
Distributed Object-Based Programming Systems

ROGER S. CHIN AND SAMUEL T. CHANSON

Department of Computer Sc~ence, Univers~ty of British Columbla, Vancouver, B. C., Canada V6T 1W5

The development of distributed operating systems and object-based programming

languages makes possible an environment in which programs consisting of a set of
interacting modules, or objects, may execute concurrently on a collection of loosely

coupled processors, An object-based programming language encourages a methodology
for designing and creating a program as a set of autonomous components, whereas a

distributed operating system permits a collection of workstations or personal computers

to be treated as a single entity. The amalgamation of these two concepts has resulted
in systems that shall be referred to as distributed, object-based programming systems.

This paper discusses issues in the design and implementatior~ of such systems.

Following the presentation of fundamental concepts and various object models, Issues
in object management, object interaction management, and physical resource
management are discussed, Extensive examples are drawn from existing systems.

Categories and Subject Descriptors: C.2.4 [Computer-Communications Network]:
Distributed Systems; D.4 [Software]: Operating Systems; D.4. 1 [Operating Systems]:

Process Management; D.4.2 [Operating Systems]: Storage Management; D.4.5

[Operating Systems]: Reliability; D.4.6 [Operating Systems]: Security and
Protection.

General Terms: Design, Reliability, Security

Additional Key Words and Phrases: capability scheme, distributed operating systems,

error recovery, method invocation, nested transaction, object-based programming
languages, object model, object reliability, processor allocation, resource management,
synchronization, transaction

1. FUNDAMENTAL CONCEPTS

1.1 Objects

An object is an entity that encapsulates
some private state information or data, a
set of associated operations or procedures
that manipulate the data, and possibly a
thread of control so that collectively they
can be treated as a single unit (Figure 1).
In general, an object’s state is completely
protected and hidden from all other ob-
jects. The only way it can be examined or
modified is by making a request or an
operation invocation on one of the object’s
publicly accessible operations. This cre -

BEcI
operation

opcrmon

. ..

operation

Figure 1. Object.

ates a well-defined interface for each ob -
ject, enabling the specification of an
object’s operations to be made public
while at the same time keeping the im-
plementation of the operations and the

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

ACM Computing Surveys, Vol. 23, No. 1, March 1991

92 ● R. S. Chin and S. T. Chanson

CONTENTS

1. FUNDAMENTAL CONCEPTS
1 1 Objects
1.2 Object-Based Programming Languages
13 Ob.lect-Based Programming Systems
14 Dlstrlbuted Object-Based Programmmg

Systems
2 OBJECT STRUCTURE

2 1 Granularity
2 2 Composltlon
23 Overview of Object Structures in Exlstmg

Systems
3 OBJECT MANAGEMENT

31 Action Management
32 Synchronization
33 Security
34 Object Rehabihty
35 Overview of Object Management m Exmting

Systems
4 OBJECT INTERACTION MANAGEMENT

41 Locating an Object
42 System-Level Invocation Handhng
43 Detecting Invocation Failures
44 Overview of Object InteractIon Management

in Existing Systems
5 RESOURCE MANAGEMENT

51 Memory and Secondary Storage
52 Processors
5.3 Overview of Resource Management m

Existing Systems
6 CONCLUSION
APPENDIX
REFERENCES

representation of its state information
private.

An operation may invoke other opera-
tions, possibly on other objects. These
operations may in turn make invocations
on others, and so on. A chain of related
invocations is referred to as an action

(Figure 2).2

1.2 Object-Based Programming Languages

A class is the direct extension of the
notion of an abstract data type; it is a
template from which objects may be cre-
ated. Every object is an instance of some
class. 1 A group of objects that have the

1A class is sometimes inappropriately referred to as
a class object, whereas its instances are referred to
as instance objects. In this paper, the term object
will be used in the context of instance objects,

same set of operations and the same state
representations are considered to be of
the same class. It should be emphasized
that a class maintains no state and
performs no operations. Classes typically
exist at compile time; objects exist at
execution time.

A programming language is defined as
being object based if it supports objects
as a language feature and obJ”ect oriented
if it also supports the concept of inheri-
tance.2 Inheritance is a mechanism that
permits new classes to be developed from
existing classes simply by specifying how
the new classes differ from the originals.
A class may inherit the operations and
behavior of a base class or superclass,
and it may have its operations and be-
havior inherited by a derived class or
subclass. More than one class may be
derived from a single base class. A super-
class provides functionality common to
all of its subclasses, whereas a subclass
provides additional functionality to spe-
cialize its behavior. The association be-
tween these classes is sometimes referred
to as an IS-A or an IS-A-KIND-OF rela-
tionship. For example, the superclass dog
may have the two subclasses Saint
Bernard and dachshund. The inheritance
scheme is advantageous in two respects.
First, by altering an attribute of a base
class, that attribute is similarly modified
in all of its derived classes and in all of
their subclasses. Second, it encourages
the reuse of existing code.

Inheritance from a single base class is
referred to as single inheritance, whereas
inheritance from multiple base classes is
referred to as multiple inheritance. An-
other variation of the inheritance scheme
is delegation. Delegation is a mechanism
that permits an instance object to dele-
gate responsibility for servicing an invo-
cation request to another object. This
differs from the inheritance scheme in
that it is class independent. Individual
instance objects of the same class may

‘A detailed discussion of terms that can be used to
describe object-oriented languages can be found in
Wegner [19871.

ACM Computmg Surveys, Vol 23, No 1, March 1991

Distributed, Object-Based Programming Systems” g 93

object A Object B

-B=+

Invoc~hon

+-–––-
Result

Object N

-ElIzEl
* .: 5==

Figure 2. Action.

Object A Object B Object C

%!!!%E”E

Figure 3. Object-based program,

have different objects servicing requests
they are unable to service.

According to these definitions, the lan-
guages C + + [Stroustrup 1986], SR
[Andrews 19881, and Smalltalk [Goldberg
19831 are object-oriented languages,
whereas the languages Ada [DOD 1980]
and NIodula-2 [Wirth 1985] are object-
based languages.

Object-based programming languages
encourage their users to design and de-
velop a program consisting of multiple,
interacting, autonomous objects (Figure
3). This philosophy of dividing a program
into multiple subcomponents is not new.
In fact, many of these ideas come from
traditional software engineering princi-
ples that stress such a design methodol-
ogy. According to these principles, a
program should have the following five
characteristics:

*

e

Abstract. The design concepts should
be separated from the implementation
details. A program should hide the de-
sign decisions and the data structures
used.
Structured. A large program should be
decomposed into components of a man-
ageable size, with well-defined rela -

●

☛

☛

tionships established between the
components.
IWodular. The internal design of each
component should be localized so that
it does not depend on the internal de-
sign of any other component.
Concise. The code should be clear and
understandable.
Verifiable. The program should be easy
to test and debug.

An object-based programming language
emphasizes such a style of programming.

Object-based programming languages
can simplify the task of programming
because they allow the abstractions
used by a programmer to be more easily
translated into the abstractions provided
by the language. These languages
stress a development methodology that
emphasizes modular structure, data ab -
straction, and cocle reuse. These charac-
teristics loosely correspond to the human
approach of dividing a complex problem
into less complex subproblems, of focus-
ing on the higher level issues and ig-
noring tho~e details that are initially
of little or no concern, and of drawing
upon previously obtained knowledge,
respectively. Object-based programming

ACM Computing Surveys, Vol 23, No. 1, March 1991

94 “ R. S. Chin and S. T. Chanson

languages help simplify the task of
translating a problem into a program
by creating a closer coupling between
the programming language and the
programmer.

1.3 Object-Based Programming Systems

An object-based programming system
(OBPS) can best be defined as a comput-
ing environment that supplies both an
object-based programming language and
a system that supports object abstraction
at the operating system level. 3 This en-
ables objects to be maintained, managed,
and used efficiently. It also permits ob-
jects to be shared by multiple users; in
contrast, object-base programming lan-
guages do not allow objects to be shared,
To provide the later functionality, the
system typically assigns a unique identi-
fier to each object so each can be uniquely
specified.

The distinction between an operating
system and the programming language it
supports is not as great as it once was. In
1976, Jones [19761 observed that operat-
ing systems and programming languages
were once designed and developed inde-
pendently, but a close coupling was be-
ginning to form between them. More
recently, languages are providing fea-
tures that were previously provided only
by the operating system and vice versa.
One reason for this tight coupling is so
that efficient low-level support can be
provided for the higher level abstrac-
tions. This is part of the process that
Nicol et al. [1987] call total system de-

sign. It is their opinion that when a new
computing environment is being devel-
oped, the language, the operating sys-
tem, and possibly the hardware of the
system should all be designed simultane-
ously. Each component can then be built

31mplementing inheritance at the operating system
level M a task that E m need of much more re-
search. Thus, for generality, the scope of this paper
will be limited to describing object-based program-
ming systems rather than object-oriented program-
ming systems.

to support a particular environment so a
more uniform and efficient system is cre-
ated. One disadvantage to this scheme is
that it may sacrifice future flexibility by
tying a system to particular abstractions,

The operating system of an OBPS sup-
plies a global, machine-wide object space
by providing features for the following:

- Object management

● Object interaction management

● Resource management

These topics are discussed in detail in
subsequent sections of this paper.

1.4 Distributed, Object-Based Programming

Systems

A distributed, object-based programming
systems (DOBPS) provides the features
of an object-based programming system
as well as a decentralized or distributed
computing environment (see Figure Al).
DOBPSS typically have the following
characteristics:

●

●

e

Distribution. A DOBPS combines a
network of independent, possibly het-
erogeneous, workstations or personal
computers (hereafter referred to as
workstations) so that they provide a

decentralized computing environment.

Transparency. The system may hide
the distributed environment or other
underlying details from the users. For
example, a DOBPS can provide the
feature of location transparency so a
user does not have to be aware of the
machine boundaries and the physical
locations of an object in order to make
an invocation on it. It should also pro-
vide uniform access to all of the objects
of the system, whether they are active
in memory or inactive in secondary
storage.

Data Integrity. A DOBPS ensures that
a persistent object is always in a valid
state before it performs an invocation.
That is, an object is always in a state
that is the result of the successful ter-
mination of ~n operation. If an opera-
tion does not successfully complete, the

ACM Comput,ng Surveys, Vol. 23, No. 1, March 1991

Distributed, Object-Based Programming Systems” “ 95

Machine a Machine b Machine c

r
.. —-- —-—. I r ------ –--l r---–--–––l

I
I
I
1
I
I
I
I
I
1

Object A

B

m

operation

opation
. . .

operation

II
II
II

+--i+
II

’11
II
II
II

Object B

R~*Fq

Wwiiad
II

I
I
I
I
I

I
I
I
I
I

-—-— —-—— ——. - --—— --—- -.-— -——- ————

Figure 4. Distributed object-based program.

system ensures that all changes made quickly in a DOBPS than in a
to the object’s state are undone. conventional system.4

e Fault Tolerance. The failure of a work- Some of these topics will be discussed in
station or an object represents only a greater detail in subsequent sections of
partial failure to a DOBPS; the loss is this paper.
restricted to that workstation or ob -
ject. The remainder of the system
should be able to continue processing
with perhaps the inconvenience of a
less than normal service.

e Availability. A DOBPS may take steps
to ensure that all objects remain avail-
able to a high probability, despite
workstation failures. If any service be-
comes inaccessible, the entire system
may be shut down and restarted in
order to restore full service.

* Recoverability. If a workstation fails, a
DOBPS automatically recovers the
persistent objects that resided on it.

o Object Autonomy. A DOBPS may per-
mit the owner of an object to specify
the clients that have the authority to
make invocations on the object.

“ Program Concurrency. A DOBPS
should be able to assign the objects of
a program to multiple processors so
they may execute concurrently (Figure
4),

* ObJ”ect Concurrency. An object should
be able to serve multiple, nonmodify -
ing invocation requests concurrently.
Note that this is not true concurrency
unless an object resides in a multipro-
cessor, since only one request can be

2. OBJECT STRUCTURE

The structure of the objects supported by
a DOBPS influences its overall design.
This section defines three types of objects
that earn be supported by DOBPSS and
two ways they can be composed. It then
provides a brief overview of how objects
are structured in a number of existing
systems.

2.1 Granularity

The relative size, overhead, and amount
of processing performed by an object
characterizes its granularity. In the
simplest case, a DOBPS supports only
large-grain objects. These objects are
characterized by their large size, rela-
tively large number of instructions they
execute to perform an invocation, and
relatively few interactions they have with
other objects. Some examples of a large-
grain object are a major component of a
program, a file, and a single-user
database. Large-grain objects typically
reside in their own address spaces. This
enables a system to provide hardware

processed at any one time.

* Improved Performance. A well-design-
4Guidelines for writing well-designed object-ori-
ented programs are described in Lieberherr and

ed program can typically execute more Holland [1989].

ACM Computing Surveys, Vol. 23, No. 1, March 1991

96 ● R. S. Chin and S. T. Chanson

protection between objects and ensures

that a software fault is contained within

the responsible object, unless it is a

catastrophic failure. The pure large-grain

object scheme offers the advantage of

simplicity, but there are a number of

drawbacks associated with a DOBPS that

supports this scheme. First, large-grain

objects are very heavy-weight entities

since a separate address space is pro-

vided for each object. Second, the system’s

control and protection over data are at

the level of the large-grain objects. This

restricts the flexibility of the system and

the amount of object concurrency that

can be provided. Finally, the system does

not provide a consistent data model.

Larger data entities are represented as

objects, whereas smaller data entities

such as linked lists or integers are repre-

sented as conventional programming

language data abstractions.

To provide a finer level of control

over data, a DOBPS may support both

large-grain and medium-grain objects.
Medium-grain objects can be created and
maintained relatively inexpensively be-
cause they are smaller in size and in
scope than large-grain objects. Typical
examples of medium-grain objects are
data structures such as a linked list, a

queue, and the components of a mul-

tiuser database. A number of medium-

grain objects may reside in the address

space of a single large-grain object. This

permits a large-grain object to have a

greater amount of concurrency, since

synchronizing access to the data (see Sec-

tion 3.2) may be done at the level of the

medium-grain objects. Similarly, the

amount of data copied to secondary stor-

age when an action commits (see Section

3.1) can be reduced. A drawback of using

medium-grain objects is the additional

overhead due to the greater number of

objects that have to be managed by the

system. In addition, a consistent data

model is still not provided.

To provide an even finer level of con-

trol over data, a DOBl?S may sup-

port large-grain, medium-grain, and

fine-grain objects. Fine-grain objects are
characterized by their small size, small

number of instructions they execute, and

relatively large number of interactions

they have with other objects. Some ex-

amples of fine-grain objects are data types

that are provided by conventional pro-

gramming languages such as Booleans,

integers, and complex numbers. Each

fine-grain object is encapsulated by and

resides within the address space of a sin-

gle medium-grain or large-grain object.

Poor performance due to the overhead of

managing a huge number of objects and

for making an object invocation for al-

most every operation is the major prob-

lem of systems using fine-grain objects.

This approach does, however, provide a

completely uniform environment and a

consistent data model such that every

data entity, no matter how large or small,

is an object.

2.2 Composition

The relationship between the processes
and the objects of a DOBPS characterizes
the composition of the objects. The pro-
cesses may either be separate and tem-

porarily bound to the objects they invoke,
or they may be coupled and permanently
bound to the objects in which they exe-

cute. These two approaches correspond to

the passive object model and the active

object model, respectively.

Allowing multiple server processes to

execute concurrently within an object

permits it to service multiple invocation

requests concurrently. The amount of ob-

ject concurrency that actually takes

place, however, will depend on the type

of synchronization scheme supported by

the system (see Section 3.2) and the

particular invocation requests received.

2.2.1 Passive Object Model

In the passive object model, the processes
and objects of a DOBPS are completely
separate entities. A process is not bound
nor is it restricted to a single object.

Instead, a single process is used to per-

form all the operations required to sat-

isfy an action. Consequently, a process
may execute within several objects

ACM Computing Surveys, Vol. 23, No. 1, March 1991

Distributed, Object-Based Programming Systems” o 97

Ob]eCtA Object B Object C

Figure 5. Performing an action in the passive object model.

during its lifetime. When a process makes
an invocation on another object, its exe-
cution in the object in which it currently

resides is temporarily suspended. Con-

ceptually, the process is then mapped into

the address space of the second object,

where it executes the appropriate opera-

tion. When the process completes this

subsequent operation, it is returned to

the first object, where it resumes the exe-

cution of the original operation (Figure

5). A detailed description of this interac-

tion is given in Section 4.2.

One advantage to using the passive

object model is that there is virtually no

restriction on the number of processes

that can be bound to an object. Draw-

backs of the passive object model are that

the cost of mapping a process into and

out of the address space of multiple ob-

jects can be difficult and expensive.

2.2.2 Active Object Model

In the active object model, several server
or worker processes are created for and
assigned to each object to handle its invo-
cation requests. Each process is bound
and restricted to the particular object for
which it is created. When an object is
destroyed, so are its processes. In the
active object model, an operation is not
typically accessed directly by the calling
process, as in the case of a traditional
procedure call, Instead, when a client
makes an operation invocation, a process
in the corresponding server object
accepts the request and performs the op -
eration on the client’s behalf. The inter-
actions between a client and a server are

as follows:

(1)

(2)

(3)

(4)

The client presents an invocation
request, together with a list of argu-
ments, to the appropriate object spec-
ifying the operation to be invoked.

The server object accepts the request,

then locates and performs the speci-

fied operation.

If in the course of executing an opera-

tion an invocation on another object

is made, the process issues the invo-

cation request and waits for a result.

A server process in the second object

is then called upon to execute the

new operation, and so on.

When the operation completes, the

server returns a result to the client.

In this approach, multiple processes may
be involved in performing a single action
(Figure 6).

In the static variation of the active
object model, a fixed number of server
processes are created for each object that
is created or activated (see Section 5.1).
When a request is delivered to an object,
it is randomly assigned to an idle server
process, which performs the specified op-
eration. Requests delivered to an object
whose processes are all busy executing
other tasks are placed in a queue of
pending requests and serviced at a later
time. In this scheme, the maximum de-
gree of object concurrency is further lim-

ited by the number of server processes

created for each object.

In the dynamic variation of the ac-
tive object model, server processes are

ACM Computing Surveys, Vol. 23, No. 1, March 1991

98 - R. S. Chin and S. T. Chanson

Object A Object B Object C

Figure 6. Performing an action in the active object model.

dynamically created for an object as re-
quired. Requests are never queued. When
a request is delivered to an object, a new
process is created for the object to service
the request. When the execution of an
operation completes, the process that was
performing the task is destroyed. The
dynamic variation of the active object
model has the additional expense of dy-
namic process creation and destruction.
This may be minimized by, for example,
maintaining a pool of idle processes.

One problem with the active object
model is deadlock. Deadlock can occur if
an object does not have enough server
processes to handle the requests deliv-
ered to it. For example, a single action
may invoke the same object more times
than there are server processes (e.g.,
within a recursive invocation, which may
span multiple objects), A server process
will be assigned to handle each of the
invocation requests until no more server
processes are available, at which point
both the object and the action are
blocked. Deadlock is less of a problem in
the dynamic variation of the active object
model; however, it may still occur if an
action is permitted to make an arbitrary
number of invocations.

2.3 Overview of Object Structures in Existing

Systems

2.3.1 Amoeba

Amoeba [Mullender and Tanenbaum,
1985, 1986; and van Renesse 1987;
Tanenbaum et al. 1986] supports large-
grain objects and the static variation of
the active object model. Large-grain ob-

jects are composed of a number of code
and data segments that may be shared
by multiple objects.

2.3.2 Argus

Argus [Liskov 1988; Liskov et al. 1988;
Oki et al. 1985; Walker 1984] supports
both large-grain and medium-Wain ob-
jects, and the dynamic variation of the
active object model. The expense of dy-
namic process creation and destruction is
reduced by maintaining a pool of unused
processes. When a new process is re-
quired, it is removed from the pool. When
a process is no longer required, it is re-
turned to the pool. A new group of pro-
cesses is created only when the pool is
emptied.

2.3.3 CHORUS

CHORUS [Banino et al. 1985; Guille-
mot and Martins 1987; Rozier and Mar-
tins 1987] supports large-grain objects
and the static variation of the active ob-
ject model. It differs from most DOBPSS
in that only a single server process is
created for each object. Furthermore, a
server process cannot be interrupted nor
can it be blocked while it is executing an
operation. All invocations that are made
by a process while it is executing an
operation are recorded in a transmit
queue. These requests are issued only
when the operation completes.

2.3.4 Clouds

Clouds [Ahamad and Dasgupta 1987;
Ahamad et al. 1987; Dasgupta 1986;
Dasgupta et al. 1988; Pitts and Dasgupta,

ACM Computing Surveys, Vol. 23, No 1, March 1991

Distributed, Object-Based Programming Systems” “ 99

1988; Spafford 1987] supports large-grain
objects and the passive object model. An
object consists of a number of segments,
including a code segment, one or more
data segments for persistent data, and a
number of heap segments for volatile
data. Clouds permits code segments to be
shared by multiple objects. When an in-
vocation is made on an object, the associ-
ated process enters the object through
one of the entry points in the code seg-
ment, executes the corresponding opera-
tion, then leaves the object. Special pag-
ing hardware is used to map objects into
the address spaces of processes efficiently
(see Section 5.3).

2.3.5 Eden

Eden [Almes et al. 1985; Pu et al. 19861
supports large-grain objects and the static
variation of the active object model. Each
object has three components: a long-term
state that contains the persistent infor-
mation, a short-term state that contains
the volatile information, and a code seg-
ment that contains the operations. An
object also contains a number of pro-
cesses, including a Dispatcher process,
one or more server processes, and possi-
bly some maintenance processes. Each
Dispatcher process is responsible for ac-
cepting invocation requests delivered to
its object and assigning them to idle
server processes.

2.3.6 Emerald

Emerald [Black et al. 1986a, 1986b] is
both a system and a language that sup-
ports the passive object model. The
Emerald language supports large-grain,
medium-grain, and fine-grain objects.
The kernel, however, only supports
large-grain and medium-grain objects.
Fine-grain objects are invisible to the
kernel and are incorporated directly into
the code of the other objects by the com-
piler. Large-grain objects may be in-
voked by any object in the system. They
are also the smallest entities that can be
moved independently about the system
(see Section 5.2). Medium-grain and

fine-grain objects are not visible outside
of the object in which they are contained;
they may be invoked only by objects that
reside in the same containing object.

A process consists of a stack composed
of a collection of activation records. A
new activation record is created and
added to a process’ stack whenever the
process makes an invocation on a new
object. Each record stores information re -
garding the state of the process within
the object to which it corresponds.

Emerald differs from most DOBPSS in
that a single, common address space is
shared by all objects and processes that
reside in the same workstation. This low-
ers the cost of creating and maintaining
objects and enables objects in the same
workstation to examine and modify each
other directly (without context switches),
A drawback of this scheme is that hard-
ware protection between objects that
reside on the same workstation is not
provided. Consequently, an object failure
can be potentially fatal to an entire
workstation.

2.3.7 TABS/Camelot

TABS and Camelot [Eppinger and Spec-
tor 1985; Spector et al. 1985; Spector et
al. 1986; Spector 1987; Spector et al.
1987] support large-~ain and medium-
grain objects and the static variation of
the active object model. They differ from
most DOBPSS in that a collection of
medium-grain objects is encapsulated by
a number of server Iprocesses. Each server
process accepts invocation requests that
specify the medium-grain object and the
operation to be invoked.

See Figure A2 for a summary of the
object structure schemes supported by
each system.

3. OBJECT MANAGEMENT

Objects are the fundamental resources of
a DOBPS; therefore, their management
is an essential function of these systems.
This section describes the features pro-
vided by a DOBPS for making the effects
of an action on persistent objects

ACM Computing Surveys, Vol 23, No. 1, March 1991

100 “ R. S. Chin and S. T. Chanson

permanent, for synchronizing the execu-
tion of multiple concurrent invocations
within an object, for protecting objects
from unauthorized clients, and for recov-
ering objects that fail. Since synchroniza-
tion, security, and recovery mechanisms
used in DOBPSS are similar to those used
in other systems [Svobodova 1984;
Tanenbaum and Renesse 1985], only an
outline of the more common techniques
is given here. A brief overview of how
objects are managed in a number of ex-
isting systems is then presented.

3.1 Action Management

An important function of a DOBPS is to

manage the activities of its actions. Ac-
tions should have the following three
properties:

e

e

e

Serializability. Multiple actions that
execute concurrently should be sched-
uled in such a way that the overall
effect is as if they were executed
sequentially in some order.

Atomicity. An action either success-
fully completes or has no effect.

Permanence. The effects of an action

that successfully completes is not lost,

except in the event of a catastrophic

failure.

A single action may produce a number

of related invocations that may affect

multiple objects. Typically, an action

successfully completes only when all the

invocations associated with it complete.

An action that successfully completes is

said to commit, whereas an action that
fails to do so is said to abort. If an action
commits, all modifications made to per-
sistent objects by the action are made
permanent by recording the changes to
secondary storage (see Section 5.1.2). If
an action aborts, all modifications it made
to objects are undone.

The commit procedure ensures that ei-
ther all the modifications made to objects
by an action are made permanent or none
are. The most popular commit procedure
is the two-phase commit protocol [Gray
1978]:

(1) A precommit request is issued to all
the affected objects.

ACM Computmg Surveys, Vol 23, No 1, March 1991

(2)

(3)

(4)

An object that receives a precommit
request writes its modifications to
secondary storage and returns an ac-
knowledgment.

If all the objects return an acknowl-
edgment, a commit request is issued
to the affected objects. If any object
fails to respond to its precommit re-
quest within some time frame, how-
ever, an abort request is issued to all
the affected objects, and the commit
procedure is terminated.

An object that receives a commit re-
quest makes the changes permanent,
resets the control structures associ-
ated with the action (returning ob-
tained locks, for example), and
returns a second acknowledgment.
An object that receives an abort re-
quest discards the changes and resets
the control structures.

(5) A commit request is repeatedly
issued to the objects that fail to re-
spond until all return acknowledg-
ments, at which point the commit
procedure ends.

This commit protocol is simple and effi-
cient, but one problem with the scheme
is that it may block if the object coordi-
nating the protocol fails or if a network
failure occurs.

Initiating the procedure to commit an
action may be the responsibility of either
the DOBPS or its users. The simplest
scheme is the request scheme. In this
scheme, the user is responsible for decid-
ing when to initiate the commit proce-
dure. A user is not required to commit
each and every action. This can improve
the performance and the response time of
a DOBPS, since executing the commit
procedure can be expensive. The main
problem with not committing every ac-
tion is that the guarantee of permanence
and atomicity are lost. For example, one
action can modify a number of persistent
objects and complete without commit -
ting. A second, subsequent, action can
modify some, but not all, of these objects
and then commit. If the system fails and
in the in-memory versions of these ob-
jects are lost, some of the effects of the
first action will be lost, thereby placing

Distributed, Object-Based Programming Systems” w 101

the system in an invalid or inconsistent
state when the system is restored (see
Section 3.4).

To guarantee that all the properties of
an action will be enforced, the system
must be responsible for managing the
actions and committing them when they
are complete. In the transition scheme
[Gray 1980], when all the invocations as-
sociated with an action successfully com-
plete, the system performs the commit
procedure to make the modifications per-
manent. Successful completion of all in-
vocations is essential to the outcome of a
transaction; the failure of any invocation
causes the corresponding transaction to
abort. This is a simple, straightforward
scheme that ensures that either all the
modifications made by an action are com-
pleted and committed or none are. Two
drawbacks of this scheme are the over-
head of the commit procedure occurs
whenever an action completes, and an
action is forced to abort if any of its
invocations fail.

An extension of the transaction scheme
is the nested transaction scheme [Moss
19851. In this scheme, a single top-level
action creates and manages multiple
lower level, autonomous subactions. The
failure of a subaction does not necessar-
ily force the top-level action to fail as
well. A top-level action can handle a sub-
action failure in any way it chooses. For
example, it may choose to perform the
subaction again, it may abort the entire
action, or it may simply ignore the prob -
lem. The modifications made to objects
by subactions that successfully complete
are conditional to the success of their
top-level action. Only when a top-level
action commits are the modifications cre-
ated by its subactions made permanent.
If a top-level action aborts, all the
changes made by its subactions are also
undone. The nested transaction scheme
permits a finer degree of control over an
action by enabling failures to be con-
tained and handled while allowing
progress to be made elsewhere. One dis-
advantage of the nested transaction
scheme is that the representation of ob-
jects in memory is more complex in order
for the system to be able to undo the

effects of a failed swbaction (see Section
5.1.1).

3.2 Synchronization

Another important function of a DO13PS
is to ensure that thle activities of multi-
ple actions that invoke the same object
do not conflict or interfere with one an-
other. An action should not be permitted
to observe or modify the state of an object
that has been partllally modified by an-
other action that has not committed.
Failing to ensure this can lead to a condi-
tion known as cascading aborts. That is,
any action that observes the partially
modified state of an object resulting from
an action that later aborts also has to be
aborted. To ensure that all actions have
the property of serializability and to pro-
tect the integrity of the objects’ states, a
synchronization mechanism is required.
Many synchronization schemes exist,
most of them classified as being either
pessimistic or optimistic schemes
[Bernstein and Goodman 1981].

In a pessimistic synchronization
scheme, the system takes appropriate
StepS tO preVent COml!di&sfrom occurring.
An action that invokes an object is tem-
porarily suspended if it will interfere with
another action that is currently being
serviced by the object. When all conflict-
ing actions commit, the suspended action
is resumed. Read/write locks are the
most common mechanisms used by a
pessimistic synchronization scheme;
however, timestamps, semaphores, and
monitors are also used.

In an optimistic synchronization
scheme [Mullender and Tanenbaum
1985], an object does not take steps to
prevent conflicts from occurring while in-
vocations are being processed. Instead,
before an action can commit, it is tested
for serializability to ensure that the in-
formation it has observed does not con-
flict witlh changes made by another
action that has previously committed.
That is, the system determines if the
data that were examined by an action in
its version of the object is still up to date
or whether the data have been altered by
an action that has since committed. If no

ACM Computmg Surveys, Vol. 23, No. 1, March 1991

102 “ R. S. Chin and S. T. Chanson

data have changed, the action can com-
mit. If the action examined some infor-
mation that is now out of date, however,
its modifications based on that informa-
tion will be incorrect and consequently
the action must be aborted. To reduce
the likelihood of conflicts, objects may be
represented either as a number of pages
or as a number of medium-grain and/or
fine-grain objects that can be modified
independently. The optimistic synchro -
nization scheme permits the maximum
degree of concurrency possible within an
object; actions are never suspended, since
they are in a pessimistic synchronization
scheme.

The major problem with the optimistic
scheme is that some actions that success-
fully complete may still be forced to
abort. Furthermore, multiple copies of
each object must be maintained in mem-
ory to permit concurrency and the
changes made by each committed action
must be recorded in secondary storage to
enable the commit procedure to test for
serializability (see Section 5. 1).

A pessimistic scheme avoids the over-
head of undoing and redoing requests at
the expense of reduced concurrency. For
example, two actions that examine and
modify different parts of the same object
are not able to execute concurrently, even
when there is no problem of conflict. An
optimistic scheme, on the other hand,
avoids the overhead of delaying requests
at the expense of undoing and redoing
requests. Therefore, a pessimistic scheme
performs better than an optimistic

scheme when conflicts are frequent,

whereas the reverse holds true when
conflicts are infrequent.

3.3 Security

Providing a security scheme to prevent
unauthorized clients from successfully
invoking an object is an important, but
often ignored, function of a DOBPS. This
is especially important in a multiuser
system, where users are assigned differ-
ent security clearances and are permit-
ted to operate on different sets of objects.
The security mechanism may be pro-

vided either by the system or by the
user.

A common security mechanism is the
capability scheme that incorporates pro-
tection into the naming scheme [Cohen
and Jefferson 1975; Tanenbaum et al.
1986]. A capability is a key consisting of
two fields: a name field and an access
rights field. The name field specifies a
particular object; the access rights field
indicates the specific operations of the
object that may be invoked. Each capa-
bility has exactly one object; however,
the same object may have multiple capa-
bilities. This enables the owner of an
object to vary the access rights for differ-
ent clients. Each server object passes its
capabilities among the clients of the sys-
tem that request it. In order for a client
to make an invocation of an object, it
must first possess one of the object’s ca-
pabilities. This capability is passed as a
parameter in the invocation request. Ei-
ther the system or the objects can be
responsible for verifying, managing, and
maintaining the capabilities. In either
case, capabilities must be protected to
ensure they are not modified or forged.

Another type of security mechanism is
the control procedure scheme [Banino and
Fabre 1982]. In this scheme, every object
has a special procedure through which
all incoming invocation requests must
first pass. These procedures check the
authorization of clients making a request
and terminate all invalid requests. The
control procedure scheme is flexible in
that it can support almost any type of
security scheme. For example, it can use
a mechanism that ensures that a request
is not received from a client that has not
been previously placed on a list of autho-
rized clients. Or it can use a password
scheme to block unauthorized requests.
This permits each object to provide secu-
rity tailored to the requirements of the
object. If an object is unimportant, a min-
imal security scheme can be used; if an
object is confidential, multiple schemes
can be used. Bypassing the security
mechanism is extremely difficult because
each object is entirely responsible for en-
forcing its own protection scheme.

ACM Computmg Surveys, Vol 23, No 1, March 1991

Distributed, Object-Based Programming Systems” g 103

3.4 Object Reliability

A DOBPS must be able to detect and
recover from object and workstation fail-
ures. 5 This is an important feature be-
cause as the number of components in a
system increases, the probability that a
failure will occur also increases. There
are two general methods of providing ob -
ject reliability. One method is to recover
a failed object as quickly as possible, lim-
iting the amount of time it remains un-
available. An alternative method is to
replicate objects at multiple workstations
so that each object has a high probability
of surviving a workstation failure. Object
recovery techniques include roll-back and
roll-forward recovery schemes. Replica-
tion schemes include primary copy and
peer object schemes.

3.4.1 Object Recovery

In a roll-back recovery scheme, a failed
object is restored to its last consistent
state that was recorded in secondary
storage by the commit procedure. All
processes and invocations that were in
progress when the failure occurred are
lost. Roll-back recovery schemes are sim-
ple and efficient. Another important
property of these schemes is that they
have a high probability of successful
recovery.

In a roll-forward recovery scheme
[Powell and Presotto 1983], a failed ob.
ject and all objects with which it was
working are restored to their last consist-
ent states that were recorded by the com-
mit procedure. All processes and invoca-
tions that were in progress at the time of
the failure are then restarted and al-
lowed to complete. The roll-forward re-
covery scheme is more complex than a
roll-back scheme because the system
makes it appear that the failure did not
occur. Due to the many ways in which an
object may fail and the complex interac -

51n most systems, network failures are indistin-
guishable from machine failures. Therefore, for the
purposes of this paper, they will not be considered
separately.

tions between objects, however, there is
no guarantee that recovery will be suc-
cessful. For example, if the mechanism
fails to record the retentions of all the
actions of the system correctly, the entire
recovery procedure may fail. Another
problem associated with roll-forward re-
covery schemes is an object failure caused
by a software error will occur again when
the object is restored. This may cause
recovery to take place again, the failure
to occur again, and so on. The topic of
object recovery is further discussed in
Section 5.1.2.

3.4.2 Object Replication

A replication scheme permits copies of an
object to exist on multiple workstations.
This enables a DOBIPS to tolerate a num-
ber of workstation failures while still al-
lowing it to provid[e full functionality.
The failure of any workstation only re-
sults in the unavailability of replicas that
reside on that workstation; a replica that
resides on another workstation should be
able to continue servicing invocation re -
quests. There are a number of problems
associated with replicating objects, in-
cluding maintaining consistent informa-
tion between replicas and synchronizing
the activities of multiple clients. In addi-
tion, a network partition can create havoc
with some replication schemes.

The simplest scheme is to allow only
immutable objects to be replicated. Im-
mutable objects can only be examined by
clients; their states cannot be modified.
These types of objects can be replicated
without the problems of maintaining
state consistency a lnd synchronizing ac-
cess. A deficiency of this scheme is that
it is of limited use since only nonmodifi -
able objects may be replicated.

An alternate approach is the primary
copy replication scheme [Alsberg and Day
1976]. In this scheme, one object replica
is designated as the primary copy,
whereas the other replicas are ordered
and maintained on separate worksta-
tions as secondary copies. Nonmodifying,
or read, requests can be handled by any
replica. Modifying, or write, requests

ACM Computing Surveys, Vol. 23, No 1, March 1991

104 “ R. S. Chin and S. T. Chanson

must be serviced by the primary copy,
which then propagates the modifications
to each of the secondary copies. There
are two variations of the primary copy
scheme: a static primary copy and a dy-
namic primary copy. In the static pri-
mary copy scheme, if a primary copy fails,
the corresponding object is prevented
from servicing modifying requests until
the primary copy is recovered. This
scheme provides additional object avail-
ability for read requests but not for write
requests. The dynamic primary copy
scheme, on the other hand, provides ob-
ject availability for write requests. If a
primary copy fails, the system assigns
one of its secondary copies to take over as
the new primary.

There are additional problems associ-
ated with the dynamic primary copy
replication scheme. First, when a sec-
ondary copy replaces a primary copy it
must take over the identity and the re-
sources such as ports or locks of the failed
object so its clients do not perceive any
change in the server object. Second, a
network partition that separates a pri-
mary copy from some of its secondary
copies may result in two sets of objects
being created, with a primary copy on
either side of the partition. When the
partition is repaired, conflict resolution
may have to take place to remove any
discrepancies.

The peer objects replication scheme is
a third approach. In this scheme there is
no designated primary object or sec-
ondary objects; instead, every replica is
considered to be equal. Both modifying
and nonmodifying requests can be
serviced by any replica; however, the co-
operation of some or all of the other
replicas are required in order to process
the request. These schemes permit the
failure of a limited number of replicas to
be tolerated without preventing write re-
quests from being processed. They are
also less problematic when network par-
titions occur. There are a number of vari-
ations of the peer objects scheme,
including Voting [Gifford 1979], Avail-
able Copies [Bernstein and Goodman
1984], and Regeneration [Pu et al. 1986].

3.5 Overview of Object Management in

Existing Systems

3.5.1 Amoeba

Amoeba supports the request scheme, as
well as both a pessimistic and an opti-
mistic synchronization mechanism. The
pessimistic locking scheme is used when
an action affects multiple objects,
whereas the optimistic scheme is used
when only a single object is affected. In
the optimistic scheme, an action is given
a copy of the most recent version of the
object on which to make its modifica-
tions. To reduce the chance of conflict, an
object’s state is divided into pages. Two
tests are used to check for serializability.
The first test determines if the version of
the object from which the modified ver-
sion was derived (the past version) is still
the most recent version (the current ver-
sion). If it is, the commit procedure is
initiated. Otherwise, the pages of the
current version that were examined by
the action are compared against the cor-
responding ones in the past version. If
none of the pages has changed, the action
did not observe some information that
has changed. A new version of the object
is created by combining the updates made
to create the current version and the
modified version, and the commit proce-
dure is initiated. If both tests fail, the
action is aborted.

Security is provided by a capability
scheme that uses a random number gen-
erator that produces large, sparse num-
bers as object identifiers [Mullender and
Tanenbaum 1986]. This scheme makes it
difficult, though not impossible, for a user
to forge a capability. Further protection
can be provided by encrypting capabili-
ties or by using special hardware to en-
sure that only the server object, which is
specified in the invocation, is the one
that actually receives the request.

A special boot server object is used to
detect and recover objects and worksta-
tions that have failed. An object can reg-
ister with the boot server to ensure that
it is not down for a lengthy period of
time. Periodically, the boot server probes

ACM Computing Surveys, Vol. 23, No. 1, March 1991

Distributed, Object-Based Programming Systems” ● 105

each of its registered objects to determine
if they are still functioning. Any object
that does not respond to a number of
probes is assumed to have failed, and the
recovery procedure is performed. If the
object has failed but the workstation on
which it was residing is still working,
the object is restored on that worksta-
tion. If the workstation has failed, it is
restarted and the object is restored. A
roll-back recovery scheme that uses
checkpoints is supported, but an object
replication scheme is not provided.

3.5.2 Argus

Argus supports the nested transaction
scheme. Each large-grain object visited
by an action records which of its
medium-grain objects were examined and
which were modified. When an invoca-
tion completes, the identifier of the
large-grain object that was servicing the
request is added to a list of all large-grain
objects that were affected by this action.
This list is eventually propagated back to
the object that initiated the action, This
object then performs the commit proce -
dure on all of the large-grain objects it
affected. Each large-grain object, how-
ever, is responsible for performing the
commit procedure on each of its affected
medium-grain objects.

A pessimistic synchronization scheme
that uses read/write locks is supported.
The usual locking rules are simplified by
not permitting a top-level action to exe-
cute concurrently with its subactions.
This ensures that only one action or sub-
action can modify an object at any one
time. When a subaction successfully
completes, its locks are inherited by its
parent action.

Each workstation provides a guardian
manager that is responsible for creating
new large-grain objects at the worksta-
tion, for detecting objects that have failed,
and for recovering objects after a failure.
A partial roll-forward recovery scheme
that uses a commit log is supported (see
Section 5.1.2). Argus does not provide a
security scheme or an object replication
scheme.

3.5.3 CHORUS

CHORUS supports the request scheme.
A single action may create multiple sub-
activities that execute concurrently. This
scheme is similar to the nested transac-
tion scheme, but it is not as flexible or as

powerful. In CHORUS, a subactivity is a

completely separate entity that may com-
mit independent of the top-level action.

A pessimistic synchronization scheme
is supported since each object can per-
form at most one invocation request at a
time. The control procedure security
scheme and a roll-back recovery scheme
that uses checkpoints are provided.

CHORUS uses a variation of the pri-
mary copy replication scheme. A single
secondary copy acts solely as a backup
and is otherwise not used. The primary
copy and the backl~p copy consecutively
perform the same invocations. The pri-
mary copy accepts and services invoca-
tion requests and propagates completed
requests to the bac Ikup copy. The backup
copy services the invocation requests de-
livered to it but suppresses the reply it
would normally issue when it completes.
As a result, the backup copy performs
exactly the same operations as the pri-
mary copy, but delayed by one operation
so it records the last consistent state of
the primary copy. The primary copy is
responsible for periodically checking the
status of the backup copy and vice versa.

If the primary copy fails, the backup copy
takes its place and creates a new backup
object. If the backup copy fails, the pri-
mary copy creates a new backup copy to
take its place.

Each workstation provides an inspec-
tor object that periodically checks with
its counterparts in the network to detect
workstation failures. If a failure is de-
tected, the appropriate roll-back recovery
procedure is performed.

3.5.4 Clouds

Clouds supports the nested transaction
scheme. An action manager object is re -
sponsible for maintaining a record of all

ACM Computmg Surveys, Vol. 23, No 1, March 1991

106 0 R. S. Chin and S. T. Chanson

objects visited by an action and for coor-
dinating the commit procedure.

Two pessimistic synchronization
schemes are provided: an automatic
scheme and a custom scheme. The auto-
matic scheme uses read/write locks with
each operation of an object defined as
requiring either a read or a write lock.
The custom scheme permits a user to
create specific synchronization rules us-
ing either semaphores or locks. Custom
synchronization has the benefit of en-
hancing concurrency because it permits
semantic knowledge about the operations
to be used. The drawback of custom syn-
chronization is that the serializability
property of actions cannot be enforced by
the system since users define their own
rules. A capability scheme is provided by
Clouds for security.

Clouds supports the roll-back recovery
scheme that uses checkpoints and the
peer objects scheme for object replication.
It also permits immutable objects to be
replicated.

3.5.5 Eden

Eden supports a variation of the nested
transaction scheme in which an action
must be explicitly committed by the user.
To manage the activities of each nested
transaction, a special manager object is
created. Each manager object is responsi-
ble for interacting with the objects af-
fected by the corresponding action and
for coordinating the commit procedure
when the client informs it to do so.

A pessimistic synchronization scheme
that uses monitors, a capability security
scheme, and a roll-back recovery scheme
that uses checkpoints are provided,

Object replication is supported using
the regeneration version of the peer ob-
jects scheme [Pu et al. 1986]. For each
replica of an object, a version manager
(see Section 5.3) is created at the work-
station on which the replica resides.
The version managers interact to ensure
that inconsistencies do not arise among
the replicas. Eden also permits immut-
able objects to be replicated without
restriction.

3.5.6 Emerald

Emerald supports the request scheme, a
pessimistic synchronization scheme that
uses monitors, and a roll-back recovery
scheme that uses checkpoints. A secur-
ity scheme is not provided. Emerald
only permits immutable objects to be
replicated,

3.5.7 TABS/Camelot

TABS supports the nested transaction
scheme. Each workstation provides a
Transaction Manager that is responsible
for handling the commit procedure on all
affected objects that reside on the work-
station. Each Transaction Manager is
also responsible for acting as the coordi-
nator for the managers of those worksta-
tions that are its children, with respect
to the committing action. Consequently,
a number of managers must cooperate in
order to commit an action that spans
multiple workstations. If an action
aborts, the Transaction Managers ensure
that the partial effects of the action are
undone.

Camelot also supports the nested
transaction scheme. Two commit proce-
dures are provided: a blocking commit
based on the two-phase commit protocol
and a nonblocking commit that is a com-
bination of the three-phase and the
Byzantine commit protocols [Spector et
al. 1987]. The nonblocking commit proce-
dure has a higher overhead than the
blocking commit procedure; however, the
likelihood that an object will remain
locked due to a failure during the commit
procedure is reduced.

Both TABS and Camelot support a pes-
simistic synchronization scheme. A
type-specific locking scheme [Korth 1983]
is provided to permit a programmer to
define customized lock modes and proto-
cols so they can be tailored to the re-
quirements of the objects. This scheme is
similar to the one supplied by Clouds.
Neither a security scheme nor an object
replication scheme is provided.

Individual objects cannot be recovered;
instead, an entire workstation must be
recovered when a failure occurs. A

ACM Computing Surveys, Vol. 23, No. 1, March 1991

Distributed, Object-Based Programming Systems” ● 107

roll-back recovery scheme that uses an

undo/redo log is supported (see Section

5.1.2). During the recovery procedure,

the Recovery Nlanager of the failed work-

station determines whether the invoca-

tions need to be redone or undone and

issues the appropriate requests to the

affected objects. See Figure A3 for a sum-

mary of the Object Management schemes

supported by each system.

4. OBJECT INTERACTION MANAGEMENT

A DOBPS is responsible for managing

the invocations between cooperating ob-

jects. When an action makes an invoca-

tion request, the system must locate the

specified object, take the appropriate

steps to invoke the specified operation,

then possibly return a result. T’his sec-

tion describes the features provided by a

DOBPS for locating server objects, for

handling object interactions, and for de-

tecting invocation failures. It then pre-

sents a brief’ overview of how object

interactions are managed by a number of

existing systems.

4.1 Locating an Object

A DOBPS should provide the property of

location transparency so a client does not

have to be aware of the physical location

of an object in order to invoke it. When-

ever an invocation is made, the system

must determine which object was in-

voked and on which workstation the ob-

ject currently resides in order to deliver

the request to it. As was mentioned pre-

viously, the system must assign an iden-

tifier to each object. These identifiers

must be unique; they should not change

during their lifetime and once used

should not be reused. The mechanism for

locating an object should be flexible

enough to allow objects to migrate or

move from one workstation to another.

One scheme is to encode the location of

an object within its object identifier.

When an invocation is made, the system

simply examines the appropriate field of

the specified object identifier in order to

determine the workstation on which the

object resides. This is a straightforward

and efficient scheme. One restriction of

the scheme, however, is that an object is

not permitted to move once it is assigned

to a workstation, since this would re-

quire its identifier to change. Conse-

quently, an object is fixed to one particu-

lar workstation throughout its lifetime.

A second approach is the distributed
name server scheme. In this scheme, the

system creates a group of name server

objects that are maintained on a number,

but not necessarily all, of the worksta-

tions. These objects cooperate with one

another so that collectively they contain

up-to-date information about the location

of every object in the system. There are

two variations of this scheme. In the first

variation, a name server maintains a

complete collection of location informa-

tion so each server can service any loca-

tion request. In the second variation,

partial information can be maintained by

each server; if a location request cannot

be serviced by one server, it is delegated

to another. The major problem with this

scheme is that at least one server must

be notified every time a new object is

created or an object is moved from one

location to another. Information main-

tained by these servers may be slightly

out of synch since updating a name server

is not an instantaneous operation and

maintaining consistent information

among the multiple components of the

name server can be difficult.

Another approach is the cache/ broad-
cast scheme. A small cache is main-

tained on each workstation that records

the last known locations of a number of

recently referenced remote objects. When

a client makes a remote invocation, the

cache is examined to determine if it has

an entry for the invoked object. If a loca-

tion is found, the invocation request is

sent to that workstation. If the object no

longer resides at that workstation,

however, the request is returned. If the

location of the object is not recorded in

the cache or the cache information is

found to be outdated, a message is broad-

cast throughout the network requesting

the current location of the object. Every

workstation that receives a broadcast

ACM Computing Surveys, Vol. 23, No. 1, March 1991

108 e R. S. Chin and S. T. Chanson

request does an internal search for the

specified object. If the object is found, a

reply message is returned to the work-

station that made the request and its

cache is updated.

The cache ibroadcast scheme can be

very efficient, since an object’s location

may be found in the local cache. It is also

flexible, since it permits an object to be

moved from one workstation to another

while avoiding the expense and delay of

having to notify other workstations or a

distributed name server. One problem

with this scheme, however, is that broad-

cast requests will clutter up the network,

disturbing all the workstations even

though only a single workstation is

directly involved with each location

request.

Forward location pointers can be used

to enhance most location schemes. A for-

ward location pointer is a reference used

to indicate the new location of an object.

Whenever an object is moved from one

workstation to another, a forward loca-

tion pointer is left at the original work-

station. To locate an object that has been

moved, the system can simply follow the

forward pointer or chain of pointers to

the workstation on which the object cur-

rently resides. One problem with using

forward location pointers is that they in-

troduce additional system overhead for

upkeep. Additionally, this scheme cannot

completely handle the problem of finding

migrating objects since some pointers

may be lost or may be unavailable due to

workstation failures.

4.2 SYSTEM-LEVEL INVOCATION HANDLING

When a client makes an invocation on an

object, the DOBPS is responsible for per-

forming the necessary steps to deliver

the request to the specified server object

and for returning a result back to the

client. How a system handles invocations

depends entirely on the object model sup-

ported. Two schemes that are used are

the message passing scheme and the

direct invocation scheme.

4.2.7 Message Passing

A DOBPS that provides the active object

model typically supports the pure mes -

ACM Computing Surveys, Vol 23, No 1, March 1991

sage passing scheme to handle object in-

teractions. When a client makes an invo-

cation on an object, the parameters of the

invocation are packaged into a request

message. This message is then sent to a

server process or a port associated with

the invoked object. A server process in

the invoked object accepts the message,

unpacks the parameters, and performs

the specified operation. When the opera-

tion completes, the result is packaged

into a reply message, which is then sent

back to the client.

DOBPSS differ from most distributed

systems in that two interacting processes

do not go through the effort and expense

of setting up and tearing down a static,

heavyweight connection. Instead, the

binding of a client and a server is

lightweight and done dynamically on ev-

ery invocation. This approach is more

suitable for the request /response com-

munication pattern common to these sys-

tems. It is also better suited for the

multiple machine environment of a

DOBPS because it maps more naturally

onto the mechanisms required for inter-

machine communication. This permits a

DOBPS to more easily support features

such as object mobility (see Section 5.2).

A drawback of the message passing

scheme is the overhead of message pass-

ing for intramachine invocations.

4.2 2 Direct Invocation

A DOBPS that provides the passive ob-

ject model typically support the direct
invocation scheme to handle object inter-

action. In the passive object model, a

single process is responsible for perform-

ing all the operations associated with an

action. As a result, a process will mi-

grate from operation to operation and

from object to object whenever the corre-

sponding action makes an invocation.

When a process invokes a server object

that resides on the same workstation, the

following four steps are taken (Figure 7):

(1) The state of the process and the ob-

jects in which it currently resides are

recorded in the stack space of the

process. The system may protect the

stack to ensure that this information

Distributed, Object-Based Programming Systems” g 109

(2)

(3)

(4)

Obiect b

(,) -a
[“)<~

Client process

Figure 7. Direct invocation, local request

cannot be examined or corrupted by

the activities of subsequent invoca-

tions.

The parameters of the invocation are

added to the stack.

The invoked object is loaded into

memory, and a procedure call is made

to start the process executing the ap-

propriate code.

When the operation terminates, the

results are returned to the client and

the process is restored to the state it

was in before the invocation,

When a process invokes a server object

that resides on a different workstation,

the following three steps must also be

performed, the first two after step (1) and

the third after step (3) @igure 8):

(1.1)

(1.2)

(3.1)

A message containing the parame-

ters of the invocation is created and

sent to the workstation on which

the server object resides.

The workstation that receives this

message creates a worker process

to execute on behalf of the original

process.

When the operation terminates, a

message containing the results of

the invocation is created and re-

turned to the worlcstation on which

the original process resides, The

worker process is then killed.

An invocation on a local object is similar

to a procedure call, whereas an invoca-

tion on a remote object is similar to a

remote procedure call.

The direct invocation scheme should

incur less performance overhead than the

message passing scheme when it comes

to local invocations since interactions be-

tween objects that reside on the same

workstation are relatively efficient.

When it comes to remote invocations, on

the other hand, the direct invocation

scheme has the added expense of creat-

ing and destroying worker processes.

4.3 Detecting Invocation Failures

An invocation failure can be classified as

being either an existing fault or a tran-
sient fault. An existing fault is defined as

a failure that occurs before an invocation

is started. The most common type of ex-

isting fault occurs when an invoked ob-

ject cannot be located. These types of

faults are relatively easy to detect and

handle.

A transient fault, on the other hand, is

a failure that occurs while an invocation

is being performed. Transient faults are

failures that occcw sometime after a

server object has accepted an invocation

request but before the modifications made

to it have been made Dermanent bv the

successful completion ~f the cornmi{ pro-

cedure. These faults are much more diffi-

cult to detect and handle because there

are many different ways an invocation

can fail. For example, the failure of an

invocation may be caused by the failure

of the c Iient object, the failure of the

server object, or a network partition that

separates a client from its server. A

DOBPS should provide mechanisms for

both client and server objects of the sys-

tem to detect and recover from transient

failures. TJumerous failure detection

schemes exist, including ones that use

time outs, object probes, and invocation

probes [Liskov et al. 1987; Tanenbaum

and van Renesse, 19871. Several such

schemes are outlined in Section 4.4.

If the failure of an invocation is not

detected by the client object, the client

and the corresponding action may block

and wait indefinitely. Consequently, a

client must be able to detect invocation

failures and initiate a recovery procedure

when one occurs. A recovery procedure

ACM Computing Surveys, Vol. 23, No. 1, March 1991

110 . R. S. Chin and S. T. Chanson

Machine A
~–––––– –_____,

r
I Object a I I

pfy

I

r
I

(1)
(1.1) ;

(4)
1>

I

14----I
I Client procPss I (3.1) ;
I— — —— -- —— -- -——.

Machine B
— — — — — — — . — —--

1
object b ,

I
I
I
I
I
I
I

Worker process (1.2) I
I—--— ---- ____ .

Figure 8. Direct invocation, remote request

typically releases the resources held by

the client and notifies the corresponding

action of the failure. It may also attempt

to reissue the invocation request at a

later time.

If the failure of an invocation is not

detected by the server object, valuable

system resources may be tied up unnec-

essarily. An object that starts an invoca-

tion but its results are no longer wanted

is referred to as an orphan. An orphan

may arise due to the failure of a client

object, an aborted transaction, a worksta-

tion failure, or a network partition. Or-

phans waste system resources since they

may hold locks, thus causing a loss of

throughput. Consequently, they should

be eliminated as quickly as possible.

4.4 Overview of Object Interaction

Management in Existing Systems

4.4.1 Amoeba

Amoeba supports the message passing

scheme that uses ports. The cache /broad-

cast scheme is used to locate the ports

associated with an object. An object probe

scheme is used by both the clients and

the servers of the system to detect invo-

cation failures. When a server object

receives a request, its receipt is acknowl-

edged so the client knows it has arrived

safely. If the client fails to receive a

result a certain period of time after the

acknowledgement, it sends an “Are you

alive?” message to the server object,

which responds as soon as it is able. If

the client does not receive a reply to this

message, it concludes that the server and

hence the invocation have failed. Simi-

larly, if the server stops receiving “Are

you alive?” messages from a client, it

concludes the client has failed and the

corresponding orphan invocation is

killed.

4.4.2 Argus

Argus encodes the locations of objects

within their identifiers. The message

passing scheme is supported. To aid in

the mapping of reply messages to the

appropriate client processes, each process

is assigned a unique identifier in the

large-grain object in which it resides.

This identifier is passed in the invocation

message and returned in the reply mes-

sage to identify the process that made

the invocation.

An invocation probe scheme is used by

client objects to detect invocation fail-

ures. If a client fails to receive a result

after a certain period of time, it sends a

probe message to a special process of the

large-grain object that was invoked. An

object that receives a probe message de-

termines if a process is currently execut-

ing in the object on behalf of the sender

of the probe. If there is, an acknowledg-

ment that the invocation is still being

executed is returned; if not, a negative

acknowledgment is returned. A client

that receives a negative acknowledgment

or fails to receive an acknowledgment

concludes that its invocation has failed.

A status report scheme [Walker 1984]

is used by servers to detect invoca-

ACitI Computmg Surveys, Vol. 23, No. 1, March 1991

Distributed, Object-Based Programming Systems” 9 111

tion failures. Each large-grain object

maintains (in stable storage) three clata

structures that are used by the orphan

detection scheme: a crash counter, a done

list, and a map list. The crash counter

indicates how many times the object has

failed, The clone list records all actions

that are known by the object to have

failed. The map list records the latest

known crash counts of all large-grain ob-

jects known by the object. Periodically,

the done list and the map list of a large-

grain object are piggybacked onto an in-

vocation request message. A large-grain

object that receives this information

checks its server processes against the

done list to determine if any of them are

descendants of an aborted action. It then

compares its map list against the one

received to determine if any of its cur-

rent clients resided on a workstation that

has failed. All orphans are then de-

stroyed. l’inally, the done and map lists

of the large-grain object that received

this information are updated to reflect

the changes in the system.

4.4.3 CHORUS

CHORUS supports a message passing

scheme that uses ports. Intermachine

communication is done by passing mes-

sages to a surrogate local port that is

managed by a network server. It is the

responsibility of the network server to

handle the transportation of messages

over the machine boundaries in a trans-

parent fashion.

A combination of the encoding scheme

and the cache lbroadcast scheme is used

to locate the ports of an object. Encoded

into each port identifier is the identity of

the workstation on which the port was

originally created. In addition, the sys-

tem maintains on each workstation a

record of the current location of each port

that was originally created on the work-

station. When the location of a port is

required, the port identifier is examined

to determine the workstation that main-

tains the information and a location re -

quest is sent to it. A workstation that

receives a location request returns a re -

suit containing the location information

as soon as it is able, If the location of a

port cannot be obtained because the cor-

responding workstation could not be con-

tracted or the location returned is found

to be incorrect, a location request is

broadcast throughout the network. A

simple time-out scheme is used by clients

to detect invocation failures.

4.4.4 Clouds

Clouds supports the direct invocation

scheme. When an invocation is made on

an object that does not reside locally, the

local communication manager object cre-

ates an invocation message. This mes-

sage contains the capability of the object

being invoked, the name of the operation

being invoked, and a copy of the parame-

ters. The communication manager broad-

casts this message to its counterparts in

the network as a “search and invoke,”

request and the client is suspendecl. A

communication manager that receives a

“search and invoke” request determines

if the object resides on its workstation. If

the object is not found, the request is

simply ignored. If the object is found, the

communication manager accepts the re -

quest and creates a worker process to

execute on behalf of the client process.

The worker process copies the parame-

ters of the invocation onto its stack and

invokes the specified operation. When the

operation terminates, a reply message is

constructed and sent back to the commu-

nication manager of the client’s worksta-

tion. The client process is then unblocked

and the results are passed to it.

The search procedure is made more

efficient by the use of three structures:

an active object table, a maybe table, and

an object directory [Pitts and Dasgupta

1988]. The active c~bject table records all

active objects that reside on the worksta-

tion. The maybe table records that either

the object may reside locally or that it

definitely does not. The object directory

records all active and inactive objects that

reside on the workstation. The search

procedure examines each structure in

turn when it attempts to locate an object.

ACM Computing Surveys, Vol. 23, No. 1, March 1991

112 “ R. S. Chin and S. T. Chanson

This enables a number of quick and effi-
cient membership tests to be performed
before resorting to the task of examining
the entire contents of the workstation. A
simple object probe scheme is used by the
clients to detect invocation failures.

A time-out scheme is used by the
servers to detect invocation failures and
orphans [McKendry and Herlihy 1985].
When an action acquires a lock at a
workstation, it is assigned two times: a
quiesce time and a release time. The qui-
esce time indicates when the action may
no longer execute operations at that
workstation, although it may still com-
mit or abort. The release time indicates
when the invocation is concluded to be
an orphan. If the status of an action is
unknown when its release time arrives,
the invocation is terminated, all its mod-
ifications are discarded, and all locks held
by it are released. To alleviate the prob-
lem of an action aborting unnecessarily,
a refresh protocol is used to advance
periodically the quiesce and release times
of each action that is still functioning
properly.

4.4.5 Eden

Eden supports the message passing
scheme and a pure cache scheme for
locating objects. A simple time-out
scheme is used by client objects to detect
invocation failures.

4,4.6 Emerald

Emerald provides a cache/broadcast
scheme that uses forward pointers to lo-
cate objects. Each cache entry is coupled
with a timestamp to indicate the relative
age of the data. When an invocation is
made, the local cache is examined. If a
location is found in the cache but the
information is found to be out of date, the
specified workstation is queried to deter-
mine if it knows of a more recent location
for the object. If it does, that location is
checked. A broadcast location request is
issued if the location of the object cannot
be determined. Emerald ensures that
each workstation of the network receives

this request and that all available work-
stations are searched.

Emerald supports the direct invocation
scheme. Whenever a process makes an
invocation on an object, an activation
record is created for the process. If the
invocation is made on an object that re-
sides locally, the activation record is cre-
ated on the top of the process’ current
stack. If it is made on an object that
resides on a remote workstation, the acti-
vation record forms the base of the new
process’ stack on that workstation. A
simple time-out scheme is used by client
objects to detect invocation failures.

4.4.7 TABS/Camelot

Both TABS and Camelot use a pure
broadcast scheme to locate objects. The
system maintains on each workstation a
list of all objects that reside on it. When
an invocation is made on an object that
does not reside locally, a location request
is broadcast to all the workstations
in the network. The workstation on
which the object resides returns an
acknowledgment.

A message passing scheme that uses
ports is supported. Transparent interma -
chine communication between a client
and a server is provided by a pair of
communication managers. The commu-
nication managers supply two ports: one
that resides on the workstation of the
client and one that resides on the work-
station of the server. Both the client
and the server send their messages to
their local port while the communica-
tion managers handle the mapping and
transportation of the messages to the
corresponding port. A simple time-out
scheme is used by the clients to detect
invocation failures.

See Figure A4 for a summary of the
Object Interaction Management schemes
supported by each system.

5. RESOURCE MANAGEMENT

A DOBPS like any other distributed op-
erating system must provide mecha-
nisms to manage the physical resources

ACM Computing Surveys, Vol 23, No 1, March 1991

Distributed, Object-Based Programming Systems” * 113

of the system, including primary mem-
ory, secondary storage devices, proces-
sors, and workstations of the network.
Specific to DOBPSs are how objects are
represented in memory and in secondary
storage, how they are transferred be-
tween these two resources, and how they
are assigned to processors. This section
outlines those aspects of resource man-
agement related to objects. It also pre-
sents a brief overview of the way in which
resource management is handled in a
number of existing systems.

5.1 Memory and Secondary Storage

Objects that are lost if the workstation
on which they reside fails are said to be
volatile. Volatile objects are temporary,
reside solely in memory, and are rela-
tively inexpensive to maintain and use.
Objects that can survive the failure of
their workstation with a significantly
high probability are said to be persistent.
A persistent object resides in secondary
storage; however, one or more working
copies of this object may reside in mem-
ory. Actions modify a persistent object’s
version in memory. The version in sec-
ondary storage is typically updated only
when an action commits. This ensures
that a stable, consistent version of each
object is maintained at all times. Per-
sistent objects are more expensive to
maintain and use than volatile objects
because of these additional overheads.

A persistent object that resides both in
memory and in secondary storage is said
to be active. A persistent object that is
maintained solely in secondary storage
device is said to be inactive. When an
invocation is made on an inactive object,
a volatile copy of the object is created
and loaded into memory to make the ob-
ject active. New processes are created for
the volatile version if necessary. When
the commit procedure is successfully per-
formed on an active object, the object is
copied back to secondary storage and may
be deactivated so the system can reclaim
the memory it occupied. This automatic
loading and unloading of objects into and
out of memory is performed transpar -

ently by a DOBPS to hide the fact that a
secondary storage device is used and to
give the system the appearance that ob-
jects are always available to be invoked.

5.1.1 Representation of Objects in Memory

The way in which an object is repre-
sented in memory depends both on the
synchronization sclheme and the action
management scheme supported by the
DOBPS. The synchronization scheme in-
fluences the number of versions of each
object that are maintained, whereas the
action management scheme influences
the representation of each version.

When a DOBPS supports a pessimistic
synchronization scheme, typically a sin-
gle version of each object is maintained
in memory. In this scheme, all actions
that invoke an object modify the same
volatile version. When an optimistic syn-
chronization scheme is supported, multi-
ple versions of each object are created
and maintained in memory. In this
scheme, every action that invokes an ob-
ject is assigned its own volatile version of
the object on which to perform its modifi-
cations. This enables multiple actions to
invoke the same object simultaneously
while ensuring that they will not inter-
fere with one another.

The representation of each object in
memory depends on whether or not the
nested transaction scheme is supported.
In a DOBPS that supports the request or
transaction scheme, the traditional ap-
proach of representing a version in mem-
ory as an exact copy of the corresponding
object is sufficient. If an action fails, the
volatile version can simply be discarded.
When the nested transaction scheme is
supported, this approach is usually not
adequate since multiple subactions of an
action can modify the same object. The
problem is that the changes made to the
object are not made permanent until the
top-level action commits and each subac -
tion can complete or fail independent of
the others. If a subaction modifies an
object and is then forced to abort, the
changes it made must be undone so that
the object is restored to its state before

ACM Computing Surveys, Vol 23, No 1, March 1991

114 “ R. S. Chin and S. T. Chanson

the execution of the subaction. Conse-
quently, an additional mechanism is
needed to undo the changes made by a
failed subaction. These schemes include
using an undo/redo log (see Section 5.1.2)
or maintaining an immutable hot stand-
by object that records the state of the
version that was created by the last sub-
action to complete successfully.

5. 1.2 Representation of Objects in Secondary

Storage

DOBPSS must record enough informa-
tion in secondary storage so that a
persistent object can be restored to a con-
sistent state should it or the workstation
on which it resides fail. A DOBPS may
record the entire state of an object when-
ever it is committed (checkpoint
schemes), or it may simply record the
relative changes made to the object since
some previously recorded state (log
schemes).

Checkpoint Schemes. In the checkpoint
scheme, the entire state of a modified
object is recorded onto secondary storage
when the corresponding action commits.
During the precommit stage of the com-
mit procedure, the modified version of an
object is written to secondary storage
without disturbing the old version. Dur-
ing the commit stage, the modified ver-
sion replaces the old version, which is
then discarded. If at any time the action
aborts, the modified version is discarded
and the old version remains unaffected.

One advantage of the pure checkpoint
scheme is that it makes efficient use of
secondary storage, since only a single
copy of each object is maintained. A
problem with this scheme is its relatively
large performance overhead, since the
entire state of a modified object is
recorded whenever an action is commit-
ted. This is especially true if only a small
change is made to an object that has a
very large state. The pure checkpoint
scheme also has the drawback that only
the most recent checkpoint is main-
tained; older checkpoints are not avail-
able. This scheme does not record enough
information to support an optimistic con-

currency control scheme sufficiently,
which requires the recent history of an
object be maintained so that the serializ-
ability test can be performed (see
Section 3.2).

A variation of the checkpoint scheme
is the history of checkpoints scheme. In
this scheme a persistent object is repre-
sented in secondary storage as an or-
dered collection of checkpoints. Instead
of destroying the old version of an object
when a new version is checkpointed, the
new version is added to the sequence of
checkpoints. The history of checkpoints
scheme enables the previous checkpoints
of an object to be examined. Two disad-
vantages of this scheme are the addi -
tional storage space used to record the
extra checkpoints and the introduction of
the problem of determining when old
checkpoints are no longer needed and
therefore should be deleted.

Log Schemes. In a log scheme, when-

ever a persistent object is modified, the

relative changes made are recorded in a

common log maintained in secondary

storage. The amount of information writ-

ten to secondary storage will depend on

the particular logging scheme supported.

The expense and overhead of recording

these entries should, however, be less

than checkpointing the entire object,

since only the modifications made to an

object are written. Enough information

is maintained in the log so that an object

that has failed can be restored to its state

as of the last commit. One drawback of

the log scheme is that the larger the log

gets, the greater the overhead of object

maintenance and recovery.

The simplest type of log is a redo log,
A redo log records a base checkpoint for

every persistent object, the changes made

to each object since the base checkpoint,

and the current status of the actions that

made these changes. When an object is

modified and the action that made the

modification commits, the relative

changes made to the object are recorded

in the log. For example, a redo log can

record the new values of the updated

data or can record the operations

ACM Computing Surveys, Vol 23, No. 1, March 1991

Distributed, Object-Based Programming Systems” - 115

performed on the objects. If an object
fails, it is restored to its last consistent
state by reperforming the modifications
made since the base checkpoint by ac-
tions that have committed. Periodically a
new base checkpoint is recorded for each
object, and old log entries are cleared
from the log. The redo log is a straight-
forward and efficient scheme.

Another type of log is the commit log

[Oki et al. 851. A commit log records the
states of all objects modified by actions
that have been or are in the process of
being committed. A log maintains an or-
dered list of data entries and outcome
entries. A data entry records the check-
point of an object. An outcome entry
records the last known stage of the com-
mit procedure performed by an action:
precommit, commit, or abort.

In the precommit stage of the commit
procedure, every object that was modified
by the action being committed is check-
pointed and written to the log, each in its
own data entry. Also written is a pre -
commit outcome entry for the action. In
the commit stage, a commit outcome en-
try for the action is written to the log. If
the action aborts, an abort outcome entry
for the action is written to the log. Peri-
odically, the commit log is cleared of all
entries that are outdated.

5.2 Processors

Administrating the use of the processors
is a very important function of a DOBPS.
The primary goal of managing the pro-
cessors is to maximize the throughput
rate of the system by minimizing the
time objects have to wait to receive pro-
cessor service. The task of assigning ob-
jects to processors is made difficult by
two partially conflicting goals: First, ob-
jects should be assigned to different,
lightly loaded processors so they can exe-
cute concurrently; second, objects that in-
teract frequently should be assigned to
the same or nearby processors to reduce
their communication costs. Thus, the
benefit of executing the objects of a pro-
gram on multiple processors is partially
offset by the additional cost of interma-

chine communication. For optimal per-
formance, the objects of an object-based
program should be assigned to a group of
closely spaced, lightly loaded processors.

5.2.1 Object Scheduling

Whenever a new object is created or an
inactive object is activated it must be
assigned to a processor. A new object is
usually assigned to the processor on
which it is created; however, the system
may permit it to be created on a remote
processor. An object that is activated can
typically be reassigned to any processor
of the same type as the one on which it
was originally created. Notable excep-
tions are immobile objects such as objects
whose locations are encoded within their
identifiers. Such objects are always reas-
signed to the same processors on which
they were originally created.

The object scheduling scheme of a
DOBPS may be either explicit or im-

plicit. In the explicit scheme, the user is
responsible for specifying the processor
to which an object is to be assigned. In
the implicit scheme, the system is re-
sponsible for determining where to
assign the objects. There are a few prac-
tical implicit object scheduling algo-
rithms, including wave scheduling [Van
Tilborg and Wittie 1981; Wittie and Van
Tilborg 19801, contract bidding [Smith
1979], and tokens [Tripathi and Huang
1986]. The more complex schemes exam-
ine the loads of the processors to deter-
mine the best location to place an object
–typically the processor with the light -
est load. When a group of interacting
objects is created, such as those in an
object-based program, a cluster of lightly
loaded processors is found and each ob-
ject is assigned tc one of the processors.
One drawback of using load information
to determine where to assign objects is
that obtaining and maintaining accurate
load information can be relatively expen-
sive. If accurate information is not main-
tained, there is the possibility that a
processor, whichl is observed to be
lightly loaded, may be assigned a num-
ber of objects and subsequently become
overloaded.

ACM Computing Surveys, Vol. 23, No. 1, March 1991

116 ● R. S. Chin and S. T. Chanson

5.2.2 Object Mobility

An object migration schemeG permits ob-
jects to move or migrate from one proces-
sor to another at any time, in some cases
even while they are in the middle of
servicing an invocation. The work per-
formed by an object that is moved is not
lost, nor is any action that accessed the
object aborted. Two advantages of object
migration are increased performance and
improved availability. For example, ob-
jects may be moved from a heavily loaded
processor to one with a lighter load or
from a processor scheduled to be shut
down for maintenance to another avail-
able one. It also enables objects that in-
teract heavily to be moved to the same
workstation so future communication
costs can be reduced.

There are a number of process migra-
tion algorithms, including adaptive bid-
ding [Stankovic and Sidhu 19841 and
pairing [Bryant and Finkel 1981]. Mi-
grating an executing process from one
processor to another in a conventional
distributed system is an extremely diffi-
cult task. Although it is not difficult to
move the code being executed, the main
problem is moving the machine-depend-
ent information such as the values of
running clocks, the logical communica-
tion paths, and the data structures main-
tained in memory. A DOBPS simplifies
many of these problems because objects
clearly define the entities that can be
moved and encapsulate the components
that must be moved as a unit. Further-
more, machine-dependent information
is usually kept to a minimum, and
the property of location transparency
permits a system to determine the new
location of an object that has moved

automatically.

Nevertheless, there are a number of

problems with object migration. First, the

cost of moving an object may outweigh

the benefits of the move. Moving an ob-

ject from one workstation to another can

6Sometimes referred to as process mzgration in
non-object-based systems.

be an expensive task, and an object can-
not do any processing while it is being
moved. Second, invocation requests sent
to an object while it is being moved must
be accepted by the system and forwarded
to the object when it becomes active
again. Third, an object should not be con-
tinuously moved about the network, oth-
erwise it will get little processing done.
Finally, replicas of an object should not
be moved to the same processor.

Object migration mechanisms typically
attempt to reduce the loads on heavily
loaded processors. When the load of a
processor exceeds some limit, the system
attempts to find a suitable, less-loaded
processor on which to move some of the
active objects. Nearby processors are
usually searched before those further
away. This minimizes the distance an
object is moved so it will remain rela-
tively close to the objects with which it
interacts. If an appropriate processor is
found, the system determines which ob-
jects are to be moved. This decision may
be based on the size of an object, its
estimated remaining processing time, the
number of times it has already been
moved, or the overhead of moving the
object. These objects are suspended,
moved, then resumed.

5.3 Overview of Resource Management in

Existing Systems

5.3.1 Amoeba

Amoeba represents each object in mem-
ory using the multiple versions approach
and in secondary storage using the his-
tory of checkpoints scheme because it
supports an optimistic concurrency con-
trol scheme. Special paging hardware is
supplied to increase the performance of
the system. This enables the system to
support a demand paging scheme so only
those pages that are required are loaded
into memory. Furthermore, only those
pages that are modified need to be writ-
ten back to secondary storage. When an
action examines or modifies an object, a
page-for-page copy of its most recent ver-
sion is created in memory. When an

ACM Comput,ng Surveys, Vol. 23, No 1, March 1991

Distributed, Object-Based Programming Systems” ● 117

action attempts to commit, the old check-

points of the object are examined to de-

termine if there is a serialization conflict

(see Section 3.5). If there is no conflict,

the modifications are made permanent

by writing the modified version of the

object to secondary storage and making

it the new current version.

Amoeba maintains a collection of

shared processors called a processor pool

from which a client may dynamically

request a number of idle processors; how-

ever, it cannot specify particular proces-

sors. When a processor is no longer

required, it is returned to the pool.

5.3.2 Argus

Argus represents each object in memory

as a stack of versions and in secondary

storage using the commit log scheme. To

reduce the size of the commit log, period-

ically a new log is created by taking a

workstation-wide checkpoint of all active

objects. An object scheduling scheme is

supported. Objects are immobile since

their locations are encoded within their

identifiers.

5.3.3 CHORUS

CHORUS represents each object in mem-

ory using the single version approach

and in secondary storage using the pure

checkpoint scheme. An object scheduling

scheme is supported.

5.3.4 Clouds

Clouds represents each object in memory

using the single version approach and in

secondary storage using the pure check-

point scheme. A paging scheme is sup-

ported. An object is maintained in

secondary storage as a core image that is

paged into memory on demand. The pag-

ing hardware permits a process to have

two segments: a data segment used to

store the stack of the process and a code

segment used to store the object. When a

process makes an invocation on an ob-

ject, the code segment of the process is

switched so the new object is mapped

into the address space of the process. An

object scheduling scheme is supported.

5.3.5 Eden

Eden represents each object in memory

using the single version approach. In sec-

ondary storage, objects are represented

using the history of checkpoints scheme

and maintained by a file server. Each

object is managed by a version manager

that controls access to the most recently

committed version and all uncommitted

versions of the object. Objects are ac-

cessed via their version manager and may

be opened, closed, or committed, When

an action modifies an object, the object is

opened and a copy of its current version

is loaded into memory. When an action

completes, the object is closed and a new,

uncommitted version of the object is cre-

ated, If another action modifies the ob -

ject before it is committed (as in the case

of a nested transaction), the object is re-

opened and a copy of the uncommitted

version of the object is made. When all

the actions affecting an object have com-

pleted and the action commits, the most

recent uncommitted version of the object

is made the current version. An object

scheduling scheme is supported.

5.3.6 Emerald

Emeralil represents each object in mem-
ory using the single version approach
and in secondary storage using the pure
checkpoint scheme.

An object migration scheme is sup-
ported. To simplify the task of moving
objects, Emerald generates relocatable
code and creates templates that describe
the internal structure of the objects.

An object is moved according to the
following procedure:

(1) All processes executing in the object
are suspended,

(2) A template of the object is made.
(3) The object’s state information and

template are sent to the new work-
station.

ACM Computing Surveys, Vol. 23, No. 1, March 1991

118 0 R. S. Chin and S. T. Chanson

(4) The operating system at the new
workstation rebuilds the object by al-
locating space for the object and copy.
ing the state into that space. Using
the template, the state information is
traversed and all pointers are re-
placed with their new addresses.

(5) Finally, the processes are resumed.

Details of this object migration scheme is
given in Jul et al. [1988].

5.3.7 TABS/Camelot

TABS and Camelot represent each object
in memory using the single version ap-
proach. A paging scheme is used by both.
These systems differ from most DOBPSS
in that an object can record its modifica-
tions to secondary storage even before
the corresponding action is committed.
This enables the system to record a
checkpoint of an entire workstation to
ensure that a globally consistent state is
recorded.

An object is represented in secondary
storage using the undo/redo log scheme,
a variation of the redo log scheme. An
undo/redo log maintains enough infor-
mation so the effects of an aborted action
can be undone and the effects of a com-
mitted action can be redone. TABS pro-
vides two types of logging schemes: one
that uses old value/new value entries
and one that uses operation entries. An
old value/new value entry records both
the old and new values of a modified
page. An operation entry records the
name of the operation invoked and
enough information to invoke it again.

Camelot also provides two types of log-
ging schemes: one that uses old
value/new value entries and one that

uses new value entires. A new value en-

try records the new value of a modified

page. Each action may specify the log-

ging scheme that is to be used for the

action. To perform a checkpoint, the sys-

tem informs all of the objects that reside

in its workstation to suspend themselves

in their next consistent state. An object

that reaches a consistent state suspends
its activities and notifies the system.
When all objects have suspended them-
selves, a list of the pages that reside in
memory and the status of all executing
actions are recorded in the log. The ac-
tivities of the system are then resumed.

See Figure A5 for a summary of the
Resource Management schemes sup-
ported by each system.

6. CONCLUSION

Designing a distributed, object-based pro-
gramming system is a complex and diffi-
cult task. Careful thought and planning
must go into determining what function-
ality and features to provide. Unfortu-
nately, at this time there is no single set
of features that can be provided to solve
the needs of all DOBPSS. Many of the
features provided by a particular DOBPS
will depend on the intended application
of the system. Fortunately, the develop-
ment of a DOBPS is simplified by the use
of objects, since objects are autonomous
entities that serve well as the units for
protection, recovery, security, synchro-
nization, and mobility.

The prime advantage to using a
DOBPS is that it alleviates many of the
problems associated with creating and
executing distributed programs. The ob-
ject abstraction serves as a bridge be-
tween a programmer and a machine by
creating a common primitive that re-
duces the complexity of the human
being/machine interface. This is the fun-
damental characteristic of these systems.
A DOBPS simplifies the programming
language interface to permit a program-
mer to express his or her ideas in a
program more conveniently. It also
simplifies the operating system interface
to enable a program to execute efficiently
on a machine. This is a trend away from
what has traditionally been done: In-
stead of users complying to the demands
of machines, machines are now being
built to comply with the demands of their
users.

ACM Computing Surveys, Vol 23, No 1, March 1991

Distributed, Object-Based Programming Systems” - 119

APPENDIX

I Distributed, Object-Based Programming Systems

Object Object

Structure Management

Figure Al. Classification categories.

I Granularity I

Large gram Large & Large, Medium &

(Amoeba)
Medium gram Fine grain

(CHORUS) (Argus) (Emerald)

(clouds) (TABS/Camelot)

(Eden)

I Composition I

~
Active Object Model Passwe Object Model

I

Static number of Dynamic number

processes of processes
I

(Amoeba) (Argus)

(CHORUS)
(Eden)

(TABS/CamelOt)

Figure A2. Object structure.

ACM Computing Surveys, Vol 23, No 1, March 1991

120 “ R. S. Chin and S. T. Chanson

Reque~rs Trans;ctiom N;ted

(Amoeba)
Transactions

(CHORUS) (Argus)

(l?merald) (clouds)

w)
(TABS/Camelot)

7=?[Synchrotnzarion

Pessbrmshc Optlrnlstlc

(Ameeba)* (Amceba)*

(Argus)

(CHORUS)
(clouds)

m)
(Emerald)

(TABS/Camelot)

No Scheme Capabdities Control Procedures

(Argus) (Ameeba) (CHORUS)
@nerald) (clouds)

(TABS/Camelot) @Jen)

I Object Reliabihty I

I Object Recovery
I I Object Replication

I

Roll back Rolt forward

(Argus)

No Scheme Immutable Primary Copy peer Objects

(Amoeba)
Objects

(CHORUS) (Cloucls)”

(Argus) (clouds)* (Eden)*

(TABS/Camelot) @den)*

(Ememld)

Figure A3. Object management.

ACM Computing Surveys, Vol 23, No 1, March 1991

Distributed, Object-Based Programming Systems” ● 121

Encoded in Distributed Name cache Broadcast Cache/Broadc3sr

Object ID Server (Eden) (clouds) (Amoeba)
(Argus) (TABS/Camelot) (CHORUS)*

(CHORUS)’ (Emerald)

Message Passing Direct Invocation

(Amoeba) (clouds)
(Argus) @memld)

(CHORUS)

*)
(TABS/Camelot)

1Detecting Invocation Failures I

I Client sewer

2/\\

Time-outs Probe No Scheme Time-out Probe Status Report

(CHORUS) (Amoeba) (CHORUS) (clouds) (Amoeba) (Argus)

*) (Argns) (Eden)

@uemld) (Clouds) @merald)

(TABS/Camelot) (TABS/Canrelot)

Figure A4. Object interaction management.

ACM Computing Surveys, Vol. 23, No. 1, March 1991

122 “ R. S. Chin and S. T. Chanson

I Mernory&co.daryStorZge I

wObject reprcsentahon m

memory

Object representation m

secondazy storage

Srngle version Multzple verwons

(Argus) (Amoeba)

(CHORUS)

(clouds)

(F&n)

@nerald)

(TABS/Camelot)

CheckPom_t Schemes Log Schemes

*Ei!i2iz
(F&m) (IW.)

I (Emerald)

Object Scheduling Object Mzgr~Don

(Argus) (EmecaId)

(Clouds)
(Amoeba)

(CHORUS)

(F.&m)

Figure A5. Resource management.

REFERENCES

AHAMAD, M., AND DASGUPTA, P. 1987, Parallel

execution threads: An approach to fault-
tolerant actions. Tech. Rep GIT-ICS-87/l
School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, Ga.

AHAMA~, M., DASGUPTA, P , LE BLANC, R J., AND
WILKES, C T 1987 Fault tolerant computing
in object based distributed operating systems.
In IEEE 6th Symposium on Reliability in Dis -
trlb u ted Software and Database Systems.
(Mar.), pp 115-125

ALSBERG, P A., AND DAY, J D. 1976. A principle

for resilient sharing of distributed resources.
In Pr-oceedmgs of the IEEE 2nd International
Conference on Softzvare Englneerzng pp.
562-570.

ALMES, G. T., BLACK, A. P., LAZOWSKA, E. D., AND

NOE, J D. 1985. The Eden system: A techni-
cal review IEEE Trans. Softw. Eng. SE-11, 1

(Jan.), 43-58.

AN~REWS, G. R., OLSSON, R A , COFFIN, M.,
ELSHOFF, I., NILSEN, K., PURDIN, T , AND
TOWNSEND, G. 1988, An overview of the SR

language and implementation. ACM Trans.

Program. Lang. Syst. 10, 1 (Jan.), 51-86.

BANINO, J, S., AND FABRE, J C 1982. Distributed
coupled actors: A CHORUS proposal for relia-
bihty. In IEEE 3rd Internatzona[Conference on
Dzstrzbuted Computzng Systems. (Ott), pp
128-134.

BANINO, J. S., FABRE, J. C., GUILLEMOT, M ,
MORISSET, G., AND ROZIER, M. 1985. Some
fault-tolerant aspects of the CHORUS dis-
tributed system. In IEEE 5th International
Conference on Dwtr~6uted Computzng S.ystcms

(May), pp. 430-437.

BERNSTEIN, P, A., AND GOODMAN, N. 1981 Con-
currency control in distributed database sys-
tems. ACM Comput, Surv. 13, 2 (Jun.),
185-221.

BERNSTEIN, P. A., AND GOODMAN, N. 1984 An
algorithm for concurrency control and recovery

in replicated distributed databases. ACM
Trans. Database Syst. 9, (Dec.), 596-615,

BLACK, A., HUTCHINSON, N., JUL, E., AND LEVY, H,
1986A Object structure in the Emerald sys-
tem. Tech. Rep. 86-04-03. Department of Com -

ACM Computmg Surveys, Vol 23, No 1, March 1991

Distributed, Object-Based Programming Systems” “ 123

puter Science, University of Washington, Seat-
tle, Wash.

BLACK, A., HUTCHINSON, N., JUL, E., LEVY, H., AND
CARTER, L. 1986B. Distribution and abstract
types in Emerald. Tech. Rep. 86-02-04. Depart-
ment of Computer Science, University of Wash-
ington, Seattle, Wash.

BRYANT, R. M., AND FINKEL, R A. 1981, A stable
distributed scheduling algorithm. In IEEE
Proceedings of the 2nd International Conference

on Dwtrtbuted Computing Systems. pp.

314-323.

COHEN, E., AND JEFFERSON, D. 1975 Protection in
the Hydra operating system. In ACM Proceed-

ings of the 5th Symposmm on Operatzng System
Prmeiples 9, 5 (Nov.), 141-160.

DASGUPTA, P. 1986. A probe-based monitoring
scheme for an object-oriented, distributed oper-
ating system. In ACM Proceedings of th e Con-
ference on ObJect Oriented Programming Sys-
tems, Languages and Applications. pp. 57-66.

DASGUPTA, P., LEBLANC, R., AND APPELBE, W. 1989.

The Clouds distributed operating system.

Functional description, implementation details
and related work In IEEE 8th International

Conference on Distributed Computing Systems.
San Jose.

DOD 1980. Ada Reference Manual, U. S. Depart-
ment of Defense.

EPPINGER, J. L., AND SPECTOX, A. Z. 1985. Virtual
memory management for recoverable objects in
the TABS prototype. Tech. Rep. CMU-CS-85-

163, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, Penn.

GIFFORD, D. K. 1979. Weighted voting for repli-
cated data. In ACM Proceedings of the 7th

Sympostum on Operating System Prmczples
(Dec.), pp. 150-162.

GOLDBERG, A., AND ROBSON, D. 1983. Smalltalk-
80: The Language and its Implementation. Ad-

dison-Wesley, Reading, Mass.

GRAY, J N. 1978. Notes on database operating
systems. In Lecture Notes m Computer Sczence,

1978, Springer, New York, 1978, pp. 393-481.

GRAY, J. N. 1980. A transaction model. Tech.
Rep. RJ2895, IBM Research Laboratory, San
Jose, Calif.

GUILLEMOT, M., AND MARTINS, J. L. 1987. CHO-
RUS: A new UNIX for the distribution age.

Submitted for publication. Currently available
from the authors at INRIA.

JONES, A. K. 1976. The narrowing gap between
language systems and operating systems. Com-
puter Science Research Review 1975-1976
Carnegie-Mellon Umverslty, p. 17.

JUL, E., LEVY, H., HUTCHINSON, N., AND BLACK, A.
1988. Fine-grained mobility in the Emerald
system. ACM Trans. Comput. Syst. 6, 1 (Feb.),
109-133.

KORTH, H. F. 1983. Locking primitives in a
database system. J. ACM 301 (Jan.), 55-79.

LIEBERHERR, K. J., AND HOLLAND, I. M. 1989. As-
suming good style for object-oriented programs.

IEEE Softw. (Sept ,), 38-48.

LISKOV, B. 1988. Distributed programming in Ar-
gus. Commun. ACM 31, 3 (Mar.), 300-312.

LISKOV, B , CURTIS, D , JOHNSON, P., AND SCHEI-
FLER, R. 1987. Implementation of Argus. In
ACM Proceedings 12th Symposmm on Operat-
ing System Principles pp. 111-122.

MCKENDRY, M. S., ANU HERLIHY, M. 1985. Time

driven orphan elirnination. Tech. Rep. CMU-
CS-85-138. Computer Science Department,
Carnegie-Mellon University, Pittsburgh, Penn.

Moss, J. E. 1985. Nested transactions: An ap-
proach to reliable clistributed computing. Tech.

Rep. MIT/LCS/TR-260, Laboratory for Com-

puter Science, Massachusetts Institute of Tech-
nology, Cambridge, Mass.

MULLENDER, S. J., AND TANENBAUM, A. S. 1985 A

distributed file service based on optimistic con-
currency control. In ACM 10th Symposl u m on

Software Principles

MULLENDFR, S. J., AND TANENBAUM, A. S. 1986
The clesign of a capability-based distributed
operating system. Comput. J. 29, 4 (Aug.).

NICOL, J. R., BLAIR, G. S., AND WALPOLE, J. 1987.
Operating system design: Towards a holistic

approach? ACM Operat. Syst. Rev. 21, 1 (Jan.),
11-19.

OKI, B. M., LISKOV, B H., AND SCHEIFLER, R. W.
1985. Reliable object storage to support
atomic actions. In ACM Proceedings of the
10th Symposium on Operating System Prmcl-
pies. pp. 147-159.

PITTS, D. V,, AND DASGUPTA, P. 1988. Object
memory and storage management in the Clouds
kernel. In IEEE 8th Internat~onal Conference

on Distributed Computmg Systems (San Jose).

POWELL, M. L., AND F’RESOTTO, D. L. 1983. Pub-
lishing A reliable broadcast communication

mechanism. ACM Operat. Syst. Rev. 17, 5,
100-109

Pu, C., NOE, J. D., PROUDFOOT, A. 1986 Regener-
ation of replicated objects: A technique and Its
Eden implementation. In IEEE Proceedings
2nd International Conference on Data Eng[-
neering. (Feb.), pp. 175-187.

ROZIER, M., AND MARTINS, J. L. 1987. The CHO-
RUS distributed operating system: Some de-

sign issues. In Dwtrz buted Operating Systems.
Theory and Practzce. Springer-Verlag, Berlin,
Heidelberg, pp. 262-287,

SMITH, R. G. 1979 The contract net protocol:
High-level communication and control in a dis-
tributed problem solver. In IEEE Proceedings
of the 1st International Conference on Dis-
tributed Computmg Systems. pp. 185-192.

SPAFFORD, E. H. 1987. Object operation invoca-
tion in Clouds. Tech. Rep. GIT-ICS-87/14.
School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, Ga.

ACM Computing Surveys, Vol. 23, No. 1, March 1991

124 0 R. S. Chin and S. T. Chanson

SPECTOR, A. Z, 1987. Distributed transaction pro-
cessing and the Camelot system. Tech. Rep.

CMU-CS-87-1OO. Department of Computer Sci-

ence, Carnegie-Mellon University, Pittsburgh,

Penn.

SPECTOR, A. Z., DANIELS, D. S., DUCHAMP, D., EP-
PINGER, J. L., AND PAUSCH, R. 1985. Dis-

tributed transactions for reliable systems.
Tech. Rep. CMU-CS-85-1 17, Department of

Computer Science, Carnegie-Mellon Univer-

sity, Pittsburgh, Penn.

SPECTOR, A. Z., THOMPSON D. S., PAUSCH, R, F.,
EPPINGER, J. L., DUCHAMP, D., DRAVES, R. P.,

DANIELS, D. S., AND BLOCH, J J. 1987.
Camelot: A distributed transaction facility for

math and the internet: An interim report. Tech.

Rep. CNIU-CS-87-129. Department of Com-

puter Science, Carnegie-Mellon University,
Pittsburgh, Penn.

SPECTOR, A, Z., BLOCH, J. J., DANIELS, D. S.,
DRAVES, R. P., DUCHAMP, D., EPPINGER, J. L.,
MENEES, S. G., AND THOMPSON, D. S 1986.

The Camelot project. Tech. Rep. CMU-CS-86-
166. Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, Penn.

STANKOVIC, J. A., AND SIDHU, I. S. 1984, An adap-

tive bidding algorithm for processes, clusters
and distributed groups. In IEEE Proceedings of

the 4th International Conference on Distributed
Computing Systems. pp. 49-59.

STROUSTRUP, B. 1986. The C + + Programmmg

Language. Addison-Wesley, Massachusetts.

SVOBODOVA, L. 1984. File servers for network-

based distributed systems. Comput. SW-V. 164

(Dec.), 353-398.
TANENBAUM, A. S., AND VAN R,ENESSE, R, 1987.

Reliability issues in distributed operating sys-

tems. In IEEE 6th Symposium on Rel~abillty m

Distributed Software and Data 13ase Systems

(Mar.).

TANENBAUM, A. S., MULLENDER, S J,, AND VAN

RENESKE, R. 1986. Using sparse capabilities

in a distributed operating system In IEEE
Proceedings of the 6th International Conference
on Dwtrbbuted Computing Systems. (May), pp.
558-563.

TANENBAUM, A. S,, AND VAN RENESSE, R, 1985.
Distributed operating systems. ACM Compztt.

Suru. 174 (Dec.), 419-470.

TRIPATHI, S. K., AND HUANG, S. 1986 Distributed
resource scheduling for a large scale network

of processors: HCSN. In IEEE Proceedings of

the 6th international Conference on Distributed

Computtng Systems (May), pp. 321-327.

VAN TILBORG, A. M,j AND WITTIE, L. D., 1981.
Wave scheduling: Distributed allocation of task
forces in network computers. In ZJ!?EEProceed-
ings of the 2nd International Conference on
Distr~buted Computmg Systems. pp. 337-347.

WALKER, E. F. 1984. Orphan detection in the Ar-
gus system. Tech. Rep. MIT/LCS/TR-326. Lab-

oratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, Mass.

WEGNER, P. 1987, Dimensions of object-based lan-
guage design. In ACM Proceedings of the Con-

ference cm Ob]ect Oriented Programmmg Sys-
tems. Languages and Applications (Oct.), pp.
168-182.

WIRTH, N. 1985. Programming in Modula-2.

Springer-Verlag, New York, 3rd ed.

WITTIE, L. D., AND VAN TILBORG, A. M. 1980. MI-

CROS: A distributed operating system for MI-
CRONET, a reconfigurable network computer.

IEEE T,~ans. Comput. C-29 (Dec.), 1133-1144.

Recewed September 1989, final revision accepted July 1990

ACM Computing Surveys, Vol. 23, No. 1, March 1991

