in B3. The second “1” bit
in B3 is in the 5th position; therefore,
check the position of the 5th “1” bit in
B4. Because B4 is the highest sequence
and the 5th “1” bit in B4 is in the 8th
position, the client concludes that the
8th data item was updated since the
time 170. Similarly, the client can de-
duce that the 12th data item has also
been updated since that time. There-
fore, both the 8th and 12th data items
will be invalidated. This method works
effectively for clients who have been
disconnected for a long time. It opti-
mizes the utilization of bandwidth for
invalidation report.

In Pitoura and Samaras [1998], a re-
vised version of invalidation reports is
designed to provide the semantics of
read-only transactions for mobile clients
without sending uplink requests to
servers.

5. CASE STUDIES

We conclude this review with a study of
three prototype systems for mobile in-
formation access. These systems serve
as a means of demonstrating how new
paradigms analyzed in the previous sec-

tions are being applied in practice. The
three systems, namely, Bayou, Odyssey,
and Rover, demonstrate some ap-
proaches of new paradigms for mobile
client-server computing. Bayou provides
a flexible client-server architecture in
which a server can be any machine that
holds a complete copy of one or more
databases. A portable computer may
also act as a server for some databases
and as a client for others. Odyssey sup-
ports application-aware adaptation
based on type-specific operations. Rover
provides a toolkit for distributed object-
based client-server computing. The relo-
catable objects in Rover enable a flexi-
ble client-server architecture for mobile
applications. The toolkit supports both
application-transparent and applica-
tion-aware adaptation.

5.1 Bayou

Bayou is a Xerox PARC research project
led by Douglas Terry. It is designed for
collaborative applications in a mobile
computing environment containing por-
table machines with intermittent net-
work connectivity [Demers et al. 1994;
Terry et al. 1994, 1995]. The focus of the
Bayou system has been on exploring
mechanisms that let mobile clients ac-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1

0 0 0 1 1 0 1 1

1 0

0 1 1 0

B1

B4

TS(B1)=200

TS(B2)=160

TS(B3)=140

TS(B4)=50

B3

B2

Figure 14. A Bit-Sequences example.

Client-Server Computing in Mobile Environments • 139

ACM Computing Surveys, Vol. 31, No. 2, June 1999

tively read and write shared data, such
as appointment calendars, bibliographic
databases, meeting notes, evolving de-
sign documents, news bulletin boards
etc.

Bayou supports application-specific
mechanisms that detect and resolve the
update conflicts, ensures that replicas
move towards eventual consistency, and
defines a protocol by which the resolu-
tion of update conflicts stabilizes. Bayou
includes consistency management meth-
ods for conflict detection, called depen-
dency checks, and per-write conflict res-
olution based on client-provided merge
procedures. To guarantee eventual con-
sistency, Bayou servers are able to roll-
back the effects of previously executed
writes and redo them according to a
global serialization order. Furthermore,
Bayou permits clients to observe the
results of all writes received by a server,
including tentative writes whose con-
flicts have not been ultimately resolved.

5.1.1 The System Model. In the
Bayou system, each data collection is
replicated in full at a number of servers.

Applications running as clients interact
with the servers through the Bayou ap-
plication programming interface (API),
which is implemented as a client stub
bound with the application. This API, as
well as the underlying client-server
RPC protocol, supports two basic opera-
tions: Read and Write. Read operations
permit queries over a data collection,
while Write operations can insert, mod-
ify, and delete a number of data items
in a collection. Figure 15 illustrates
these components of the Bayou architec-
ture. In the Bayou system, a client and
a server may be co-resident on a host, as
would be typical of a laptop or PDA
running in isolation.

Access to one server is sufficient for a
client to perform useful work. The client
can read the data held by that server and
submit Writes to the server. Once a Write
is accepted by a server, the client has no
further responsibility for that Write. In
particular, the client does not need to
wait for the Write to propagate to other
servers. In other words, Bayou presents a
weakly consistent replication model with

CLIENT

SERVER

SERVER

SERVER

Anti-entropy

SERVER

CLIENT

System
Storage

Server State

Server State

Storage
System

Server State

Storage
System

System
Storage

Server State

Application

Bayou API

Client Stub

Client Stub

Bayou API

Application

Read
or

Write

Write
or

Read

Figure 15. The Bayou system model..

140 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

a read-any/write-any style of access.
While individual Read and Write opera-
tions are performed at a single server,
clients need not confine themselves to
interacting with a single server. In a mo-
bile computing environment, switching
between servers is often desirable, and
Bayou provides session guarantees to re-
duce client-observed inconsistencies when
accessing different servers.

5.1.2 Bayou Application-Specific Con-
flict Resolution. Application-specific
conflict detection is adopted in the
Bayou system. This approach is moti-
vated by the observation that different
applications have different notions of
what it means for two updates to con-
flict, and that such conflicts cannot al-
ways be identified by simply observing
conventional reads and writes submit-
ted by the applications. In Bayou, stor-
age systems provide means for an appli-
cation to specify its notion of a conflict
along with its policy for resolving con-
flicts. In return, the system implements
mechanisms for reliably detecting con-
flicts, as specified by the application,
and for automatically resolving them
when possible.

The Bayou system includes two mech-
anisms for automatic conflict detection
and resolution that are intended to sup-
port arbitrary applications: dependency
checks and merge procedures. These
mechanisms permit clients to indicate,
for each individual write operation, how
the system should detect conflicts in-
volving the write and what steps should
be taken to resolve any detected con-
flicts based on the semantics of the ap-
plication.

Application-specific conflict detection
is accomplished as follows: Each Write
operation includes a dependency check
consisting of an application-supplied
query and its expected result. A conflict
is detected if the query, when run at a
server against its current copy of the
data, does not return the expected re-
sult. This dependency check is a precon-
dition for performing the update that is
included in the Write operation. If the

check fails, then the requested update is
not performed and the server invokes a
procedure to resolve the detected con-
flict.

As an example of application-defined
conflicts, consider a Bayou Write opera-
tion that might be submitted by the
meeting room scheduling application.
This Write attempts to reserve an hour-
long time slot. It includes a dependency
check with a single query that returns
information about any previously re-
served meetings that overlap with this
time slot. It expects the query to return
an empty set.

Bayou’s dependency checks can also
be used to detect Write-Write conflicts.
That is, they can be used to detect when
two users update the same data item
without one of them first observing the
other’s update. Such conflicts can be
detected by having the dependency
check query the current values of any
data items being updated and ensure
that they have not changed from the
values they had at the time the Write
was submitted.

Bayou’s dependency checking mecha-
nism is more powerful than the tradi-
tional use of version vectors since it can
also be used to detect Read-Write con-
flicts. Specifically, each Write operation
can explicitly specify the expected val-
ues of any data items on which the
update depends, including data items
that have been read but are not being
updated. Thus, Bayou clients can emu-
late the optimistic style of concurrency
control employed in some distributed
database systems. For example, a Write
operation that installs a new program
binary file might only include a depen-
dency check of the sources, including
version stamps, from which it was de-
rived. Since the binary does not depend
on its previous value, this need not be
included.

Moreover, because dependency que-
ries can read any data in the server’s
replica, dependency checks can enforce
arbitrary, multi-item integrity con-
straints on the data. For example, sup-
pose a Write transfers $100 from ac-

Client-Server Computing in Mobile Environments • 141

ACM Computing Surveys, Vol. 31, No. 2, June 1999

count A to account B. The application,
before issuing the Write, reads the bal-
ance of account A and discovers that it
currently has $150. Traditional optimis-
tic concurrency control would check that
account A still had $150 before perform-
ing the requested Write operation. The
real requirement, however, is that the
account have at least $100, and this can
easily be specified in the Write’s depen-
dency check. Thus, only if concurrent
updates cause the balance in account A
to drop below $100 will a conflict be
detected.

Once a conflict is detected, a merge
procedure is run by the Bayou server in
an attempt to resolve the conflict.
Merge procedures, included with each
Write operation, are general programs
written in a high-level, interpreted lan-
guage. They can have embedded data,
such as application-specific knowledge
related to the update that was being
attempted, and can perform arbitrary
Reads on the current state of the serv-
er’s replica. The merge procedure asso-
ciated with a Write is responsible for
resolving any conflicts detected by its
dependency check and for producing a
revised update to apply. The complete
process of detecting a conflict, running a
merge procedure, and applying the re-
vised update is performed atomically at
each server as part of executing a Write.
Supporting dependency checks sepa-
rately allows servers to avoid running
the merge procedure in the expected
case where the Write does not introduce
a conflict.

Bayou merge procedures are written
by application programmers in the form
of templates that are instantiated with
the appropriate details filled in for each
Write. The users of applications do not
have to know about merge procedures
and, therefore, about the internal work-
ings of the applications they use, except
when automatic conflict resolution can-
not be done. In the case where auto-
matic resolution is not possible, the
merge procedure will still run to com-
pletion, but it is expected to produce a
revised update that logs the detected

conflict in a way that will enable a
person to resolve the conflict later. To
enable manual resolution, the conflict-
ing updates must be presented to a user
in a manner that allows him to under-
stand what has happened.

Bayou allows replicas to always re-
main accessible. This permits clients to
continue to Read previously written
data and to continue to issue new
Writes. In the meeting room scheduling
application, for example, a user who
only cares about Monday meetings need
not concern himself with scheduling
conflicts on Wednesday. The potential
drawback of this approach is that newly
issued Writes may depend on data that
is in conflict and may lead to cascaded
conflict resolution.

5.1.3 Bayou Replication Management.
While the replicas held by two servers
at any time may vary in their contents
because they have received and pro-
cessed different Writes, a fundamental
property of the Bayou design is that all
servers move towards eventual consis-
tency. However, it cannot enforce strict
bounds on Write propagation delays
since these depend on network connec-
tivity factors that are outside of Bayou’s
control. Two important features of the
Bayou system design allow servers to
achieve eventual consistency. First,
Writes are performed in the same, well-
defined order at all servers. Second, the
conflict detection and merge procedures
are deterministic so that servers resolve
the same conflicts in the same manner.

When a Write is accepted by a Bayou
server from a client, it is initially
deemed tentative. Tentative Writes are
ordered according to timestamps as-
signed to them by their accepting serv-
ers. Committed Writes are ordered ac-
cording to the times at which they
commit and before any tentative Writes.

The only requirement placed on time-
stamps for tentative Writes is that they
should be monotonically increasing at
each server so that the pair [timestamp,
ID of server that assigned it] produce a
total order on Write operations. Bayou

142 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

servers maintain logical clocks to times-
tamp new Writes. A server’s logical
clock is generally synchronized with its
real-time system clock, but, in order to
preserve the causal ordering of Write
operations, the server may need to ad-
vance its logical clock when Writes are
received during anti-entropy.

Enforcing a global order on tentative
as well as committed Writes ensures
that an isolated cluster of servers will
come to agreement on the tentative res-
olution of any conflicts that they en-
counter. This is not strictly necessary
since clients must be prepared to deal
with temporarily inconsistent servers in
any case. Moreover, clients can expect
that the tentative resolution of conflicts
within their cluster will correspond to
their eventual permanent resolution,
provided that no further conflicts are
introduced outside the cluster.

Because servers may receive Writes
from clients and from other servers in
an order that differs from the required
execution order, and because servers
immediately apply all known Writes to
their replicas, servers must be able to
undo the effects of a previous tentative
execution of a Write operation and reap-
ply it in a different order. The number
of times that a given Write operation is
re-executed depends only on the order
in which Writes arrive via anti-entropy
and not on the likelihood of conflicts
involving the Write. Conceptually, each
server maintains a log of all Write oper-
ations that it has received, sorted by
their committed or tentative times-
tamps, with committed Writes at the
head of the log. The server’s current
data contents are generated by execut-
ing all of the Writes in the given order.

Bayou guarantees that merge proce-
dures, which execute independently at
each server, produce consistent updates
by forcing them to depend only on the
server’s current data contents and on
any data supplied by the merge proce-
dure itself. In particular, a merge proce-
dure cannot access time-varying or serv-
er-specific “environment” information
such as the current system clock or

server’s name. Moreover, merge proce-
dures that fail due to exceeding their
limits on resource usage must fail deter-
ministically. This means that all serv-
ers must place uniform bounds on the
CPU and memory resources allocated to
a merge procedure and must consis-
tently enforce these bounds during exe-
cution. Once these conditions are met,
two servers that start with identical
replicas will end up with identical repli-
cas after executing a Write.

5.1.4 Bayou Applications. The Bayou
system is designed to support a variety
of non-real-time collaborative applica-
tions, such as shared calendars, mail
and bibliographic databases, program
development, and document editing for
disconnected workgroups, as well as ap-
plications that might be used by indi-
viduals at different hosts at different
times.

Meeting Room Scheduler: The meet-
ing room scheduling application enables
users to reserve meeting rooms. At
most, one person or group can reserve
the room for any given period of time.
This meeting room scheduling program
is intended for use after a group of
people have already decided that they
want to meet in a certain room and have
determined a set of acceptable times for
the meeting. It does not help them to
determine a mutually agreeable place
and time for the meeting; it only allows
them to reserve the room. Thus, it is a
much simpler application than one that
supports general meeting scheduling.

In this application, Bayou users could
interact with a graphical interface for
the schedule of a room that indicates
which times are already reserved, much
like the display of a typical calendar
manager. The meeting room scheduling
program periodically re-reads the room
schedule and refreshes the user’s dis-
play. This refresh process enables the
user to observe new entries added by
other users. The user’s display might be
out-of-date with respect to the con-
firmed reservations of the room; for ex-

Client-Server Computing in Mobile Environments • 143

ACM Computing Surveys, Vol. 31, No. 2, June 1999

ample, when it is showing a local copy of
the room schedule on a disconnected
laptop.

Bayou users reserve a time slot sim-
ply by selecting a free time period and
filling in a form describing the meeting.
Because the user’s display might be out-
of-date, there is a chance that the user
could try to schedule a meeting at a
time that was already reserved by
someone else. To account for this possi-
bility, users can select several accept-
able meeting times rather than just one.
At most, one of the requested times will
eventually be reserved.

A user’s reservation, rather than be-
ing immediately confirmed (or rejected),
may remain “tentative” for a while.
While tentative, a meeting may be re-
scheduled as other interfering reserva-
tions become known. Tentative reserva-
tions are indicated as such on the
display (by showing them grayed). The
“outdatedness” of a calendar does not
prevent it from being useful, but simply
increases the likelihood that tentative
room reservations will be rescheduled
and finally “committed” to less pre-
ferred meeting times.

A group of Bayou users, although dis-
connected from the rest of the system,
can immediately see each other’s tenta-
tive room reservations if they are all
connected to the same copy of the meet-
ing room schedule. If, instead, users are
maintaining private copies on their lap-
top computers, local communication be-
tween the machines will eventually syn-
chronize all copies within the group.

The meeting room scheduling applica-
tion provides good examples of conflict
resolution procedures that are specific
not only to a particular application but
also to a particular Write operation. In
this application, users, well aware that
their reservations may be invalidated
by other concurrent users, can specify
alternate scheduling choices as part of
their original scheduling updates. These
alternates are encoded in a merge pro-
cedure that attempts to reserve one of
the alternate meeting times if the origi-
nal time is found to be in conflict with

some other previously scheduled meet-
ing. A different merge procedure alto-
gether could search for the next avail-
able time slot to schedule the meeting,
which is an option a user might choose
if any time would be satisfactory.

Bibliographic Database: The applica-
tion allows users to cooperatively man-
age databases of bibliographic entries.
A user can freely read and write to any
copy of the database, such as the one
that resides on his laptop. For the most
part, the database is append-only,
though users occasionally update en-
tries to fix mistakes or add personal
annotations.

In bibliographic databases, each entry
has a unique, human-sensible key that
is constructed by appending the year in
which the paper was published to the
first author’s last name and adding a
character if necessary to distinguish be-
tween multiple papers by the same au-
thor in the same year. Thus, the first
paper by Jones et al. in 1995 might be
identified as “Jones95” and subsequent
papers as “Jones95b”, “Jones95c”, and
so on.

An entry’s key is tentatively assigned
when the entry is added. A user must be
aware that the assigned keys are only
tentative and may change when the en-
try is “committed” In other words, a
user must be aware that other concur-
rent updaters could be trying to assign
the same key to different entries. Only
one entry can have the key; the others
will be assigned alternative keys by the
system. Thus, for example, if the user
employs the tentatively assigned key in
some fashion, such as embedding it as a
citation in a document, then he must
also remember to check later that the
key assigned when the entry was com-
mitted is, in fact, the expected one.

Because users can access inconsistent
database copies, the same bibliographic
entry may be concurrently added by dif-
ferent users with different keys. To the
extent possible, the system detects du-
plicates and merges their contents into
a single entry with a single key. In this

144 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

application, a Bayou user may choose to
operate in disconnected mode even if
constant connectivity were possible. For
example, a Bayou user may be in a
university library looking up papers. He
occasionally types bibliographic refer-
ences into his laptop or PDA.

5.2 Odyssey

Odyssey is a CMU research project led
by M. Satyanarayanan. It addresses an
application-aware adaptation approach
to deal with application diversity and
concurrency in mobile environments.
The application-aware adaptation is im-
plemented with the support of system-
coordinated type-specific operations. It
supports concurrent execution of di-
verse mobile applications that execute
on mobile clients, but read or update
remote data on servers [Kumar and
Satyanarayanan 1993; Satyanarayanan
et al. 1995; Noble et al. 1995, 1997].

5.2.1 Odyssey Client Architecture.
In Odyssey, the data accessed by an
application may be stored in one or
more general-purpose repositories such
as file servers, SQL servers, or Web
servers. It may also be stored in more
specialized repositories such as video
libraries, query-by-image-content data-
bases, or back-ends of geographical in-
formation systems.

Ideally, a data item available on a
mobile client should be indistinguish-
able from that available to the accessing
application if it were to be executed on
the server storing that item. But this
correspondence may be difficult to pre-
serve as mobile resources become
scarce; some form of degradation may
be inevitable. In Odyssey, fidelity is
used to describe the degree to which
data presented at a client matches the
reference copy at the server. Fidelity
has many dimensions. One well-known,
universal dimension is consistency. For
Video applications, data has at least
two additional dimensions: frame rate
and image quality of individual frames.
Odyssey provides a framework within

which diverse notions of fidelity can be
incorporated.

Odyssey implements an approach of
application-aware adaptation. The sys-
tem monitors resource levels, notifies
applications of relevant changes, and
enforces resource allocation decisions.
Each application independently decides
how best to adapt when notified. Odys-
sey incorporates type-awareness via
specialized code components called war-
dens. A warden encapsulates the sys-
tem-level support at a client necessary
to effectively manage a data type. To
fully support a new data type, an appro-
priate warden has to be written and
incorporated into Odyssey at each cli-
ent. The wardens are subordinate to a
type-independent component called the
viceroy, which is responsible for central-
ized resource management (see Figure
16). The collaborative relationship in
the application-aware adaptation is re-
alized in two parts. The first, between
the viceroy and its wardens, is data-
centric: it defines the fidelity levels for
each data type and factors them into
resource management. The second, be-
tween applications and Odyssey, is ac-
tion-centric: it provides applications
with control over the selection of fidelity
levels supported by the wardens.

5.2.2 Odyssey System Components.
Odyssey supports application-aware ad-
aptation by enabling an application to

—operate on Odyssey objects,

Applications

API Extensions (Kernel)

Cache Manager

Support
Type-Specific

Wardens

Generic Support

Viceroy

Figure 16. Odyssey client architecture.

Client-Server Computing in Mobile Environments • 145

ACM Computing Surveys, Vol. 31, No. 2, June 1999

—express resource expectations,

—be notified when expectations are no
longer met, and

—respond by changing fidelity.

Operating on Odyssey Objects: Odys-
sey is integrated into NetBSD as a new
VFS file system [Noble et al. 1997]. As
shown in Figure 16, the viceroy and
wardens are implemented in user space
rather than in the kernel. Operations on
Odyssey objects are redirected to the
viceroy by a small in-kernel interceptor
module. All other system calls are han-
dled directly by NetBSD.

Wardens are statically linked with
the viceroy, and the ensemble executes
in a single address space with user-level
threads. Communication between the
viceroy and wardens is through proce-
dure calls and shared data structures.
The wardens are entirely responsible
for communicating with servers and
caching data from them when appropri-
ate; applications never contact servers
directly.

Expressing Resource Expectations:
Applications communicate resource ex-
pectations to Odyssey using the request
system call shown in Figure 17(a). The
call takes a resource descriptor identify-
ing a resource and specifying a window
of tolerance based upon availability.
This call expresses the application’s de-
sire to be told if the availability of the
resource strays outside the window. If,
at the time of the request, the availabil-
ity of the resource is within the window
of tolerance, the viceroy registers the
request and returns a unique identifier
for it. This identifier can be used by the
viceroy in notifying the application that
the resource has left the requested
bounds or by the application in a future
cancel system call to discard the regis-
tered request.

If the resource is currently outside
the bounds of the tolerance window, an
error code and the current available re-
source level are returned. The applica-
tion is then expected to try again, but

this time with a new window of toler-
ance that corresponds to a new fidelity
level. The fields of a resource descriptor
are shown in Figure 17(b). Each re-
source is named by a unique resource
identifier. Figure 17(c) lists the generic
resources that Odyssey manages. The
most critical resource in mobile comput-
ing is the network bandwidth. The win-
dow of tolerance is indicated by lower
and upper bounds. A resource descriptor
also specifies the name of a procedure
that will be called to notify the applica-
tion that the resource has left the win-
dow.

Notifying Applications: When the
viceroy discovers that the availability of
a resource has strayed outside a regis-
tered window of tolerance, it generates
an upcall to the corresponding applica-
tion. The application adjusts its fidelity
according to its individual policy. It
then issues another request call to reg-
ister a revised window of tolerance ap-
propriate to the new fidelity.

(e) Type-Specific Operations

inout outsize, out outbuf)
tsop(in path, in opcode, in insize, in inbuf,

(d) Upcall Handler

handler(in request-id, in resource-id, id resource-level)

(c) Generic Resource in Odyssey

centsMoney
minutesBattery Power
SPECCint95CPU
kilobytesDisk Cache Space
microsecondsNetwork Latency
bytes/secondNetwork Bandwidth

(a) Resource Negotiation Operations

cancel(in request-id)

request(in path, in resource-descriptor, out request-id)

resource-id
lower bound
upper bound
name of upcall handler

(b) Resource Descriptor Fields

Figure 17. Odyssey API.

146 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

An upcall handler is invoked with
three parameters, as shown in Figure
17(d). The first parameter identifies the
request operation on whose behalf the
upcall is being delivered. The second
parameter identifies the resource whose
availability has changed, and the third
parameter gives the new availability.
Upcalls closely resemble UNIX signals,
but offer improved functionality. Like
signals, upcalls can be sent to one or
more processes, can be blocked or ig-
nored, and have similar inheritance se-
mantics on the process fork. Unlike sig-
nals, upcalls offer semantics in a
specific order only once for each receiver
of a particular upcall. Further, upcalls
allow parameters to be passed to target
processes and results to be returned.

Changing Fidelity: Requests for fidel-
ity changes do not map well to the Net-
BSD file system interface. Further,
many data types have natural access
methods that are not well supported by
the untyped byte stream model. To ad-
dress these shortcomings, a general es-
cape purpose mechanism called tsop, or
type-specific operation, is included
shown in Figure 17(e). The arguments
to tsop specify an Odyssey object and
the opcode of a type-specific operation to
be performed on it. Input and output
parameters are specified as unstruc-
tured memory buffers, in the spirit of
the ioctl system call.

5.2.3 Odyssey Applications. Several
applications are modified to demon-
strate Odyssey’s ability to support ap-
plication diversity. Two of them are
drawn from the domain of mobile infor-

mation access: a video player and a Web
browser. Each application requires a
different strategy for integration into
Odyssey, and each has distinct notions
of fidelity.

Video Player: Video Player is based on
xanim, a public-domain software pack-
age that can generate video animation
from data stored in various formats in a
local file. A warden is written to satisfy
client requests and fetch data from the
server, as shown in Figure 18.

Each movie is stored in multiple
tracks at the server, one track per fidel-
ity level. Three levels of fidelity for
Quicktime video data are incorporated:
JPEG-compressed color frames at quali-
ties 99 and 50, and black-and-white
frames. The warden supports two tsops:
to read a movie’s meta-data and to get a
particular frame from a specified track.
The warden performs read-ahead of
frames to lower latency. When the
player opens a movie, it calculates the
bandwidth requirements of each track
from the movie meta-data. The player
begins the movie at highest possible
quality and registers the corresponding
window of tolerance with Odyssey.
When it is notified of a significant
change in bandwidth, the player deter-
mines a new fidelity level and switches
to the corresponding track. If the player
switches from a low fidelity track to a
higher one, the warden discards the
prefetched low-quality frames.

Web Browser: Netscape browser’s
proxy facility is exploited to take advan-
tage of Odyssey, as shown in Figure 19.
All of Netscape’s requests are redirected

CLIENT

API

Odyssey RPC

Server

Video

Warden

Video

Viceroy

Xanim

Figure 18. Video player in Odyssey.

Client-Server Computing in Mobile Environments • 147

ACM Computing Surveys, Vol. 31, No. 2, June 1999

to a client module called the cellophane.
Together, Netscape and the cellophane
constitute a single application from the
viewpoint of Odyssey. The cellophane
makes use of the Odyssey API and se-
lects fidelity levels. Netscape passively
benefits from the adaptation initiated
by the cellophane. The cellophane trans-
forms HTTP requests from Netscape
into file operations on Odyssey Web ob-
jects. The Web warden forwards these
requests via the client’s mobile network
connection to a distillation server. At
the highest fidelity, images are uncom-
pressed. Progressively lower levels cor-
respond to JPEG-compressed images of
decreasing quality. The warden pro-
vides a tsop to set the fidelity level. The
distillation server fetches requested ob-
jects from the appropriate Web server,
distills them to the requested fidelity
level, and sends the results to the war-
den. The data is then passed to
Netscape via the cellophane. These
steps are completely transparent to
both Netscape and the Web server; each
perceives normal Web access.

5.3 Rover

Rover is a research project at MIT led
by M. Kaashoek. The Rover toolkit of-
fers an environment to support both
application-transparent and applica-
tion-aware adaptation for mobile client-
server applications [Joseph et al. 1996;
1997]. The application-transparent ad-
aptation is realized by developing prox-
ies for system services that hide the
mobile characteristics of the environ-
ment from applications. The applica-
tion-aware adaptation is supported by

the use of relocatable dynamic objects in
the construction of client and server
applications. The Rover toolkit provides
a framework to construct mobile appli-
cations with flexible client-server archi-
tecture.

5.3.1 Rover Toolkits. The Rover
Toolkit offers applications a distributed
object system based on a client-server
architecture [Joseph et al. 1997] (see
Figure 20). Clients are Rover applica-
tions that typically run on mobile hosts,
but can also run on stationary hosts as
well. Servers, which may be replicated,
typically run on stationary hosts and
hold the long-term state of the system.
Communication between clients is lim-
ited to peer-to-peer interactions within
a mobile host (using the local object
cache for sharing) and mobile host-
server interactions; there is no support
for peer-to-peer, mobile host to mobile
host interactions. The Rover toolkit pro-
vides mobile communication support
based on two ideas: relocatable dynamic
object (RDO) and queued remote proce-
dure call (QRPC). A relocatable dynamic
object is an object (code and data) with a
well-defined interface that can be dy-
namically loaded into a client computer
from a server computer, or vice versa, to
reduce client-server communication re-
quirements. Queued remote procedure
call is a communication system that
permits applications to continue to
make nonblocking remote procedure
calls even when a host is disconnected—
requests and responses are exchanged
upon network reconnection.

Rover gives applications control over
the location where the computation will

Browser
Web

to Web Servers

Server
Distillation

HTTPHTTP API

Odyssey

CLIENT

RPC

Warden

Video

Viceroy

Cellophane

Figure 19. Web browser in Odyssey.

148 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

be performed. In an intermittently con-
nected environment, the network often
separates an application from the data
upon which it is dependent. By moving
RDOs across the network, applications
can move data and/or computation from
the client to the server and vice versa.

Use of RDOs allows mobile-aware ap-
plications to migrate functionality dy-
namically to either side of a slow net-
work connection to minimize the
amount of data communicated across
the network. Caching RDOs reduces la-
tency and bandwidth consumption. In-
terface functionality can run at full
speed on a mobile host while large data
manipulations may be performed on the
well-connected server. All application
code and all application-touched data
are written as RDOs. RDOs may exe-
cute at either the client or the server.
Each RDO has a “home” server that
maintains the primary, canonical copy.
Clients import secondary copies of
RDOs into their local caches and export
tentatively updated RDOs back to their
home servers. RDOs may vary in com-
plexity from simple calendar items with
a small set of operations to modules
that encapsulate a significant part of an
application (e.g., the graphical user in-
terface for an email browser). Complex
RDOs may create a thread of control
when they are imported.

Rover clients use QRPC to lazily fetch
RDOs from servers (see Figure 20).
When an application issues a QRPC,
Rover stores the QRPC in a local stable
log and immediately returns control to
the application. If the application has
registered a callback routine, then when
the requested RDO has arrived, Rover
will invoke the callback to notify the
application. Alternatively, applications
may simply block to wait for critical
data (although this is an undesirable
action, especially when the mobile host
is disconnected). When the mobile host
is connected, the Rover network sched-
uler drains the log in the background,
forwarding any queued QRPCs to the
server.

When a Rover application modifies a
locally cached RDO, the cached copy is
marked tentatively committed. Updates
are committed by using QRPC to lazily
propagate the mutating operations to
the Rover server, where they are ap-
plied to the canonical copies. In the
meantime, the application may choose
to use tentatively committed RDOs.
This allows the application to continue
execution even if the mobile host is dis-
connected.

As shown in Figure 21, the Rover
Toolkit consists of four key components:
the access manager, the object cache
(client-side only), the operation log, and

Network

Schedule

Network

Schedule

Rover Library

Rover Library

Server

Modify/Resolve

Object Conflict?

Server-side Application

RDO
Export RDO

RDO

Import RDO

Client
ApplicationApplication

on Mobile Host

Client

QPRC Log

Object Cache

Access Manager Server

Modify/Resolve

Object Conflict?

Server-side Application

RDO
Export RDO

RDO

Import RDO

Client
ApplicationApplication

on Mobile Host

Client

QPRC Log

Object Cache

Access Manager

Figure 20. Rover’s relocatable dynamic object (RDO) architecture.

Client-Server Computing in Mobile Environments • 149

ACM Computing Surveys, Vol. 31, No. 2, June 1999

the network scheduler. Each machine
has a local Rover access manager which
is responsible for handling all interac-
tions between client-side and server-
side applications and among client-side
applications. The access manager ser-
vices requests for objects (RDOs), medi-
ates network access, logs modifications
to objects, and, on the clients’ side, man-
ages the object cache. Client-side appli-
cations communicate with the access
manager to import objects from servers
and cache them locally. Server-side ap-
plications are invoked by the access
manager to handle requests from client-
side applications. Applications invoke
the methods provided by the objects
and, using the access manager, make
the changes globally visible by export-
ing them back to the servers.

Within the access manager, RDOs are
imported into the object cache while
QRPCs are exported to the operation
log. The access manager routes invoca-
tions and responses between applica-
tions, the cache, and the operation log.
The log is drained by the network
scheduler, which mediates between the
various communication protocols and
network interfaces.

The object cache provides stable stor-
age for local copies of imported objects.
The object cache consists of a local pri-
vate cache located within the applica-
tion’s address space and a global shared
cache located within the access manag-
er’s address space. Client-side applica-
tions do not usually interact directly

with the object cache. When a client-
side application issues an import or ex-
port operation, the Toolkit satisfies the
request depending on whether the ob-
ject is found in a local cache and on the
consistency option specified for the ob-
ject.

Once an object has been imported into
the client-side application’s local ad-
dress space, method invocations without
side effects are serviced locally by the
object. At the application’s discretion,
method invocations with side effects
may also be processed locally, inserting
tentative data into the object cache. Op-
erations with side effects also insert a
QRPC into a stable operation log lo-
cated at the client. Each insert is a
synchronous action. Support for inter-
mittent network connectivity is accom-
plished by allowing the log to be incre-
mentally flushed back to the server.
Thus, as network connectivity comes
and goes, the client will make progress
towards reaching a consistent state.

The network scheduler contributes to
log transmission optimization by group-
ing operations destined to the same
server for transmission and selecting
the appropriate transport protocol and
medium over which to send them. Rover
is capable of using a variety of network
transports. Rover supports both connec-
tion-based protocols (e.g., HTTP over
TCP/IP networks) and connection-less
protocols (e.g., SMTP over IP or non-IP
networks). The network scheduler lever-
ages the queuing of QRPCs performed

Engine
Search

proxy
WWW

Filesys
Calendar

Filesys
EmailSearch

Browser
WWWCalendar

GUI
Email

Network

ServerMobile Host

Object
Cache

Access
Manager

Operation
Log

Network

Scheduler

Operation
Log

Scheduler

Network

Manager
Access

Object
Cache

Access
Manager

Operation
Log

Network

Scheduler

Operation
Log

Scheduler

Network

Manager
Access

Figure 21. Rover component architecture.

150 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

by the log to gain transmission effi-
ciency.

5.3.2 Constructing Mobile Applica-
tions Using Rover. There are several
steps involved in porting an existing
application to Rover or creating a new
Rover-based application. Each step re-
quires the application developer to
make several implementation choices.
The first step is to split the application
into components and identify which
components should be present on each
side of the network link. The division
will be mostly static because most of the
file system components will remain on
the server and most of the GUI compo-
nents will remain on the client. How-
ever, those components that are depen-
dent upon the computing environment
(network or computational resources) or
are infrequently used may be dynami-
cally relocated.

Once the application has been split
into components, the next step is to
appropriately encapsulate the applica-
tion’s state within objects that can be
replicated and sent to multiple clients.
In migrating to the mobile environment,
the application’s reading of files is re-
placed by importing of objects, and its
writing of files is replaced by exporting
of changes to objects. The file system
interface still exists in the server-side of
the application. However, inserted be-
tween the two halves of the application
is an object layer.

One of the primary purposes of the
object layer is to provide a means of
reducing the number of network mes-
sages that must be sent between the
client and the server; this is done by
migrating the computation.

The next step is to add support for
interacting with the environment. For
example, in an e-mail message, one of
the important pieces of message meta-
data that a folder object contains is the
message size and the size of any attach-
ments. This information can be used by
the application and conveyed to the user
to allow useful decisions to be made.
Support for prefetching is another envi-

ronment interaction issue. Also, the ap-
plication developer must decide which
mechanisms to use for notifying users of
the status of displayed data.

The final and important step is the
addition of application-specific conflict
resolution procedures. For most station-
ary environments, conflicts are infre-
quent. For the mobile environment,
they will be more common. Application
developers can leverage the additional
semantic information that is available
with Rover’s operation-based (instead of
value-based) approach to object updat-
ing.

The programming interface between
Rover and its client applications con-
tains four primary functions: create ses-
sion, import, export, and invoke. Client
applications call create session once
with authentication information to set
up a connection with the local access
manager and receive a session identi-
fier. The authentication information is
used by the access manager to authenti-
cate the client requests sent to Rover
servers.

To import an object, an application
calls import and provides the object’s
unique identifier, the session identifier,
a callback, and arguments. In addition,
the application specifies a priority that
is used by the network scheduler to
reorder QRPCs. The import function im-
mediately returns a promise to the ap-
plication. The application can then wait
on this promise or continue execution.
Rover transparently queues QRPCs for
each import operation in the stable log.
When the requested object is received
by the access manager, the access man-
ager updates the promise with the re-
turned information. In addition, if a
callback was specified, the access man-
ager invokes it.

Once an object is imported, an appli-
cation can invoke methods on it to read
and/or change it. Applications export
each local change to an object back to
the servers by calling the export opera-
tion and providing the object’s unique
identifier, the session identifier, a call-
back, and arguments. Like import, ex-

Client-Server Computing in Mobile Environments • 151

ACM Computing Surveys, Vol. 31, No. 2, June 1999

port immediately returns a promise.
When the access manager receives re-
sponses to export, it updates the af-
fected promises and invokes any appli-
cation-specified callbacks.

5.3.3 Rover Applications. Two mo-
bile-transparent applications that have
been implemented using the Rover Tool-
kit are Rover NNTP proxy, a USENET
reader proxy, and Rover HTTP proxy, a
proxy for Web browsers. Mobile-aware
applications implemented using Rover
are Rover Exmh, an e-mail browser;
Rover Webcal, a distributed calendar
tool; Rover Irolo, a graphical rolodex
tool; and Rover Stock Market Watcher,
a tool that obtains stock quotes.

Two of the mobile-aware applications
are based upon existing UNIX applica-
tions. Rover Exmh is a port of Brent
Welch’s Exmh Tcl/Tk-based e-mail
browser. Rover Webcal is a port of Ical,
a Tcl/Tk and C11 based distributed
calendar and scheduling program writ-
ten by Sanjay Ghemawat. Rover Irolo
and the Rover Stock Market Watcher
were built from scratch.

The Rover HTTP and NNTP proxies
demonstrate how Rover mobile-aware
proxies support existing applications
(e.g., Netscape and xrn) without modifi-
cation (i.e., mobile-transparent applica-
tions).

Rover NNTP proxy: Using the Rover
NNTP proxy, users can read USENET
news with standard news readers while
disconnected and receive news updates
even over very slow links. Whereas
most NNTP servers download and store
all available news, the Rover proxy
cache is filled on a demand-driven basis.
When a user begins reading a news-
group, the NNTP proxy loads the head-
ers for that newsgroup as a single RDO
while articles are prefetched in the
background. As the user’s news reader
requests the header of each article, the
NNTP proxy provides them by using the
local newsgroup RDO. As new articles
arrive at the server, the server-side of
the proxy constructs operations to up-

date the newsgroup-header object.
Thus, when a news reader performs the
common operation of rereading the
headers in a newsgroup, the NNTP
proxy can service the request with min-
imal communication over the slow link.

Rover HTTP proxy: This application
allows users of existing Web browsers to
“click ahead” of the arrived data by re-
questing multiple new documents before
earlier requests have been satisfied.
The proxy intercepts all web requests
and, if the requested item is not locally
cached, returns a null response to the
browser and enqueues the request in
the operation log. When a connection
becomes available, the page is automat-
ically requested. In the meantime, the
user can continue to browse already
available pages and issue additional re-
quests for pages without waiting. The
granularity of RDOs is individual pages
and images. The client and server coop-
erate in prefetching. The client specifies
the depth of prefetching for pages while
the server automatically prefetches in-
lined images. The proxy uses a separate
window (from the browser) to display
the status of a page (loaded or pending).
If an uncached file is requested and the
network is unavailable, an entry is
added to the window. As pages arrive,
the window is updated to reflect the
changes. This window exposes the ob-
ject cache and operations log directly to
the user and allows the user limited
control over them.

Rover Exmh: Rover Exmh uses three
types of RDOs: mail messages, mail
folders, and lists of mail folders. By
using this level of granularity, many
user requests can be handled locally
without any network traffic. Upon start-
up, Rover Exmh prefetches the list of
mail folders, the mail folders the user
has recently visited, and the messages
in the user’s inbox folder. Alternatively,
using a finer-level granularity (e.g.,
header and message body) would allow
for more prefetching, but could delay
servicing of user requests (especially

152 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

during periods of disconnection). Using
a larger granularity (e.g., entire folders)
would seriously affect usability and re-
sponse time for slow links.

Some computation can be migrated to
servers. For example, instead of per-
forming a glimpse search of mail folders
locally at the client (and thus having to
import the index across a potentially
low bandwidth link), the client can con-
struct a query request RDO and send it
to the server.

The GUI indicates that an operation
is tentative through color coding. Con-
flict detection is based upon a log of
changes to RDOs; this allows the server
to detect and resolve a conflict, such as
one user adding a message to a folder
and another user deleting it. Unresolv-
able conflicts are reflected back to the
user.

Rover Webcal: This distributed calen-
dar tool uses two types of RDOs: items
(appointments, daily to-do lists, and
daily reminders) and calendars (lists of
items). At this level of granularity, the
client can fetch calendars and then
prefetch items using a variety of strate-
gies (e.g., plus or minus one week, a
month at a time, etc.).

Rover Webcal uses color coding to aid
the user in identifying those objects
that have been locally modified but not
yet propagated to a server. Conflict de-
tection is based upon a log of changes to
RDOs; this allows the server to detect
and resolve a conflict, such as one user
adding an item to a calendar and an-
other user deleting it.

Rover Irolo: This graphical rolodex
application uses two types of RDOs: en-
tries and indices (lists of entries). The
GUI displays the last time an entry was
updated and indicates whether the item
is committed or tentative. Conflict de-
tection is based upon a log of changes to
RDOs; this allows the server to detect
and resolve a conflict such as one user
adding an entry to an index and another
user deleting it.

Rover Stock Market Watcher: This ap-
plication uses both computation migra-
tion and fault-tolerance techniques. The
client constructs RDOs for stocks that
are to be monitored and sends them to
the server. The server uses fault-toler-
ant techniques to store the real-time
information retrieved from stock ticker
services.

5.4 Summary

Tables I, II, and III summarize the
three systems, Bayou, Odyssey, and
Rover, used as case studies in this sec-
tion. The tables highlight the applica-
tions each of these systems supports,
and the mobile client-server computing
strategies and techniques each of them
has implemented.

6. CONCLUSION

With advances in wireless data telecom-
munications and portable computers,
nomadic users will soon enjoy virtually
unlimited access to information and ser-
vices anytime and anywhere. There are,

Table I. Summary of the Bayou system

System Bayou
Applications non-real-time collaborative applications: meeting room scheduler and bibliographic

database, appointment calendars, evolving design documents, news bulletin boards
Adaptation application-specific adaptation to disconnection & intermittent connectivity;

applications are permitted to make trade-off of replicated data consistency &
availability by using individually selectable session guarantees

Model collaborative and flexible group-based client-server Architecture and full (or
disconnected) client architecture

Mobile Data system support for detection of update conflicts, application-specific resolution of
update conflicts, eventual replica convergence through a peer-wise anti-entropy
process, and per-client consistency guarantees

Client-Server Computing in Mobile Environments • 153

ACM Computing Surveys, Vol. 31, No. 2, June 1999

however, obstacles and limitations
inherent in the wireless environment.
The unpredictable mobility of the user
adds a great deal of complexity to the
problem. Such obstacles render the tra-
ditional approach to designing and
implementing client-server applications
insufficient in meeting nomadic users’
expectations.

Using assumptions linked to second
generation wireless networks and to
less than ideal mobile computers (gen-
eral purpose portable computers with
limited resources), researchers realized
that either application or system adap-
tation is a key requirement in any mo-
bile computing system. Researchers also
realized that they must identify and
systematically eliminate the limitations
of this new environment through vari-
ous optimizations.

This survey explores issues related to
the development and deployment of
such adaptive mobile applications. In
particular, it focuses on new designs
and computing paradigms for mobile cli-
ent-server applications. It also reviews
system architecture that supports such
applications. The survey identifies key
characteristics that distinguish mobile
client-server computing from its tradi-
tional counterpart. The survey also ex-
amines how these computing character-
istics impact information services and

applications and discusses new comput-
ing paradigms that are required to deal
with these impacts. One contribution of
this survey is a categorization of emerg-
ing computing paradigms for mobile cli-
ent-server applications. The mobile-
aware adaptation, extended client-server
model, and mobile data access are three
categories that are explained and ana-
lyzed. For each category, examples that
show the related design and implemen-
tation issues are detailed. The survey
also provides a comparative review
of three major and ongoing research
prototypes of mobile client-server infor-
mation systems, namely, Bayou from
Xerox Labs, Odyssey from CMU, and
Rover from MIT. These prototypes dem-
onstrate the applications of new com-
puting paradigms in building adaptive
mobile client-server systems and appli-
cations.

Mobile computing (including mobile
client-server information access) is a
rapidly changing research field that de-
pends on a rapidly evolving set of tech-
nologies. The advent of the so-called
third generation wireless communica-
tion systems, such as UMTS, is an indi-
cation of the importance of research in
this area. Researchers, however, should
monitor these advances closely and
should adapt and direct their research
based on the parameters of the latest

Table II. Summary of the Odyssey system

System Odyssey
Applications file system access, video playing, and Web browsing
Adaptation client-based application adaptation with the system support that provides resource

monitoring, notifies applications of resource changes, and enforces resource
allocation decisions

Model classic client-server architecture
Mobile Data client pull based data (distilled copies) delivery

Table III. Summary of the Rover system

System Rover
Applications e-mail, appointments, todo lists, reminders, calendars; Web pages and images
Adaptation client-server application adaptation with the use of Rover Toolkits that deal with

intermittent and low-bandwidth connection and resource-poor clients; application-
transparent adaptation by using Rover proxies

Model flexible client-server architecture with the use of RDOs
Mobile Data asynchronous RDOs pull (import) and push (export)

154 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

technology. This is important because
some of the strong assumptions regard-
ing the limitations of the wireless net-
work or the mobile computer are being
relaxed or nullified by newer technolog-
ical developments.

Many problems still remain to be un-
derstood and solved. At this time, it is
intricately difficult to quantitatively
evaluate and compare the various pro-
posed models and techniques because of
the lack of available application experi-
ences and samples. Experimentation
with these models should be the critical
next step in mobile computing research.
We hope that this comprehensive re-
view will help enhance the understand-
ing of the opportunities and limitations
of mobile client-server computing. We
also hope that the review substantiates
the importance of recognizing and un-
derstanding emerging technologies in
shaping the future directions of re-
search in this area.

REFERENCES

ACHARYA, S., ALONSO, R., FRANKLIN, M., AND
ZDONIK, S. 1995. Broadcast disks: Data
management for asymmetric communication
environments. In Proceedings of the 1995
ACM SIGMOD International Conference on
Management of Data (SIGMOD ’95, San Jose,
CA, May 23–25, 1995), M. Carey and D.
Schneider, Eds. ACM Press, New York, NY,
199–210.

ACHARYA, S., FRANKLIN, M., AND ZDONIK, S.
1997. Balancing push and pull for data
broadcast. SIGMOD Rec. 26, 2, 183–194.

BARBARA, D. AND IMIELINSKI, T. 1994. Sleepers
and workaholics: Caching strategies in mobile
environments. In Proceedings of the 1994
ACM Conference on SIGMOD (Minneapolis,
MN, May). ACM Press, New York, NY, 1–12.

BARTLETT, J. 1994. W4-The wireless world wide
web.

BHARGHAVAN, V. AND GUPTA, V. 1997. A frame-
work for application adaptation in mobile
computing environments. In Proceedings of
the 21st International Computer Software and
Applications Conference (COMPSAC ’97).
IEEE Computer Society, New York, NY, 573–
579.

BREWER, E., KATZ, R., CHAWATHE, Y., GRIBBLE, S.,
HODES, T., NGUYEN, G., STEMM, M., HENDER-
SON, T., AMIR, E., BALAKRISHNAN, H., FOX, A.,
PADMANABHAN, V., AND SESHAN, S. 1998. A
network architecture for heterogeneous mo-

bile computing. IEEE Personal Commun. 5,
5, 8–24.

BROOKS, C., MAZER, M., MEEKS, S., AND MILLER, J.
1996. Application-specific proxy servers as
HTTP stream transducers. In Proceedings of
the 4th International World Wide Web Confer-
ence (WWW-4).

CHANG, H., TAIT, C., COHEN, N., SHAPIRO, M., MAS-
TRIANNI, S., FLOYD, R., HOUSEL, B., AND
LINDQUIST, D. 1997. Web browsing in a
wireless environment: Disconnected and
asynchronous operation in ARTour Web Ex-
press. In Proceedings of the 3rd Annual
ACM/IEEE International Conference on Mo-
bile Computing and Networking (MOBICOM
’97, Budapest, Hungary, Sept. 26–30, 1997),
L. Pap, K. Sohraby, D. B. Johnson, and C.
Rose, Eds. ACM Press, New York, NY, 260–
269.

CITRIX, 1998. http://www.citrix.com.
COMPACTHTML, 1998. http://www.w3.org/sub-

mission/1998/04/.
DAVIS, N., FRIDAY, A., WADE, S., AND BLAIR,

G. 1998. L2imbo: A distributed systems
platform for mobile computing. Mob. Netw.
Appl. 3, 2, 143–156.

DEMERS, A., PETERSEN, K., SPREITZER, M., TERRY,
D., THEIMER, M., AND WELCH, B. 1994. The
Bayou architecture: Support for data sharing
among mobile users. In Proceedings of the
IEEE Workshop on Mobile Computing Sys-
tems and Applications (Santa Cruz,
CA). IEEE Press, Piscataway, NJ.

DURAN, J. AND LAUBACH, A. 1999. Virtual per-
sonal computers and the portable network.
In Proceedings of the IEEE Conference on
Performance, Communication, and Comput-
ing (Phoenix, AZ). IEEE Computer Society
Press, Los Alamitos, CA.

ELMAGARMID, A., JING, J., AND BUKHRES, O.
1995. An efficient and reliable reservation
algorithm for mobile transactions. In Pro-
ceedings of the 1995 International Conference
on Information and Knowledge Management
(CIKM, Baltimore, MD, Nov. 28–Dec. 2,
1995), N. Pissinou, A. Silberschatz, E. K.
Park, K. Makki, and C. Nicholas, Eds. ACM
Press, New York, NY, 90–95.

FOX, A., GRIBBLE, S., BREWER, E., AND AMIR, E.
1996. Adapting to network and client varia-
tion via on-demand, dynamic distillation. In
Proceedings of the 7th International Confer-
ence on Architectural Support for Program-
ming Languages and Operating Systems (AS-
PLOS-VII, Cambridge, MA, Oct. 1–5, 1996),
B. Dally and S. Eggets, Eds. ACM Press,
New York, NY.

GENERAL MAGIC, INC., 1997. Odyssey Product
Information. http://www.genmagic.com/
agents/odyssey.html.

GRAY, R. 1995. AgentTcl: A transportable agent
system. In Proceedings of the CIKM Work-
shop on Intelligent Information Agents.

HDML, 1997. http://www.uplanet.com.

Client-Server Computing in Mobile Environments • 155

ACM Computing Surveys, Vol. 31, No. 2, June 1999

HEIDEMANN, J., PAGE, T., GUY, R., AND POPEK, G.
1992. Primarily disconnected operation: Ex-
perience with Ficus. In Proceedings of the
2nd Workshop on Management of Replicated
Data (Monterey, CA, Nov.).

HERMAN, G., GOPAL, G., LEE, K., AND WEINRIB, A.
1987. Datacycle architecture for very high
throughput database systems. In Proceed-
ings of the ACM SIGMOD Annual Conference
on Management of Data (SIGMOD ’87, San
Francisco, CA, May 27-29, 1987), U. Dayal,
Ed. ACM Press, New York, NY.

HONEYMAN, P., HUSTON, L., REES, J., AND BACH-
MAN, D. 1992. The LITTLE WORK project.
In Proceedings of the 3rd Workshop on Work-
station Operating Systems (Key Biscayne,
FL).

HOUSEL, B. C. AND LINDQUIST, D. B. 1996.
WebExpress: A system for optimizing Web
browsing in a wireless environment. In Pro-
ceedings of the 2nd Annual International Con-
ference on Mobile Computing and Networking
(MOBICOM ’96, Rye, New York, Nov. 10–12,
1996), H. Ahmadi, R. H. Katz, I. F. Akyildz,
and Z. J. Haas, Eds. ACM Press, New York,
NY, 108–116.

IBM TOKYO RESEARCH LABS, 1997. The Aglet
Workbench: Programming Mobile Agents in
Java. http://www.trl.ibm.co.jp/aglets/.

IMIELIŃSKI, T. AND BADRINATH, B. R. 1994.
Mobile wireless computing: Challenges in
data management. Commun. ACM 37, 10
(Oct. 1994), 18–28.

IMIELINSKI, T., VISHWANATH, S., AND BADRINATH, B.
1994. Energy efficient indexing on air. In
Proceedings of the 1994 ACM SIGMOD Inter-
national Conference on Management of Data
(SIGMOD ’94, Minneapolis, MN, May 24–27,
1994), R. T. Snodgrass and M. Winslett,
Eds. ACM Press, New York, NY.

IMIELIŃSKI, T., VISWANATHAN, S., AND BADRINATH,
B. R. 1994. Power efficient filtering of data
on air. In Proceedings of the Fourth Interna-
tional Conference on Extending Database
Technology: Advances in Database Technology
(EDBT ’94, Cambridge, UK, Mar. 28–31,
1994), M. Jarke, J. Bubenko, and K. Jeffery,
Eds. Proceedings of the Second Symposium
on Advances in Spatial Databases, vol.
779. Springer-Verlag, New York, NY, 245–
258.

JAIN, R. AND KRISHNAKUMAR, N. 1994. Service
handoffs and virtual mobility for delivery of
personal information services to mobile users.
Technical Report TM-24696. Bellcore, NJ.

JING, J., ELMAGARMID, A., HELAL, A. S., AND
ALONSO, R. 1997. Bit-sequences: An adap-
tive cache invalidation method in mobile cli-
ent/server environments. Mob. Netw. Appl.
2, 2, 115–127.

JOSEPH, A. D. AND KAASHOEK, M. F. 1997.
Building reliable mobile-aware applications
using the Rover toolkit. Wireless Networks 3,
5, 405–419.

JOSEPH, A. D., TAUBER, J. A., AND KAASHOEK, M. F.
1997. Mobile computing with the Rover tool-
kit. IEEE Trans. Comput. 46, 3, 337–352.

KATZ, R. 1994. Adaptation and mobility in
wireless information systems. IEEE Per-
sonal Commun. 1, 1, 6–17.

KISTLER, J. J. AND SATYANARAYANAN, M. 1992.
Disconnected operation in the Coda File Sys-
tem. ACM Trans. Comput. Syst. 10, 1 (Feb.
1992), 3–25.

KOJO, M., RAATIKAINEN, K., AND ALANKO,
T. 1994. Connecting mobile workstations
to the internet over a digital cellular tele-
phone network. In Proceedings of the Mobi-
data Workshop. Rutgers University Press,
New Brunswick, NJ.

KRISHNAKUMAR, N. AND JAIN, R. 1994. Protocols
for maintaining inventory databases and user
service profiles in mobile sales applications.
In Proceedings of the Mobidata Work-
shop. Rutgers University Press, New Brun-
swick, NJ.

KUENNING, G. H. AND POPEK, G. J. 1997.
Automated hoarding for mobile comput-
ers. ACM SIGOPS Oper. Syst. Rev. 31, 5,
264–275.

KUMAR, P. AND SATYANARAYANAN, M. 1993.
Supporting application-specific resolution in
an optimistically replicated file system. In
Proceedings of the 4th Workshop on Worksta-
tion Operating Systems (Napa, CA, Oct.).

LE, M., SESHAN, S., BURGHARDT, F., AND RABAEY, J.
1994. Software architecture of the InfoPad
system. In Proceedings of the Mobidata
Workshop on Mobile and Wireless Information
Systems (Rutgers, NJ, Nov.).

MUMMERT, L. AND SATYANARAYANAN, M. 1994.
Large granularity cache coherence in the coda
file system. In Proceedings of the USENIX
Summer Conference (Boston, Mass.). USE-
NIX Assoc., Berkeley, CA.

NARAYANASWAMY, S. ET AL., 1996. Application
and network support for InfoPad. IEEE Per-
sonal Commun. 3, 2.

NOBLE, B., PRICE, M., AND SATYANARAYANAN,
M. 1995. A programming interface for ap-
plication-aware adaptation in mobile comput-
ing. In Proceedings of the 2nd USENIX Sym-
posium on Mobile and Location-Independent
Computing.

NOBLE, B. D., SATYANARAYANAN, M., NARAYANAN,
D., TILTON, J. E., FLINN, J., AND WALKER, K.
R. 1997. Agile application-aware adapta-
tion for mobility. ACM SIGOPS Oper. Syst.
Rev. 31, 5, 276–287.

PITOURA, E. AND SAMARAS, S. 1998. Data Man-
agement for Mobile Computing. Kluwer Aca-
demic Publishers, Hingham, MA.

SATYANARAYANAN, M. 1996. Accessing informa-
tion on demand at any location. mobile infor-
mation access. IEEE Personal Commun. 3,
1, 26–33.

SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P.,
OKASAKI, M. E., SIEGEL, E. H., AND STEERE, D.

156 • J. Jing et al.

ACM Computing Surveys, Vol. 31, No. 2, June 1999

C. 1990. Coda: A highly available file sys-
tem for a distributed workstation environ-
ment. IEEE Trans. Comput. 39, 4 (Apr.
1990), 447–459.

SATYANARAYANAN, M., NOBLE, B., KUMAR, P., AND

PRICE, M. 1995. Application-aware adapta-
tion for mobile computing. ACM SIGOPS
Oper. Syst. Rev. 29, 1 (Jan. 1995), 52–55.

SU, C.-J. AND TASSIULAS, L. 1998. Joint broad-
cast scheduling and user’s cache management
for efficient information delivery. In The
fourth annual ACM/IEEE international con-
ference on Mobile computing and networking
(MOBICOM ’98, Dallas, TX, Oct. 25–30,
1998), W. P. Osborne and D. Moghe,
Eds. ACM Press, New York, NY, 33–42.

TAIT, C. AND DUCHAMP, D. 1991. Service inter-
face and replica consistency algorithm for mo-
bile file system clients. In Proceedings of the
First International Conference on Parallel and
Distributed Information Systems (Miami
Beach, Florida). 190–197.

TAIT, C. D. AND DUCHAMP, D. 1992. An efficient
variable consistency replicated file service.
In Proceedings of the USENIX File Systems
Workshop. USENIX Assoc., Berkeley, CA,
111–126.

TERRY, D., DEMERS, A., PETERSEN, K., SPREITZER,
M., THEIMER, M., AND WELCH, B. 1994.
Session guarantees for weakly consistent rep-
licated data. In Proceedings of the 3rd Inter-
national Conference on Parallel and Distrib-
uted Information Systems (PDIS, Austin, TX,
Sept.).

TERRY, D. B., THEIMER, M. M., PETERSEN, K., DEM-
ERS, A. J., SPREITZER, M. J., AND HAUSER, C.
H. 1995. Managing update conflicts in
Bayou, a weakly connected replicated storage
system. ACM SIGOPS Oper. Syst. Rev. 29, 5
(Dec.), 172–182.

VISHWANATH, S. AND IMIELINSKI, T. 1995.
Pyramid broadcasting for video on demand
service. In Proceedings of the IEEE Multime-
dia Computing and Networks Conference (San
Jose, Calif.). IEEE Computer Society Press,
Los Alamitos, CA.

WAP, 1996. http://www.wapforum.org.
WELLING, G. AND BADRINATH, B. R. 1998. An

architecture for exporting environment
awareness to mobile computing applications.
IEEE Trans. Softw. Eng. 24, 5, 391–400.

ZENEL, B. AND DUCHAMP, D. 1997. General pur-
pose proxies: Solved and unsolved problems.
In Proceedings of the 6th Workshop on Hot
Topics in Operating Systems. 87–92.

Received: June 1996; revised: March 1998; accepted: December 1998

Client-Server Computing in Mobile Environments • 157

ACM Computing Surveys, Vol. 31, No. 2, June 1999

