RAM-SE’06 - ECOOP’06 Workshop on

Reflection, AOP, and Meta-Data for Software Evolution
(Proceedings)

Nantes, 4" of July 2006

Edited by

Walter Cazzola - Universita degli Studi di Milano, Italy

Shigeru Chiba - Tokyo Institute of Technology, Japan

Yvonne Coady - University of Victoria, Canada

Gunter Saake - Otto-von-Guericke-Universitat Magdeburg, Germany

Preprint no. xx of University of Magdeburg.

Foreword

Software evolution and adaptation is a research area, as also the name states, in
continuous evolution, that offers stimulating challenges for both academic and
industrial researchers. The evolution of software systems, to face unexpected
situations or just for improving their features, relies on software engineering
techniques and methodologies. Nowadays a similar approach is not applicable
in all situations e.g., for evolving nonstopping systems or systems whose code is
not available.

Reflection and aspect-oriented programming are young disciplines that are
steadily attracting attention within the community of object-oriented researchers
and practitioners. The properties of transparency, separation of concerns, and ex-
tensibility supported by reflection and aspect-oriented programming have largely
been accepted as useful for software development and design. Reflective fea-
tures have been included in successful software development technologies such
as the Java language and the .NET framework. Reflection has proved to be
useful in some of the most challenging areas of software engineering, including
Component-Based Software Development (CBSD), as demonstrated by exten-
sive use of the reflective concept of introspection in the Enterprise JavaBeans
component technology.

Features of reflection such as transparency, separation of concerns, and ex-
tensibility seem to be perfect tools to aid the dynamic evolution of running
systems. They provide the basic mechanisms for adapting (i.e., evolving) a sys-
tem without directly altering the existing system. Aspect-oriented programming
can simplify code instrumentation providing a few mechanisms, such as the join
point model, that permit of evincing some points (join points) in the code or in
the computation that can be modified by weaving new functionality (aspects)
on them in a second time. Meta-data represent the glue between the system to
be adapted and how this has to be adapted; the techniques that rely on meta-
data can be used to inspect the system and to dig out the necessary data for
designing the heuristic that the reflective and aspect-oriented mechanisms use
for managing the evolution.

It is our belief that current trends in ongoing research in reflection, aspect-
oriented programming and software evolution clearly indicate that an inter-
disciplinary approach would be of utmost relevance for both. Therefore, we felt
the necessity of investigating the benefits that the use of these techniques on the
evolution of object-oriented software systems could bring. In particular we were
and we continue to be interested in determining how these techniques can be
integrated together with more traditional approaches to evolve a system and in
discovering the benefits we get from their use.

Software evolution may benefit from a cross-fertilization with reflection and
aspect-oriented programming in several ways. Reflective features such as trans-
parency, separation of concerns, and extensibility are likely to be of increasing
relevance in the modern software evolution scenario, where the trend is towards
systems that exhibit sophisticated functional and non-functional requirements;
that are built from independently developed and evolved COTS (commercial
off-the-shelf) components; that support plug-and-play, end-user directed recon-
figurability; that make extensive use of networking and internetworking; that
can be automatically upgraded through the Internet; that are open; and so
on. Several of these issues bring forth the need for a system to manage itself
to some extent, to inspect components’ interfaces dynamically, to augment its
application-specific functionality with additional properties, and so on. From a
pragmatic point of view, several reflective and aspect-oriented techniques and
technologies lend themselves to be employed in addressing these issues. On a
more conceptual level, several key reflective and aspect-oriented principles could
play an interesting role as general software design and evolution principles. Even
more fundamentally, reflection and aspect-oriented programming may provide a
cleaner conceptual framework than that underlying the rather ‘ad-hoc’ solutions
embedded in most commercial platforms and technologies, including CBSD tech-
nologies, system management technologies, and so on. The transparent nature
of reflection makes it well suited to address problems such as evolution of legacy
systems, customizable software, product families, and more. The scope of appli-
cation of reflective and aspect-oriented concepts in software evolution conceptu-
ally spans activities related to all the phases of software life-cycle, from analysis
and architectural design to development, reuse, maintenance, and, therefore also
evolution.

The overall goal of this workshop — as well as of its previous editions —
was that of supporting circulation of ideas between these disciplines. Several
interactions were expected to take place between reflection, aspect-oriented pro-
gramming and meta-data for the software evolution, some of which we cannot
even foresee. Both the application of reflective or aspect-oriented techniques and
concepts to software evolution are likely to support improvement and deeper un-
derstanding of these areas. This workshop has represented a good meeting-point
for people working in the software evolution area, and an occasion to present
reflective, aspect-oriented, and meta-data based solutions to evolutionary prob-
lems, and new ideas straddling these areas, to provide a discussion forum, and
to allow new collaboration projects to be established. The workshop is a full day
meeting. One part of the workshop will be devoted to presentation of papers,
and another to panels and to the exchange of ideas among participants.

In this third edition of the workshop, we had an interesting keynote by Awais
Rashid on relation among aspects and evolution. This keynote was an interest-
ing experiment that has raised several issues and lively discussion among the
workshop attendees. To the interested reader an extended abstract can be found
in the first part of these proceedings.

ii

This volume gathers together all the position papers accepted for presentation
at the third edition of the Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE’06), held in Nantes on the 4th of July, during the
ECOOP’06 conference. We have received many interesting submission and due
to time restrictions and to quality insurance we had to choice few of them, the
papers that, in our opinion, are more or less evidently interrelated to feed up a
more lively discussion during the workshop. Now, few months after the workshop,
we can state that we achieved our goal, presentations were interesting and the
subsequent panels grew up lively and rich of ideas and proposals. We are sure
that in the next months we will see many papers by the workshop attendees and
fruit of such a lively discussions.

The success of the workshop is mainly due to the people that have attended
it and to their effort to participate to the discussions. The following is the list
of the attendees in alphabetical order.

Altman, Rubén Dubochet, Gilles Pini, Sonia

Bernard, Emmanuel Eaddy, Mark Raibulet, Claudia
Beurton-aimar Marie Ebraert, Peter Rashid, Awais
Camara Moreno, Javier Horie, Michihiro Saake, Gunter
Cazzola, Walter Késtner, Christian Shakil Khan, Safoora
Chiba, Shigeru Masuhara, Hidehiko Stein, Krogdahl
Cyment, Alan Meister, Lior Stidholt, Mario
David, Pierre-Charles Nguyen, Ha Tsadock, Carmit
D’Hondt, Theo Pérez Toledano, Miguel Angel Zambrano, Arturo

A special thank is for the three chairmen (Theo D’Hondt, Hidehiko Ma-
suhara, and Mario Stidholt) that governed the panels at the end of each session.

We have also to thank the Department of Informatics and Communication
of the University of Milan, the Department of Mathematical and Computing
Sciences of the Tokyo institute of Technology and the Institute fiir Technische
und Betriebliche Informationssysteme, Otto-von-Guericke-Universitit Magde-
burg for their various supports.

October 2006 W. Cazzola, S. Chiba, Y. Coady, and G. Saake
RAM-SE’06 Organizers

iii

iv

Contents

Keynote on Aspects and Evolution

Aspects and Evolution: The Case for Versioned Types and Meta-Aspect Protocols. . 3
Awais Rashid (Computing Department, Lancaster University, UK).

Aspect-Oriented Modeling for Software Evolution

Improving AOP Systems’ Evolvability by Decoupling Advices from Base Code. ... 9
Alan Cyment, Nicolas Kicillof, Rubén Altman, and Fernando Asteasuain
(University of Buenos Aires, Argentina).

Making Aspect Oriented System Evolution Safer. 23
Miguel A. Pérez Toledano, Amparo Navasa Martinez,

Juan M. Murillo Rodriguez (University of Extremadura, Spain)

Carlos Canal (University of Mdlaga, Spain).

Design-Based Pointcuts Robustness Against Software Evolution. 35
Walter Cazzola (DICo, University of Milan, Italy),
Sonia Pini and Massimo Ancona (DISI, University of Genova, Italy).

Tools and Middleware for Software Evolution

Evolution of an Adaptive Middleware Exploiting Architectural Reflection. 49
Francesca Arcelli and Claudia Raibulet
(Universita degli Studi di Milano-Bicocca, Italy).

An Aspect-Oriented Adaptation Framework for Dynamic Component Evolution. .. 59
Javier Cdmara Moreno, Carlos Canal, Javier Cubo (University of Mdlaga, Spain)
Juan M. Murillo Rodriguez (University of Extremadura, Spain).

An Aspect-Aware Outline VIEWeTr.iiittiniiiiiiiiininiean.. 71
Michihiro Horie and Shigeru Chiba (Tokyo Institute of Technology, Japan).

Technological Limits for Software Evolution

Solving Aspectual Semantic Conflicts in Resource Aware Systems. 79
Arturo Zambrano, Tomds Vera and Silvia Gordillo
(University of La Plata, Argentina),

Statement Annotations for Fine-Grained Advising., 89
Marc Eaddy and Alfred Aho (Columbia University, USA).

Dynamic Refactorings: Improving the Program Structure at Run-time. 101
Peter Ebraert and Theo D’Hont (Vrije Universiteit Brussel, Belgium).

Implementing Bounded Aspect Quantification in Aspect). 111

Christian Kistner, Sven Apel, Gunter Saake
(Otto von Guericke University Magdeburg, Germany).

Vi

Aspects and Evolution: The Case for Versioned
Types and Meta-Aspect Protocols

Keynote speaker: Awais Rashid, Lancaster University, UK
Chairman: Shigeru Chiba, Tokyo Institute of Technology, Japan

Aspectsand Evolution: The Casefor Versioned Types
and Meta-Aspect Protocols

Awais Rashid

Computing Department, Infolab21, Lancaster University, Lancaster LA1 4WA, UK
awai s@comp.lancs.ac.uk

One of the often cited advantages of aspect-oriented programming (AOP) [4] is
improved evolvability. It is often suggested that quantification and obliviousness, as
proposed by Filman and Friedman [3], are the key properties that facilitate the high
degree of evolvability in AOP systems. However, quantification and obliviousness are
only desirable properties of AOP systems [9]. Filman and Friedman talked about
“better AOP systems’ being “more oblivious’ as well as of “incomplete
obliviousness’. Several application studies of AOP, e.g., Kienzle and Guearroui [5],
Rashid and Chitchyan [6] and Fabry [2], have revealed that in many cases
obliviousness is undesirable and can, in fact, be harmful. Fabry [2], in fact,
distinguishes between syntactic and semantic obliviousness and points out that
syntactic obliviousness can be achieved, however, semantic obliviousness can neither
be achieved nor desirable. Similarly, though quantified statements do help match
multiple join points in a pointcut expression, quantification is not the essence of AOP.
It is simply one possible aspect composition mechanism albeit a popular one. Filman
and Friedman talked about “interfaces’ between advice and base action. Similarly,
Colyer et a. [1] discuss heterogeneous advice where difference pointcuts (with
associated advice) capture a single join point but together they form a coherent
concern.

So if obliviousness and quantification are not fundamental properties of AOP, then
why are aspects good for evolution? The much more fundamental properties of AOP:
abstraction, modularity and composability, as highlighted by Rashid and Moreira[9],
are what make aspects good for evolution. Abstraction allows us to abstract away
from the details of how that aspect might be scattered and tangled with the
functionality of other modules in the system and, in turn, abstract away from
unwanted details of the change. Modularity alows us to reason about changes to a
crosscutting concern in isolation and realise those changes with minimal ripple effect.
Finally, composability alows us to reason about the global or emergent properties of
an aspect-oriented system, facilitates propagation of necessary changes and guards
against propagation of unwanted changes.

No doubt, this abstraction, modularity and composability support for crosscutting
concerns helps to localise changes thus supporting evolution. However, evolution
often requires keeping track of changes in order to make them reversible.
Furthermore, often such changes (and their reversal) needs to be done online, e.g., in
case of business and mission critical systems that can’t be taken offline. This requires

2 AwaisRashid

first class support for versioned types as well as fully-fledged meta-aspect protocols.
Such a versioned type system and a meta-aspect protocol have been experimented
with in the VEJAL aspect language and its associated dynamic evolution framework
[7, 8], which provides a high degree of dynamic adaptability of object database
evolution strategies. We need to build on the VEJAL experience to investigate how
versioned type semantics may be incorporated into mainstream AOP languages.
Furthermore, the notion of a meta-aspect protocol requires reconsideration of aspect
composition models — we need to move away from syntactic dependencies on the
base elements and instead focus on join point models derived from the semantics of
the application domain (as is the case for the VEJAL join point model for the object
persistence domain). Furthermore, the design of such a meta-aspect protocol needs to
consider relevant flexibility vs openness trade-offs, e.g., as studied by Welch and
Stroud in the context of meta-object protocols and Security [10].

In summary, aspect-oriented software development research can incorporate
complementary techniques from software evolution and the work on reflection and
meta-object protocols to develop techniques that are more capable of supporting
aspect evolution, both statically and at runtime, resulting in aspects that are more
resilient to changes.

Acknowledgments. The work on VEJAL discussed in this extended abstract was
conducted by Nick Leidenfrost for his MPhil thesis (Lancaster University) conducted
as part of the UK Engineering and Physical Science (EPSRC) Research Grant:
AspOEv: An Aspect-Oriented Evolution Framework for Object-Oriented Databases
(GR/R08612), 2000-2004. The author aso wishes to thank Gordon Blair (Lancaster
University, UK) and Adrian Colyer (Interface?1) for discussions on the notion of a
meta-aspect protocol as well as Ana Moreira (New University of Lisbon, Portugal)
and Ruzanna Chitchyan (Lancaster University, UK) on fundamental software
engineering properties of aspect-oriented systems. The author is supported by
European Commission Grant: AOSD-Europe: European Network of Excellence on
Aspect-Oriented Software Development (1ST-2-004349), 2004-2008.

References

[1] A. Colyer, A. Rashid, and G. S. Blair, "On the Separation of Concerns in
Program Families', Computing Dept., Lancaster University Technical

Report COMP-001-2004
(http://www.comp.lancs.ac.uk/computing/aose/papers/ COM P-001-2004. pdf)
2004.

2] J. Fabry, "Modularizing Advanced Transaction Management - Tackling
Tangled Aspect Code': PhD Thesis, Vrije Universiteit Brussel, Belgium,
2005.

[3] R. Filman and D. Friedman, "Aspect-Oriented Programming is
Quantification and Obliviousness’, OOPSLA WS on Advanced Separation
of Concerns, 2000.

[4]

(3]

6]

[7]

(8]

(9]

[10]

Aspects and Evolution: The Casefor Versioned Types and Meta-Aspect Protocols 3

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin, "Aspect-Oriented Programming”, European Conference on
Object-Oriented Programming (ECOOP), 1997, Springer-Verlag, Lecture
Notesin Computer Science, 1241, pp. 220-242.

J. Kienzle and R. Guerraoui, "AOP: Does It Make Sense? The Case of
Concurrency and Failures', European Conference on Object-Oriented
Programming (ECOOP), 2002, Springer-Verlag, Lecture Notes in Computer
Science, 2374, pp. 37-61.

A. Rashid and R. Chitchyan, "Persistence as an Aspect"”, 2nd International
Conference on Aspect-Oriented Software Development, 2003, ACM, pp.
120-129.

A. Rashid and N. Leidenfrost, "Supporting Flexible Object Database
Evolution with Aspects’, Internationa Conference on Generative
Programming and Component Engineering (GPCE), 2004, Springer-Verlag,
Lecture Notes in Computer Science, 3286, pp. 75-94.

A. Rashid and N. Leidenfrost, "VEJAL: An Aspect Language for Versioned
Type Evolution in Object Databases', AOSD Workshop on Linking Aspect
Technology and Evolution, 2006.

A. Rashid and A. Moreira, "Domain Models are NOT Aspect Free",
Proceedings of MoDELS/UML, 2006, Springer, Lecture Notes in Computer
Science, 4199, pp. 155-169.

I. S. Welch and R. J. Stroud, "Re-engineering Security as a Crosscutting
Concern", The Computer Journal, Special Issue on Aspect-Oriented
Programming and Separation of Crosscutting Concerns (To Appear), No.,
2003.

Aspect-Oriented Modeling for Software Evolution
Chairman: Theo D’Hondt, Vrije Universiteit Brussel, Belgium

Improving AOP systems' evolvability by decoupling
advices from base code’

Alan Cyment, Nicolas Kicillof, Rubén Altman and Fernando Asteasuain

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
{acyment, nicok, raltman, fasteasuain}@dc.uba.ar

Abstract. The evolvability of AOP systems is severely affected by the tight
coupling between aspects and base code. This paper identifies the advice fragil-
ity problem, originated in the need for advices to access the application context
while being oblivious to base code details. Most proposed solutions to the well-
known pointcut fragility problem consist in decoupling base code from aspects
by means of an intermediate abstraction layer. We build on top of those propos-
als, introducing the concept of model-based aspects, and present a new version
of our semantic pointcut framework, constituting a practical approach to ad-
dress the advice fragility problem.

1 Introduction

Since the very inception of the AOSD family of concepts and technologies, the degree
to which so-called aspect-oriented systems have successfully coped with the woes of
software evolution has been thoroughly scrutinized [1]. One of the most debated ideas
is the obliviousness concept [3], first heralded by the community as a core prerequisite
for considering a system truly aspect-oriented, but lately bashed by several authors [4,
23] as an obstacle to the successful evolution of AOSD systems.

Most of the existing research on this subject has so far focused on the pointcut fragil-
ity problem (coined by [2], and referred to by this and other names in [5, 6, 8, 9, 12]),
which basically describes the dangerous coupling between an oblivious base code and
a given pointcut descriptor (PCD) that heavily relies on the low-level structure of that
code. Nevertheless, not much attention has yet been paid to the problem of maintain-
ing advices synchronized with an evolving base code. Changing a method name can
easily break advice code which relies on the structure of the class that has evolved
(i.e., if no aspect-aware refactoring aides are used). This issue will hereafter be re-
ferred to as the advice fragility problem. Following Aspect] conventions, we use the
term “aspect” to denote the combination of advices and pointcuts. Hence, we will also
refer to the aspect fragility problem to describe the compound issue posed by the two
fragility problems described so far.

! This work was partially funded by Microsoft Research's Phoenix—Excellence in Programming RFP Awards and ANCyT
PICT 11738

Proposed solutions to the pointcut fragility problem generally put forward mecha-
nisms to decouple base code from aspects through the definition of an intermediate
abstraction layer [4, 9, 10, 11]. We extend those proposals by introducing the concept
of model-based aspects. These are basically pointcuts and advices that, instead of re-
lying on the low-level structure of base code, are decoupled from it by being defined
in terms of an intermediate, more abstract, conceptual description of the domain mod-
eled by the application. The question of whether fragility is totally eradicated or just
shifted remains open, but we aim at shedding some light on the subject by analyzing
different ways to represent and map the abstract layer.

The next section characterizes the advice fragility problem; section 3 presents our
proposal for dealing with this problem; section 4 puts this proposal into perspective by
showing our implementation of these ideas and a concrete example; the remaining
sections conclude the work.

2 Aspect Fragility = (Advice + Pointcut) Fragility

The obliviousness principle, originally considered by AOSD pioneers as one of the
most rewarding features of this emerging technology, has recently been “considered
harmful” by some researchers [4, 23]. Keeping base code completely unaware of the
existence of aspects would undoubtedly alleviate the task of developers of the former.
But recent research has shown that the natural evolution of base code will very easily
wreak havoc with the aspect side of the equation. Using existing AOP tools, if an as-
pect programmer were to follow the obliviousness principle, she would be forced to
tightly couple her pointcuts to the base code, in order to completely avoid adapting the
base code to the aspects.

But pointcuts are not the only component of aspects. We claim that mechanisms that
implement the obliviousness principle tend to also make advices excessively coupled
to base code. Consequently, when base code evolves, they tend to become obsolete
too. Advice is essentially code written in a programming language. Its goal is to
model, at least in part, the behavior of a given domain, which happens to be a cross-
cutting concern of the complete application under development. However, advice is
not autonomous: it will only be executed at a joinpoint (i.e. a given point during the
lifetime of the base code). Due to the quantification principle [3], advice code must be
built so that it can successfully interact with heterogeneous base code. If the latter
evolves (i.e. changes its structure), there is an evident risk of the original advice code
to cease fulfilling the implicit contract intended by its programmer. We thus state that
the fragility of advices lies in the way they access context.

There are different ways in which advices access context in Aspect]-like tools. In all
cases, the evolution of base code can bring about errors in the complete system:
whenever base code changes, programmers are to review all existing advice code in
order to avoid these errors. The resulting coupling of advice and base code results in
what we have termed advice fragility.

One form of context access is what we term pointcut signature, it is sometimes called
“typed advice” or “pointcut parameter” in the literature. The advice receives objects

10

of certain types as arguments, which are provided by the weaver. A source of coupling
in this process is that advice code often expects these objects to be in a given state
(e.g. already initialized) or to be related to one another in a certain way (e.g. the first
parameter is always smaller than the second one). Moreover, evolution of base code
may result in the need to change the type of parameters of both a pointcut and its as-
sociated advice. Another mechanism used by many AOP tools to access base-code
context in advices is reflection. If base code changes, it is very easy for reflective ad-
vice code to, for example, try to instantiate and invoke a non-existent method.

3 Model-based aspects

Most proposed solutions to the pointcut fragility problem [9, 12, 21, 22] decouple
PCDs from base code by making the former depend not on the low-level structure of
the latter, but rather on an intermediate, more abstract layer that aims at describing the
problem at hand in a more domain-oriented fashion than raw code. Following this
idea, we claim that this layer must be conceived in such a way that advice code can
benefit from the resulting decoupling as well. This is illustrated in Figure 1.

Model-based aspects

(pointcuts + advices)

Aspects based on

Domain-basea domain representation.

abstract view

Fig. 1. Model-based Aspects

As a running example, we will analyze an application from an architectural point of
view. The system consists of two components, connected via an event handler. Our
model must provide a representation for each concept in the architectural view, and
also a means to make relationships between these concepts explicit, as they comprise
the reification of the architecture’s configuration. Also, a mapping must be established
between fragments of base-code and the concepts they represent.

11

3.1 Relating base code and model

Mechanisms to relate the base code with the abstract layer can be broken down into
those based on predicates (i.e. over base code) [4, 9] and those using annotations [12,
22]. Predicates are used for establishing contracts that base code ought to comply
with, and are by definition intensional (i.e. they are written once, but define a subset of
the entire base code). Annotations (i.e. metadata), on the other hand, are each associ-
ated to a single code entity, and can therefore be considered extensional. Predicates
are thus a better way of achieving the quantification property [3].

If context is to be accessed in a conceptually higher level of abstraction, advice code
should be able to collaborate with living objects that represent entities from the con-
ceptual model. Object-oriented developers work by defining classes and instances,
and only in some flavors of the paradigm do they use invariants or global contracts,
which makes annotations a more intuitive choice. Nevertheless, annotations, due to
their extensional nature, are more sensitive to changes in base code.

Clearly neither of the options is completely satisfying on its own. We have chosen to
develop our first prototype using annotations due to our background in object-oriented
development, but we consider the best choice to be a combination of both approaches,
which we plan to implement in future versions of our framework.

3.2 The need for mappings

As mentioned before, advice fragility is caused by context access from advice code.
Context access can be thought of as the need for advices to collaborate with (or refer
to) objects originated in the base-code world. In contrast to pointcuts, where coupling
to base code stems from the PCDs relying on base-code structure and execution flow,
advices rely both on the naming and semantics (i.e. contract fulfillment) of base-code
methods.

Probably the most widely adopted way of decoupling collaboration among objects is
the adapter pattern [24]. The basic function of an adapter is to stand in the middle of a
given collaboration, so as to decouple both ends. In the same fashion, a series of pat-
terns, namely facade and mediator, decouple an object from a group of other objects
that share a responsibility. Considering the common features of these patterns, we
claim that the intermediate layer should allow a mapping of both behavior and struc-
ture between base code and the world of aspects. Using object-oriented models for
the abstract layer clearly offers a clean way of specifying this mapping. [10] and [11]
use a similar idea to decouple collaboration between advice and base code.

Back to our model architecture, let us suppose that, at base-code level, events are
identified with numerical IDs, but at the architectural description level they are named
using mnemonic strings. This non-trivial mapping can easily be achieved by defining
an ad-hoc mapping object.

12

3.3 Comparing explicit and implicit models

For simple applications, conceptual models need not be explicitly defined in a sepa-
rate document. When this happens, annotations will refer to concepts that are not de-
fined elsewhere, they merely become loose labels. This is a practical solution, pro-
vided there are no relevant relationships between concepts, and only when mappings
from base-code elements to concepts are straightforward.

As an example of an implicit conceptual model, let us assume a developer wants to
enrich base code with a trivial model that classifies methods into those that update
data and those that retrieve it. Using this simple model, the developer could later write
a simple transaction aspect that enlists only updating methods. Later on, a caching
aspect could be added, in order to cache the returned value from all methods that re-
trieve data. No added value would result from specifying the data updating/retrieval
model in some knowledge-representation language, e.g. by defining an abstract “data
operation” concept specialized by both kinds of methods. There is no relevant rela-
tionship between concepts in the model (i.e. they are orthogonal) and no mapping be-
havior needs to be attached to them (i.e. they easily map to methods in base code on a
one-to-many basis).

On the other hand, a more complex scenario, like the architectural view in our running
example, calls for making the conceptual model explicit. In this case, there are rele-
vant relationships between model entities, and a translation from base-code elements
to conceptual entities needs to be specified.

As we have seen, these needs arise for most moderately complex systems. Conse-
quently, we have chosen explicit over implicit models for our framework. It must be
mentioned though, that implicit models are preferred when possible, due to the lower
system and conceptual overhead they cause.

4. PROOF-OF-CONCEPT IMPLEMENTATION

Continuing with the work introduced in [14], the SetPoint tool for .NET has been ex-
tended by implementing the ideas presented in the previous section. SetPoint was one
of the first AOP tools to explicitly attack the pointcut fragility problem. The context
access problem was mentioned in [14] as future work, which naturally led to adding
support for conceptual context access in the new version of the tool.

SetPoint was developed using the C# language. It works in two steps. First, assemblies
are preprocessed by injecting code to allow method call interception. Then, during
runtime, the SetPoint engine (an assembly itself), analyzes each method call (i.e. join
point) to determine if it belongs to any of the declared pointcuts (see [13] for a similar
approach). This new version of SetPoint is being developed using Microsoft's Phoenix
framework [25].

13

4.1 Intermediate model

SetPoint uses object-orientation as the knowledge representation formalism for the
intermediate conceptual model (see [26] for a comparison with a different formalism).
Together with code annotations, they constitute the mechanism for decoupling aspects
from base code.

The model consists of what we call concepts. We represent them with C# interfaces.
There are basically two kinds of concepts: actions and entities. Entities have attributes
called entity properties; actions, in turn, have action roles (which can be played by
entities or instances of other .NET types). Entities stand for concepts in the applica-
tion domain. Actions represent system-wide events in the model. They are the concep-
tual equivalent of join points, allowing aspect developers to refer to points in the flow
of a program in a more abstract way, decoupled from low-level implementation de-
tails. The interfaces that model entities and actions merely define their entity proper-
ties and action roles, respectively.

All transformations from base code to the model are made by mappers: C# objects
that implement the above-mentioned interfaces. Action mappers implement, in terms
of low-level join points,.NET properties that represent action roles. Low-level join
points are constructs that reify runtime events, such as method calls or constructor
calls: they contain the message sender, receiver, arguments and the selector (following
pure object oriented terminology). Entity mappers, in turn, wrap base-code objects or
groups of objects. They therefore have access to all their public members, in order to
implement getters and setters for properties in the corresponding interface.

Lastly, code annotations, implemented with .NET attributes (stored as program meta-
data), relate base-code elements (such as methods or classes) to the model. Attributes
are actually special classes, so whole attribute hierarchies can be defined, with differ-
ent behavior for each of their members. As we did with mappers, we have chosen to
differentiate entity and action annotations.

5. EXAMPLE

We will use a reduced banking application as a simple example. The application do-
main can informally be specified as follows (bracketed words and phrases correspond
to semantic concepts):

There are [accounts].

Each [account] has an [account number].

An [account number] is a [string].

Each [account] has a [balance].

A [balance] is a [rational number].

There are [operations] that [update] an [account]'s [balance].

Each [operation] has a [name].

A [name] is a [string].

A [savings account] is a kind of [account]

14

The requirement that we intend to implement as an aspect is conceptually defined as
follows:

After an [operation] that [updates] a [savings account]'s [balance]; if the result-
ing [balance] is negative then write in the system event log the [account number],
the [operation]'s [name] and the [balance].

As said, the domain is modeled using interfaces. This means that, each entity or action
is represented with a .NET interface. As an example, we show here the interface that
conceptually represents an operation that modifies an account’s balance:

interface IBalanceUpdate : IAction {
public IAccount Account { get; }
public string Name { get; }
public float Amount { get; }

}

Similarly, the following couple of interfaces specify the savings account concept:

interface IAccount : IEntity {
public string AccountNumber {get;}
public float Balance {get;}

}

interface ISavingsAccount : IAccount { }

Interface IBalanceUpdate has three .NET properties to represent action roles, namely
an account, a name and a balance, as specified in the informal domain description.
Interface ISavingsAccount has two properties: its number and its balance (both inher-
ited from interface IAccount). The mapping from a base code to the resulting model is
implemented via annotations and mappers. A possible base-code scenario is the fol-
lowing:
class SA {
float Balance;

string AccountNumber;
void Withdraw (float Amount) {..}

}

The simplest way provided by SetPoint to map this class to its conceptual counterpart
is to make class SA to directly implement interface ISavingsAccount. This would re-
quire adding appropriately named.NET properties to the class. A less intrusive
mechanism is to create a mapper and associate it to the class through an entity annota-
tion. The following code shows an example for the latter alternative:

[EntityAnnotation("ISavingsAccount", "SAMapper")]
class SA {..}

Withdraw is an operation that updates an account's balance. It must therefore be anno-
tated, so as to relate it with the corresponding concept in the abstract model. The an-
notation's attribute must state that this is an action of type IBalanceUpdate and also
select the mapper to be used for abstraction. Entities that correspond to this action's
roles must also be annotated. Roles Account and Amount can be directly annotated in
the base-code: the instance receiving message Withdraw is to be mapped to role Ac-

15

count; role Amount can be mapped by annotating the Amount parameter of the afore-
mentioned method:

class SA {...
[ActionAnnotation(
"IBalanceUpdate", "BalanceUpdateMapper"

)]
[ReceiverRoleAnnotation ("IBalanceUpdate", "Account")]
void Withdraw (
[RoleAnnotation("IBalanceUpdate", "Amount")]
float Amount
) {..}

}

Using annotations and conceptual definitions as input, SetPoint synthesizes the C#
code that implements mappers, automatically generating mapping behavior when the
necessary information is available (when it is not, the developer must manually supply
the mapping code). In this case, SetPoint automatically constructs the BalanceUp-
dateMapper class using the information provided by the action annotation. Mean-
while, role annotations provide the information to generate direct mappings for the
Account and Amount properties. On the other hand, no annotation has been given for
property Name, which must thus be manually implemented:

class BalanceUpdateMapper:JoinPoint, IBalanceUpdate {

public IAccount Account{
get{
//Automatically generated
return new SAMapper (this.Receiver);
}
}

public string Name{
get{
//Manually added
return this.Message.Name;
}
}

public string Amount {
get{
//Automatically generated
return this.GetParameterValue (1) ;
}
}
}
Action mappers are subclasses of the JoinPoint class. This class abstracts low level
context-access knowledge such as receiver, sender and message.
So far, we have shown how the domain model is defined and how elements in base
code are mapped to conceptual entities and actions. We next explain how aspects in-
teract with these structures by defining a pointcut, an advice, and the corresponding

16

aspect. It’s worth mentioning at this point that we have chosen to use a familiar and
known Aspect]J-like notation since SetPoint’s notation is still under refinement.

aspect Balancelogging({
pointcut SavingsAccountBalanceUpdate (
out IBalanceUpdate bu
) {

}

Action(bu) && Role[Account] (ISavingsAccount)

after (IBalanceUpdate bu):
SavingsAccountBalanceUpdate (bu) {
ValidateSABalance (bu)
}

void ValidateSABalance (IBalanceUpdate bu) {
if (bu.Account.Balance < 0){
Debug.WriteLine (
String.Format (
"After operation {0}
the balance of account {1} is {2}",
bu.Name,
bu.Account.AccountNumber,
bu.Account .Balance

}

Pointcut SavingsAccountBalanceUpdate establishes that whenever a message anno-
tated as performing a balance modification action is reached, the corresponding map-
per will be instantiated. This aspect is what we have termed model-based aspect, since
both pointcuts and advices are defined in terms of a conceptual domain representation.
Context access (in this case, account balance update information) is specified at a high
level of abstraction, alleviating the advice fragility problem presented before.

Let us assume now that base code evolves, and in a future version the account number
is not directly represented by a field in class SA, but obtained as the concatenation of
two fields, namely CustomerID and AccountSuffix. All we would need to do is adapt
the corresponding property getter in class SAMapper (the adapter between base code
and model). Both pointcut and advice would remain oblivious to this change, alleviat-
ing the aspect fragility problem.

17

6. RELATED & FUTURE WORK

6.1 Context access

Reflection is used as the mechanism for context exposure and composition of PCDs in
frameworks like Josh [5]. But the required metaprogramming skills may become quite
complex. In this respect, [17] makes an interesting point about the relationship be-
tween AOP and reflection: AOP engines should be built on top of reflection libraries,
so that metaprogramming becomes intuitive. Our approach follows this line, thus we
use reflection, but we avoid exposing its inherent complexity to the aspect program-
mer.

6.2 Intermediate Layer

Other approaches also intend to solve the pointcut fragility problem by increasing the
expressive power and abstraction level of pointcuts [6, 8, 9], but the lack of a more
abstract, semantic view than the base code itself greatly limits the power of the pro-
posed solutions.

The Model-Based Pointcuts approach [9] also advocates for relying on an intermedi-
ate abstract layer in order to decouple aspects from base code. In this model, source-
code entities that address the same concern are grouped together in views using logic
programming mechanisms such as predicates, instantiation and pattern matching. AOP
technology can be used on top of this model, making PCDs less dependent on the low-
level structure of base code. However, these views are generated directly from the
base-code syntax, rather than live in the semantic world (i.e. domain representation) as
in SetPoint. Our approach makes evolution much easier because it embodies a higher
level of abstraction.

We are not aware of any work that has yet focused on what we have called the advice
fragility problem.

6.3 Other metadata approaches

The authors of Compose*[16], from the Composition Filters school, propose the use
of metadata entries to tag base code elements with design information. The main dif-
ference with our approach is that this proposal offers no structure for metadata: there
are no relationships between tags, so no complex domain model can be expressed.

The notion of collaborations, roles, and composition of different views is also ex-
ploited in the collaboration-based design approach Object Teams [11]. A new kind of
collaboration module called Team is introduced to capture multi-object collaboration.
This new module basically combines properties of packages and classes, containing
inner classes where each element implements a role in the collaboration. Teams are
composed from the base code by binding each of their roles in collaboration to a base

18

class through an explicit mapping. In SetPoint, it is also possible for two or more
base-code entities to collaborate to form a single concept in the semantic world with a
proper mapping.

More similar to SetPoint, but in a different context, Tuna [18] refers to tags that are
part of a model that lets the annotator make use of knowledge-representation seman-
tics. Instead of AOP, metadata is used in this case to enrich program semantics, so as
to, according to the authors, bridge the gap that exists between MDA and the XP de-
velopment methodology. In the same spirit, Chris Welty's PhD dissertation [19] pre-
sents a source code ontology [20], which should allow maintenance coders to more
easily browse an application they had never seen before, leveraging code entities an-
notated by original developers using this ontology.

6.4 Entities and mappers

There are several works introducing the use of interfaces in order to obtain more reus-
able and general aspects [4, 10, 15]. In [10], aspect implementation and aspect bind-
ing are specified in different modules, and interfaces glue them together to form reus-
able aspects. These interfaces, called collaborative-interfaces (CI), specify what as-
pects provide to the context in which they are applied, and also what aspects expect
from that context. Although CIs help in decoupling base code from aspect code, they
do not constitute an intermediate layer as SetPoint has. That is to say, interfaces in
SetPoint define a semantic world, playing a totally different role in the development
process.

6.5 Future work

The next challenge for SetPoint is to keep refining the interfaces, mappers and annota-
tions model. We will continue to investigate the expressive power of interfaces as a
domain representation. We are also improving automatic mapper generation and mak-
ing it possible for object models already defined at the base code level to be used as
part of the conceptual level without any mediating annotation.

To the best of our knowledge, there is currently no AOP tool based on an intermediate
layer that uses both predicates and metadata for relating base code to the abstract
model. We think a combined approach could be beneficial and are therefore consider-
ing the possibility of adding contract-like predicates to our modeling formalism.

Work on a full-scale example will help us delve deeper into the question of whether
fragility is merely shifted or effectively reduced when an intermediate abstraction
layer is used between aspects and base code.

8. CONCLUSION

Decoupling aspects from base code is crucial to improve aspect-oriented software
evolution. In this respect, several approaches claim the need for aspects to refer to

19

base code from an intermediate, more abstract point of view. Keeping this in mind, we
had developed the first version of SetPoint, where the abstract view was based on a
representation of the domain. However, this version was not expressive enough to
accommodate context access in the domain-based abstract view, as the model did not
allow behavior mapping. As a consequence, it was not suitable for addressing the ad-
vice fragility problem. In order to overcome these limitations, we here present a new
version of SetPoint, where we propose a practical approach to this problem. A more
complex mapping mechanism consisting of annotations and mappers provides a do-
main-based abstract view with context-access capabilities. In this model, not only do
pointcuts rely on this view, but advices too, resulting in what we call model-based
aspects.

References

1. P.Tarr, M.D'Hont, L.Bergmans and C.V.Lopes. Requirements on, and Challenge Problems
For, Advanced Separation of Concerns. Workshop on Aspects and Dimensions of Concern.
ECOOP 2000.

2. C.Koppen and M.Stoerzer. Pcdiff: Attacking the fragile pointcut problem. EIWAS 2004

3. R.Filman and D.Friedman. Aspect-oriented programming is quantification and oblivious-
ness. Advanced Separation of Concerns. OOPSLA 2000.

4. W.G. Griswold, K.Sullivan, Y.Song, M.Shonle, N.Tewari, Y.Cai and H.Rajan et al. Modu-
lar Software Design with Crosscutting Interfaces. IEEE Software, vol. 23, no. 1, pp. 51-60,
Jan/Feb. 2006.

5. S.Chiba and K.Nakagawa. Josh: An Open Aspect]-like Language. AOSD 2004.

6. M.Eichberg, M.Mezini and K.Ostermann. Pointcuts as Functional Queries. APLAS 2004.

7. K.Gybels and J.Brichau. Arranging Language Features for More Robust Pattern--Based
Crosscuts. AOSD 2003.

8. H.Masuhara and K.Kawauchi. Dataflow Pointcut in Aspect-Oriented Programming.
APLAS 2003.

9. AKellens, K.Mens, J.Brichau, and K.Gybels. Managing the Evolution of Aspect-Oriented
Software with Model-based Pointcuts. ECOOP 2006.

10. M.Mezini and K.Ostermann. Conquering Aspects with Caesar. AOSD 2003.

11. S.Herrmann. Object Teams: Improving Modularity for Crosscutting Collaborations. Proc.
of International Conference NetObjectDays. 2002.

12. R.Altman, A.Cyment and N.Kicillof. On the need for SetPoints. EIWAS 2005.

13. R.Douence and M.Sudholt. A model and a tool for event-based aspect-oriented program-
ming (EAOP). Technical Report 02/11/INFO, Ecole des Mines de Nantes. 2002.

14. R.Altman and A.Cyment. SetPoint: a semantic approach for the pointcut resolution in
AOP. Msc. Thesis, Universidad de Buenos Aires. 2004.

15. G.Kiczales and M.Mezini. Aspect-oriented programming and modular reasoning. ICSE
’05.

16. C.Noguera Garcia. Compose * A Runtime for the .Net Platform. Msc. Thesis, University of
Twente, 2003.

17. G.T.Sullivan. Aspect-oriented programming using reflection and meta-object protocols.
Comm. ACM, 44(10):95-97, 2001.

18. C.Zimmer and A.Rauschmayer. Tuna: Ontology-Based Source Code Navigation and Anno-
tation. Workshop Ontologies as Software Engineering Artifacts in OOSPLA 2004.

20

19.

20.

21.

22.

23.

24.

25.
26.

C.Welty. An Integrated Representation for Software Development and Discovery. Ph.D.
Thesis, Rensselaer Polytechnic Institute. 1996.

T.Gruber. Toward Principles for the Design of Ontologies Used for Knowledge Sharing.
International Workshop on Formal Ontology, 1993.

W.Cazzola, S.Pini and M.Ancona. Evolving Pointcut Definition to Get Software Evolution.
RAM-SE'04-ECOOP'04 Workshop on Reflection, AOP, and Meta-Data for Software Evo-
lution. 2004.

I.Nagy, L.Bergmans, W.Havinga and M.Aksit. Utilizing Design Information in Aspect-
Oriented Programming. Proc. of International Conference NetObjectDays, NODe2005.
2005.

C. Clifton and G. T. Leavens. Obliviousness, modular reasoning, and the behavioral sub
typing analogy. Technical Report TR03-01a, Iowa State University. 2003.

E.Gamma, R.Helm, R.Johnson and J.Vlissides. Design Patterns — Elements of Reusable
Object-Oriented Software. Addison-Wesley. 1994.

http://research.microsoft.com/phoenix

A.Cyment, N.Kicillof and F.Asteasuain. Enhancing model-based AOP with behavior repre-
sentation. Second Workshop on Models and Aspects — ECOOP 2006. 2006.

21

Making Aspect Oriented System Evolution Safer®

Miguel A. Pérez Toledano', Amparo Navasa Martinez',
Juan M. Murillo Rodriguez', Carlos Canal®,

1 University of Extremadura (Spain), Department of Computer Science,
Quercus Software Engineering Group,
{toledano, amparonm, juanmamu } @unex.es.

2 University of Mélaga (Spain), Department of Computer Science,
GISUM Group,
canal@lcc.uma.es

Abstract. The information systems of enterprises change rapidly and it is
necessary for the existing software to evolve without the comprehension,
modularity or quality of the built systems being affected. In this context, Aspect
Oriented Programming reveals as an adequate way of working because it makes
the encapsulation of methods easier and reduces development times. The
inclusion of aspects (woven code) inside an existing software code could,
nevertheless, cause the resulting system behaviour not to be that expected by
the developer. In this paper, we propose to evolve system specifications at the
same time as the software itself. In this way, we can start from these
specifications in order to obtain state machines and algebraic descriptions of the
components of the system. These can be used to perform verification,
simulation or testing operations of the systems built. We also propose the use of
extended state machines that allow us to describe the evolution of the system in
a more detailed way, facilitating more complete Model Checking operations.

Keywords: Aspect Oriented System Evolution, Extended State Machines,
Algebraic Specifications, Validation, Verification, Simulating, Model
Checking.

1 Introduction

The information systems of enterprises change rapidly and it is necessary for the
existing software to evolve without the comprehension, modularity or quality of the
built systems being affected. The use of Aspect Oriented Programming (AOP)
facilitates this task, allowing us the encapsulation of methods that, otherwise, would
be scattered in the code of the different software elements of the system. This
encapsulation makes the comprehension of the code easier, reduces the time of system
development and, on the whole, allows software systems to evolve rapidly. The
evolution of the systems in which woven aspects exist and the difficulty to access to

@ Research supported by CICYT Project (number TIN-2005-09405-C02-02)

the source code of these applications could, nevertheless, produce a series of
problems, described in [1], which could then cause the final system behaviour not to
be that expected by the developer.

Currently, there is not tool that allows a complete study of every possible problem
when aspects are included inside a system. Existing papers in this area are focused on
some of the possible situations. Some works study how the addition of new aspects
could affect a system (and also which are the properties affected by the new woven
code), by means of code analysis or static Model Checking [2] and are based on the
use of state machines or algebraic descriptions of the system components, while other
proposals study the increased system (analysing the woven code and comparing its
properties with the underlying software system) using tools to check the resulting
code as Bandera [3] and Java Pathfinder [4].

Moreover, in order to generate quality software and to document the built system it
is necessary to achieve a previous detailed Analysis and Design of the system to
build. When systems are object-oriented, the Unified Modelling Language (UML) is
usually employed as the modelling tool [5]. Several papers use UML as a tool to
model aspects and to add its behaviour inside the system to build [6].In [7], state
charts are used to describe aspects behaviour and also to integrate this behaviour into
the state charts that describe the joint points associated. Other works, like [8], separate
the specification of aspects behaviour from the system business rules. For this, the use
of sequence diagrams to describe aspectual scenarios, with Interaction Patterns
Specifications (IPS) [9] is proposed. These IPS will subsequently be instantiated
inside those system sequence diagrams that describe the associated joint points. The
objective is to obtain state charts from system components and use them later to
achieve simulation and validation operations with the existing requirements.

In this paper we propose to study the integration of aspects into a software system
starting from its UML specifications. This study will be focused, nevertheless, on the
interactions described by sequence diagrams, assuming that the modelling will
probably affect also other types of diagrams, which are beyond the scope of this
paper.

As regards the contribution of this paper, we propose to build more complete state
machines than the currently used state charts [7,10]. These extended machines will
allow us to represent information about time counters, about fragments (as used in
UML 2.0) and also about system variables. All this information will permit to achieve
more precise model checking operations of the system. Moreover, we study the
effects of adding new aspects inside a system before they have been woven and,
furthermore, to study the behaviour of the woven code. In order to facilitate this
study, a technique for grouping components is proposed, so that simulation traces can
be reduced due to the omission of internal interactions among grouped components,
focusing on the interaction with the surrounding environment.

This paper is structured into the following points: some of the problems derived
from integrating aspects inside a system are described in Section 2; Section 3
describes our proposal; while an example is presented Section 4; Section 5 contains
the conclusions and future works.

24

2 Problem Description

The construction of software systems using Java makes the use byte code possible,
protecting in this way the source code of classes. This originates that the evolution of
these systems by means of AOP lacks precise information about the underlying
system in which aspects must be applied. Because of that, errors can be caused when
languages as Aspect] [11] are used in order to weave aspects inside Java code. These
problems [1] can be summarized in:

— Unintended aspects effects. When pointcuts of new aspects of the underlying
system are applied, they may be applied to undesired joint points of classes, and
this could provoke unintended side effects.

— Arbitrary aspect precedence. When pointcuts of new aspects of the underlying
system are applied, they may be applied to the same joint point as other (unknown)
aspects already are. This may cause problems with the sequence of application of
aspects

— Unknown aspect assumptions. When pointcuts of new aspects of the underlying
system are applied, they may not find joint points matching existing requirements.

— Partial weaving. When the code of a system is modified, the aspects inside it may
not be applied to future modifications.

These problems are caused by the difficulty of knowing the existence of previous
woven aspects inside the code and the ignorance of the pointcuts defined in them.

3 Proposal

As discussed in the previous section, the evolution of Java systems by means of AOP
is hindered by the frequent ignorance of the source code. In this context, the creation
of an adequate specification of the system and its later adequate use to evolve the
system are necessary. The following steps are proposed in order to document the
system (graphically described in Figure 1):

1. System modelling by means of UML. It is necessary to separate the aspect
description from the rest of the system. The idea consists of describing the
behaviour of aspects in such a way that, when the system evolves, a complete
documentation about its behaviour exists. This paper is focused on the study of
interaction diagrams but the specification of aspects must be described inside
every affected UML diagram. Interaction Patterns Specifications (IPS) will be
used in order to describe aspect interactions. This tool is based on describing
patterns that represent the expected interactions of the aspect to be integrated by
means of sequence diagrams [8].

2. Instantiating aspect patterns (IPS) inside the sequence diagram of the system.
We need to find points in the sequence diagram matching the requirements
stated by aspects description where aspects can be introduced. Note that

25

different operation exist in order to instantiate the patterns, depending on the
description of the aspects. It is possible to find further information about design
and instantiation of IPS in [12].

UML Specifications UML Specifications

instantiating building
System Descriptions .
" System description State Machines
i PIth Aspectifs |:> from Participants
Aspectual Scenarios scenarios included P
(IPS)

uilding

b
validating %

Algebraic
Specifications

AOP language

Comparison of behaviour and
properties

Woven Code

Fig. 1. Building of system specifications steps

3. The information described during system modelling is frequently not precise
enough, as it is necessary to describe the system completely. In order to detect
errors and gaps, the obtained specifications must be validated [13].For that
purpose, algebraic descriptions of the specifications obtained are built and
model checking is applied to detect deadlocks and inconsistencies. This point
will allow us to complete specifications in such a way that, once an error is
detected, it is necessary to return to point number one to solve it.

4. Once specifications have been validated, extended state machines can be
automatically obtained for each element of the system. There exist several
algorithms to achieve this task [14]. In this paper, we will use the algorithm
proposed in [15]. It consists of obtaining a state machine for each scenario in
which a system is involved and then machines are assembled. State labels,
described in sequence diagrams, are usually employed to assemble machines in
order to identify the state in which the component is inside the scenario.
Nevertheless, the machines obtained [18] provide more precise descriptions than
statecharts.

5. The specifications must be renewed to evolve the system. In order to do that, it
is necessary to return to point number 1 and update documentation. Once new
behaviours have been described, instantiating each aspect inside the system into
adequate joint points is again necessary. This will allow us to detect problems in
the sequence of execution of aspects and to prove if there exist adequate joint
points in which aspects can be applied. Finally, aspects must be woven inside

26

the code again in order to avoid partial weaving problems. Once the whole
process is finished, new machines are obtained. Its behaviour will reflect the
new described behaviour. However, it is still possible that problems arise when
proving if the behaviour of the obtained woven code agrees with design.

Extended state machines describe the planned behaviour of the system and the
woven code describes the final behaviour obtained. Studying possible unintended
effects of the aspects inside the system will consist of studying if state machines and
code behaviour match. In order to achieve this task, model checking techniques can
be used. These operations must study the properties of both systems and must
complete the study by means of simulating the same execution traces in both of them.
To execute model checking operations inside Java code obtained, Java Pathfinder can
be used, whereas for state machines, UPPAAL tool is proposed [16]. UPPAAL is an
integrated tool environment for modelling, simulation and verification of systems. It
is appropriate for systems that can be modelled as a collection of processes with finite
control structure and real-valued clocks, communicating through channels or shared
variables. The UPPAL simulator enables examination of possible dynamic executions
of a system during modelling stage and, thus, provides an inexpensive means of fault
detection prior to the verification by the model-checker. The UPPAAL model-checker
covers the exhaustive dynamic behaviour of the system; it can also check invariant
and reachability properties by exploring the state-space.

To compare machines and code simulation, two alternatives exist:

— Generating traces from UPPAAL. These traces simulate the execution of
machines and can be used as inputs into the generated code.

— Weaving one aspect inside the code that does not modify the behaviour and be
limited to monitor the code execution and create traces able to be used in the
UPPAAL simulator.

This second option seems to be more elegant because it permits the use of AOP
concepts in order to study systems built by means of AOP. Nevertheless, execution
traces obtained may be too large due to the size of the built systems. In order to
reduce size, it is achievable to group components and to monitor only the interesting
events to facilitate the simulation and to focus the study on the attractive points.
Components grouping [17] allow us to obtain descriptions suited to sets of
components, abstracting from internal interactions among them. These groups will be
adapted to developer needs and will allow us to create traces exclusively containing
the events of interests.

4 Example

Two scenarios are presented in order to illustrate our proposal (Figure 2). The first
one represents the behaviour of one aspect, depicted by means of an IPS. The second
one represents one scenario of the system that achieves the necessary requirements to
apply the mentioned aspect. In order to prove if a certain aspect is applicable to a

27

given scenario, we must check the associated restrictions, described by means of state
labels. In the example, to instantiate the aspect, it is necessary to establish some binds
between the role “rd:” and the element “c2:class4”, and between the method
“Inotif()” and the method “operatl()”. Once the aspect is composed, the specification
of the system is available. Notice that the type of instantiation of the aspect will be
executed depending on its description and there exists several operations to achieve it
[12]. Once final specifications have been obtained, algebraic descriptions are built
with CCS, and Model Checking analysis is performed for detecting errors and
deadlocks. The specifications will be modified until they are correct.

UML specifications
[ttt - il | [destoless | [Cuelsst | [cesmss i crems |
T T T e s — Y~ .
B 2o : L :
'. - .r'!gt.|f. \” I e
. . | |

operation()
S o

T | (o] [[

:| stl '.l st) |:. std |. 1 st5 |
- TE B T T
...... BPEFAtI) ot R RRE ey
: i : | operationx ()| : e
L iyl 8 B
[[| operatzp |
I operat3() - T° -] - |
s T T]
Sann i i
sté : st | |
1 - 1 1 I
ﬂ Detection of deadlocks

stl=operatl.’operat3.st6

st2='operatl.operationX.operat2.st3
st4="operationX. nil
st5='operat2.operat3.nil

system=init_state_cl|init_state_c2]..

Fig. 2. Instantiation of aspects and refinement of specifications described

28

Extended state machines are built with validated specifications. The possibility of
representing time requirements and complex operations over groups of events (as
critical regions) described with UML fragments, and the possibility of achieving a
continuous monitoring in the evolution of the state variables of the system are
advantages as regards state charts. Each vertex of a machine consists of a structure:
<par, ord, crit, st, variables> where par, ord and crit are positive integer variables
used for representing parallelism, sequences and critical regions; st is a string
variable, used for describing the state in which the component is, and variables is a
set of strings employed for describing the variables used in the conditions and
iterations represented on the graph.

Focused on the example, it is possible to build the machines associated to each
element of the system. These can be used to simulate the behaviour and to obtain
execution traces, useful to prove the built code.

Sirnulation Te
milation Trace = =
(st1, st4, st5, st4)
fi x - 2 || =2 -
e e Sty St - - - -
(c2.2.aperation’!, dest.1.operationis?) @ operatll — cperatar O @ aperatZy | = operatd O
- st5,
(c2.3.0perat2), c3.1.0peratz?) :>
O R — c2 dest
U M opera? oo, CpErEionK o operstd st M perationicr
== =n @ =) =) 0 || @&——=Q
[Open][Save][Random]

Fig. 3. Obtained machines to apply traces in order to simulate its behaviour

On the other hand, when the system is implemented in Java and Aspect] is used
to weave the described aspects, the resulting code can be proved by means of using
the sequence of traces obtained from the previous simulation to check if the same
results are returned.

Table 1. Aspect code designed for reducing the size of the trace.

Public aspect Traceaspect {
pointcut trace(): execution (cl.*(..))
| |lexecution (c2.operationX())
| lexecution (c2.operatl())
| |lexecution (c3.operat3());
After () : trace() {
Signature sig = ThisJointPointStaticPart.getSignature();
System.out.println(sig.getDeclaringType () .getname ()+"."”
+ sig.getName()) ;
}
}

Another possibility of comparing designed machines with the obtained code
consists of creating a new aspect to monitor the execution and build execution traces.
Sometimes, these traces can be large and then, there exists the possibility of focusing

29

the study on a series of events. In order to achieve it, the aspect can be designed in
such a way that it only monitors the events of a series of classes and then, state
machines whose behaviour is not interesting can be grouped, avoiding references to
events that occur inside grouped components (table 1).

This possibility allows us to focus the study on the classes affected by the
pointcuts of the aspects of the system. For example, in Figure 4 the result of grouping
components 2 and 3, from Figure 3, and the simulation of execution trace obtained
from monitor aspect are depicted.

CODE Execution

— trace
e

System Edtor | Simulator | verifier c1
Drag out = =R
Enabled Transitions @ aperati! e O operatIT = O
c23

e, I::> S operat? o operation ;1_‘.1\3 operat

Simulation Trace @ = ey O
(st1, st45, st4)

dest
=t operations?
Tracs File C) C
1

Fig. 4. Simulation of execution trace with ¢2 and ¢3 components grouped.

5 Conclusions

AOP facilitates the evolution of a software system. However, the lack of access to the
source code of the applications can cause problems in existing software. This paper
introduces a practical approximation that evolves the requirements of the system
described by means of UML with the built code. These specifications, once validated,
will allow us to obtain state machines whose behaviour could be compared with the
code of the system, before and after aspects have been included.

In order to make these operations easier, extended state machines are introduced,
more complete than traditional statecharts. These machines are adequate to obtain all
the possible information from UML sequence diagrams. With these machines, it is
possible to study how a software system will be affected when an aspect is included.

30

It is also possible to perform Model Checking with the properties of the code of the
existing system and, finally, the results can be compared with those belonging to the
designed machines. Besides, it will be possible to study the resulting woven code
when an aspect is included, by means of Model Checking, and trace simulation
between state machines and the built code. In order to facilitate these simulations,
grouping state machines has been proposed (grouping algorithms is beyond the scope
of this paper) to reduce the size of the traces in study and to focus the study on the
involved classes.

References

[1] N. McEachen, R.T. Alexander. “Distributing classes with woven concerns: an exploration
of potential fault scenarios”. Proceedings of the 4th international conference on Aspect-
oriented software development.2005, Pages: 192 — 200, ISBN:1-59593-042-6.

[2] S. Katz. “A Survey of Verification and Static Analysis for Aspects”. AOSD-Europe-
Technion-1. 10 July 2005.

[3] Bandera. http://bandera.projects.cis.ksu.edu
[4] Java Pathfinder. http://javapathfinder.sourceforge.net.
[5] UML homepage. http://www.uml.org

[6] O. Aldawud, T. Elrad, A. Bader. “UML Profile for Aspect-Oriented Software
Development",In Proceedings of Third International Workshop on Aspect-Oriented
Modeling, March 2003”.

[7] M. Mahoney and T. Errad. ” Distributing State-Charts to Handle Pervasive Crosscutting
Concerns”. In Proceeding of Building Software for Pervasive Computing Workshop.
OOPSLA 2005.

[8] J. Araujo, J. Whittle, D. Kim, "Modeling and Composing Scenario-Based Requirements
with Aspects," re, pp. 58-67, 12th IEEE International Requirements Engineering
Conference (RE'04), 2004.

[9] R. B. France, D. Kim, S. Ghosh, E. Song. “A UML-Based Pattern Specification
Technique”. IEEE Transaction on Software Engineering. March 2004 (Vol. 30, No. 3) pp.
193-206

[10] J. Whittle, J. Schumann. “Generating statechart designs from scenarios”. International
Conference on Software Engineering. Proceedings of the 22nd international conference on
Software engineering. Pages: 314 — 323, 2000, ISBN:1-58113-206-9.

[11] Aspect]. http://www.eclipse.org/aspect;

[12] J. Whitlle, J. Araujo. “Scenario Modeling with Aspects”. IEE Proceedings - Software --
August 2004 -- Volume 151, Issue 4, p. 157-171.

[13] S. Uchitel. “Incremental elaboration of scenario-based specifications and behavior models
using implied scenarios”. ACM Transactions on Software Engineering and Methodology
(TOSEM). Volume 13, Issue 1 (January 2004), Pages: 37 — 85, Year of Publication: 2004,
ISSN:1049-331X.

[14] 4th International Workshop on Scenarios and State Machines: Models, Algorithms and
Tools. in Saint-Louis, Missouri, on 21 May 2005.

31

[15] J. Whittle, J. Saboo, R. Kwan, "From Scenarios to Code: An Air Traffic Control Case
Study," icse, p. 490, 25th International Conference on Software Engineering (ICSE'03),
2003.

[16] UPPAAL. http://uppaal.com
[17] L. Blair, G. Blair. “Composition in Multi-paradigm Specification Techniques”. Third

International Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS). Pag. 401 —417, 1999.

[18] M.A. Pérez, A.Navasa, J.M. Murillo, C.Canal. “Definicion de maquinas de estados
extendidas usadas en descripcion de protocolos de interaccion”. Technical Report TR-
23/2006. University of Extremadura (Spain). An English short version can be found in
Appendix.

32

Appendix.

Definition 1. An interaction machine is a graph in the way (V, E, I, Condition, Label,
Action, Initial Vert, Ending Vert_Set) such that:

e Visa set of vertexes.
e Eis the set of edges.

e | is a relation that associates to each edge ¢ € E two vertexes <u,v>e V,
named the ends, such that u=origin(e) y v=destination(e).

e Condition: E — CondEdge is an injective function that associates one
condition to each edge of the graph, where CondEdge is the finite set of
condition labels that correspond with the conditions produced in the
fragments used for describing the interaction machine of the software
element. One condition cond € CondEdge can present null values.

e Label: E — LabelEdges is an injective function for label, where LabelEdges
is the finite set of labels that identify the set of messages that can be received
or sent, in what concerns the software element that is being described. One
label labela € LabelEdges, can present null values.

e Action: E — ActEdges is an injective function that associates one action to
each edge of the graph, where ActEdges is the finite set of labels that
correspond to the counters produced in the fragments used for describing the
interaction protocol of the software element. One action a € ActEdges can
present null values.

e Initial Vert € V is the initial vertex of the graph.
e Ending Vert Set c V is the set of ending vertex of the graph.

Definition 2. Let IM be one interaction machine and let cond € CondEdge be one
condition different from empty. Then cond is evaluated as a Boolean and must
complete the syntax described in table 2.

Definition 3. Let IM be one interaction machine. Each label labela € LabelEdges
different from empty label is composed by a tupla < n, t >, where n is the name of the
message (n € N, where N is the finite set of system messages) and t describes the
type of event (“!” for representing sending or “?”” for representing reception).

Definition 4. Let IM be one interaction machine and let a € Actions be one action
different from empty. Then a must complete the syntax described in table 1.

Definition S. Let IM be one interaction machine and let v € V be a vertex of the
graph. Then v is a tupla in the way <par, ord, crit, st, variables> where par, ord y crit
are positive integer variables used for representing parallelism, sequences and critical
regions; st is an string variable, used for describing the state in which the component

33

is, and variables is a set of strings used for describing the variables” used in the
conditions and iterations represented on the graph.

Table 2. Syntax of the conditions and actions of the interaction machine.
Expression = ID | NAT
| Expression ’ [’ Expression ’']’| ' ('’ Expression ")’
| Expression ’'++’| ’'++’ Expression | Expression '--'
| '—=" Expression | Expression AssignOp Expression
| UnaryOp Expression | Expression BinaryOp Expression
| Expression ’.’ ID
UnaryOp =2 '—=' | ’!7 | ’not’
BinaryOp =2 "<’/ | /<=' | f==' | Tl=r | I>=r | I | gl |y
| /x| 7/7 | "and’ | ‘or’

AssignOp > 7=t | TA= | —=t | T R=T r/=r

b The variables used in IM must be: parameters from sequence diagrams, internal variables from
sequence diagrams, global system variables or clock variables.

34

Design-Based Pointcuts Robustness
Against Software Evolution

Walter Cazzola', Sonia Pini2, and Ancona Massimo?

' Department of Informatics and Communication,
Universita degli Studi di Milano, Italy
cazzola@dico.unimi.it
2 Department of Informatics and Computer Science

Universita degli Studi di Genova, Italy
{pinilancona}@disi.unige.it

Abstract. Aspect-Oriented Programming (AOP) is a powerful technique to bet-
ter modularize object-oriented programs by introducing crosscutting concerns in
a safe and noninvasive way. Unfortunately, most of the current join point mod-
els are too coupled with the application code. This fact harms the evolvability of
the program, hinders the concerns selection and reduces the aspect reusability. To
overcome this problem is an hot topic.

This work propose a possible solution to the limits of the current aspect-oriented
techniques based on modeling the join point selection mechanism at a higher level
of abstraction to decoupling base program and aspects.

In this paper, we will present by examples a novel join point model based on
design models (e.g., expressed through UML diagrams). Design models provide
a high-level view on the application structure and behavior decoupled by base
program. A design oriented join point model will render aspect definition more
robust against base program evolution, reusable and independent of the base pro-
gram.

1 Introduction

Aspect-oriented programming (AOP) is a powerful technique to better modularize object-
oriented programs by introducing crosscutting concerns in a safe and noninvasive way.
Each AOP approach is characterized by a join point model (JPM) consisting of the join
points, a means of identifying the join points (pointcuts) and a means of raising effects
at the join points (advice). Crosscutting concerns may not be well modularized as as-
pects without an appropriate join point definition that covers all the interested elements,
and a pointcut definition language that allows the programmer of selecting them.

Traditionally, the pointcuts allow the programmer of selecting the join points on
the basis of the program lexical structure, such as explicit program elements names.
The dependency on the program syntax renders fragile the pointcuts definition [2, 11]
and strictly couples an aspect to a specific program harming the evolvability [15] and
hindering the aspect reusability [7].

At the moment, aspects are not robust against evolutions in the base program. This
is because pointcut definitions typically rely heavily on the structure of the base pro-
gram. This tight coupling of the pointcut definitions to the base program’s structure
can seriously hinder the software evolution. Thus, this implies that all pointcuts of each
aspect need to be checked and possibly revised whenever the base program evolves.

To get the obliviousness [3] the aspect programmer should be unaware of the struc-
ture and syntax of the base-level program to apply its aspects as well as the base-level
programmer must be unaware of the additional aspects. To get a total obliviousness>
means also to decouple the aspect definitions from the dependency on the structure and
syntax of the program they advice, solving the abovementioned problems.

Therefore, the required enhancement should consist of developing a pointcut defi-
nition language that supports join points selection on a more semantic way. To provide
a more expressive and semantic-oriented selection mechanism means to use a language
that captures the base-level program behavior and properties abstracting from the syn-
tactic details. Several attempts in this direction have been done but none of these really
approaches the problem in its entireness and in general they raise also new issues, such
as efficiency and flexibility. We think that the design models provides a more suitable
representation to abstract join points identification from the base-code structure and
syntax.

In this paper, we propose a design oriented join point model that should offer the
right level of abstraction from the base-code. In particular, in our proposal, join points
are described by means of UML-like descriptions (basically, activity and sequence di-
agrams) representing computational patterns, these elements are called join point pat-
terns. In other word, we propose of using enriched UML diagrams (or portion of) to
describe the control flows or the computational contexts and the join points inside these
contexts to detect possible woven points. Pointcuts consist of logic composition of join
point patterns. In this way, pointcuts are not tailored on the program syntax and structure
but they are more general.

The rest of the paper is organized as follows: in section 2 we overview the limita-
tions against the software evolution of the AspectJ-like join point models, in section 3
we introduce our join point model and in particular the concept of join point pattern,
finally, in section 4 and in section 5 we face some related works and draw out our
conclusions.

2 Limits of the AspectJ-Like JPM against Software Evolution

The join point model has a critical role in the applicability of the aspect-oriented method-
ology. As stated by Kiczales in his keynote at AOSD 2003 [9] the pointcut definition
language has the most relevant role in the success of the aspect-oriented technology.
Most of the AOP approaches use a join point model similar to that of Aspectd [10].
It exploits a dynamic call graph [6] to select the correct join points. The AspectJ
pointcut language offers a set of primitive pointcut designators, such as call, get and
set specifying a method call and the access to an attribute. These primitive pointcut

3 As total obliviousness, we mean the unawareness of the base-level program of the existence of
the aspects and vice versa.

36

designators can be combined using logical operations (||, &&, !) forming more complex
pointcuts. All the pointcut designators expect, as an argument, a string specifying a
pattern for matching method or field signature. These string patterns introduce a real
dependency of the syntax of the base code.

Therefore, most AOP approaches have a tight coupling between aspects and base
program, even if the aspect definition is syntactically separated from the base program,
changes to the base program can immediately require changes to the aspect definition.
Intuitively, since pointcuts capture a set of join points based on some structural or syn-
tactical property, any change to the structure or syntax of the base program could also
change the applicability of the pointcuts and the set of captured join points. This is in
direct contrast with the general aim of AOP, that is, to make programs easy to read,
manage and evolve, by providing new modularization mechanism.

Pointcut heavily relies on how the software is structured at a given moment in time.
In fact, the aspect developer subsumes the structure of the base program when he/she
defines the pointcuts; the name conventions are an example of this subsumption. The
aspect developer implicitly imposes some design rules that the base program developer
has to follow when evolves his program to be compliant with the existing aspects and
avoid of selecting more or less join points than expected. In this case, problems with
evolution and obliviousness depend also of the need of guessing these, often silent,
conventions.

These rules derive from the fact that pointcuts often express semantic properties
about the base program in terms of its structural properties. For example, the following
setterAccess () pointcut should capture all the methods that modify the state of the
object.

pointcut setterMethod() : call(* set*(..));

To define this semantic property, the pointcut relies on the coding convention that
the name of this kind of methods always starts with the prefix set. Since the rule
subsumed by this pointcut is not imposed by any mechanism, not all developers need to
be aware of its existence and, consequently, of having to respect it; in practice this rule
gets broken very often. During the base program evolution new methods can be added
and existing ones can be removed such that they are captured by the pointcut definition
only if they follow the naming convention.

Since, the problem of the evolution in aspect-oriented programs is mainly that the
set of join points captured by a pointcut may change when changes are made to the
base program, even though the pointcut definition itself remains unaltered. Then, to
avoid this problem we need a low coupling of the pointcut definition with the source
code.

3 Design-Based Pointcut Language

Design models (UML diagrams, formal techniques and so on) provide the right level of
abstraction necessary to have a global and static view of the system and to select the
join points thanks to their properties and where they are located (i.e., the context) [2],
and then to obtain a more robust pointcut mechanism against the software evolution. We

37

Pattern-Based Join Point Model: Terminology and El t Description

Join Points
They are hooks where code may be added. We consider two different kind of join point,
normal join points that represent points of the application behavior where to insert the
advice code, and around join points that represent portion of application behavior that
must be substituted with the advice code. They are pointed out by one or more join point
patterns and refer to the application code.

Join Point Patterns
They are UML diagrams, with a name, that describe a set of join points in terms of their
application context. These patterns provide an incomplete and parametric representa-
tion of the application behavior. The set of all the declared join point patterns is called
the join point pattern space.

Join Point Pattern Space
It is the set of all join point patterns defined into the application.

Pointcut
It is a query on the join point patterns space selecting a set of join points. The queries
are created as logic composition of the join point names identified into the join point
pattern space.

Advice
1t is the code applied at the join points when the associated pointcut is evaluated to true.

Table 1. Pattern-Based Join Point Model: Terminology and Description

propose to tackle the join point model problems by selecting the join points in terms of
the base program design models.

Model-based pointcut definitions are less subject to the fragile pointcut problem [11],
and then they are more robust against evolution problems, because they are not defined
in terms of how the program is structured at a certain point in time. Since, model-based
pointcut definitions are decoupled from the structure and syntax of the base program,
the fragile pointcut problem is transferred to a more conceptual level. By defining
pointcuts in terms of a design model, the fragile pointcut problem has now been trans-
lated into the problem of keeping the right localization of the design context and the
join points into the base program.

The pointcut definition mechanism we are proposing, called join point pattern spec-
ification language selects the join points in terms of the base program design models.
The application design models provide an abstraction over the application structure.
Thanks to this abstraction, the join point patterns can describe the join point position in
terms of the application behavior rather than its structure. In other words, we achieve a
low coupling of the pointcut definitions with the source code since the join point pat-
tern definition is defined in terms of design model rather than directly referring to the
implementation structure of the base program itself.

The join point patterns are graphically specified through a UML-like description
— sequence and activity diagrams. A visual approach is more clear and intuitive and
makes more evident the separation from the program source code. Finally, UML-like
approach is not limited to a specific programming language but can be used in combina-
tion with many. At the moment, we are using the Poseidon4UML program for depicting
the join point patterns but we are developing an ad hoc interface for that.

In general, software evolution involves both structural (e.g., add classes, methods,
fields and so on) and behavioral changes, then the pointcuts can affect both the struc-
ture and the behavior. In this paper, we only focus on the behavioral join point pattern

38

abstract aspect Observer { aspect Observingl extends Observer {

void notify() { ... } pointcut p(): call(void Buffer.put(int));
abstract pointcut p(); pointcut c(): call(void Buffer.get());
abstract pointcut c(); }

after): p() {notify();}
after): c() {notify();}

aspect Observing2 extends Observer {
pointcut p() :within(Buffer) && call(* put*(x*);
pointcut c() :within(Buffer) && call(* get*(*));
}

Fig. 1. The abstract observer pattern aspect with two concrete implementations.

definition; since affecting the application structure simply consists on introducing and
removing elements and can be faced as explained in [1].

3.1 The Join Point Pattern Specification Language

In this paper, we borrowed the terms join point and pointcut from the AspectJ ter-
minology but we use them with a slightly different meaning. The join points are hooks
where code may be added rather than well defined points in the execution of a program.
Whereas, the poitcuts refer to a set of join points. To complete the picture of the sit-
uation, we have introduced a new concept: the join point pattern as a template on the
application behavior identifying the join points in their context. These patterns provide
an incomplete and parametric representation of the application behavior. Look at Tablel
for a summary and brief description of the elements composing the model.

In addition to decoupling the pointcut definitions from the base code, design-based
join point patterns are less fragile to evolution of the base program because the pointcut
definitions are based on composition of join points, that are no-linked to the application
structure and syntax but linked to the behavior of the application.

A join point pattern is a sample of the computational flow described by using a
behavioral/execution flow template. The sample does not completely define the compu-
tational flow but only the portions relevant for the selection of the join points. The set of
all defined join point patterns is called join point pattern space. Each join point pattern
can describe and capture many join points; these join points are captured together but
separately advised. Pointcuts are expressed as a logic combination of one or more join
point patterns.

Now, we will explain the join point pattern definition language “syntax” by exam-
ples. Let us consider the implementation of the observer pattern [4] as an aspect to
observe the state of a buffer. The Buffer instances originally support only two kinds
of operations: to retrieve (get) and to insert (put) elements in the buffer. The observer
will monitor the work of these tow family of methods.

39

1 \
I I
I I
I
| |
! «exactmatch» !
I
| method-variable *foo(..) '
L anyfool) !
‘ | ‘
| context v '
r P
I
' Fed v vV !
I 2 TR} A o I
S use (*.Field in right) or
| use *.Field in left (*(AField i rehglrn; i
| «method» «method» |
I I
I I
I I
I I
I
\ ’

Fig. 2. A Join Point Pattern capturing all the state changes in the Buffer class.

Figure 1 shows an abstract aspect (written in AspectJ) that implements the ob-
server pattern behavior with two possible concrete implementation of its pointcuts. The
use of an abstract aspect is a way to decouple the crosscut definition from the aspect.
The first concrete aspect is based on enumerating the method calls of the base-program,
whereas the second one is based on the use of name conventions and wildcards. Both
these concrete aspects capture all the interested join points in the case of a buffer im-
plementation which respects the implicit programming conventions proposed from the
problem statement, but what happens when the buffer class evolves in a way that vio-
lates the self-imposed programming conventions?

To answer to this question, we consider few possible evolutions of the Buffer class.
First case, we add a method "void putAll(int [])" to the Buffer class. This event
breaks the first concrete aspect because the new method is not listed in the p() point-
cut. To maintain the expected behavior of the aspect, the pointcut must be modified to
include also the new method. The second concrete aspect is more robust and the new
method is automatically captured by it because it respects the naming conventions and
start by put.

Now, let us consider a new change: a method returnElements is added. This new
method returns a collection with a specified number of elements from the buffer. In this
case, both first and second concrete aspect do not capture the join points introduced by
calling the new method. The first for the same reason raised in the previous example
and the second since the name of the new method does not respect the self-imposed
conventions.

Figure. 2 shows a join point pattern capturing all the method executions which
change the state of the Buffer class, i.e., our join point pattern can capture both the
executions to methods that retrieve data from the buffer and that introduce data in the
buffer.

The behavior we are looking for is characterized by: i) the call to a method with
any signature, ii) whose body either assign anything to a field of the target object (to
select the put method family) or, either assign a field of the target object to anything
or return a field of the target object (to select the get method family). This join point

40

pattern explicitly refers to the concept of a method that change the Buf fer state rather
than trying to capture that concept by relying on implicit rules about the program im-
plementation structure. Consequently, the pointcut defined using this pattern does not
need to be verified or changed to be compliant with the evolution of the base program:
if the context of the pattern correctly classifies all methods which change Buffer state,
the pointcut remains correct. By using our ObserverPattern the new putAll(int
[1), and returnElements (int) methods will be automatically captured.

The activity diagram describes the context where the join points could be found,
more details are used to describe the context and more the join point pattern is cou-
pled to the application code. The use of meta variables grants the join point pattern
independence from a specific case. In the example, foo and Field are meta-variables,
respectively a method meta-variable, i.e., a variable representing a method name and
a variable meta-variable, i.e., a variable representing a variable name. In this example
the method signature is not specified, therefore any method call could be captured if it
has the right behavior independently of its signature. If necessary, type meta-variable,
i.e., a variable whose values range on types, can be used to define the method signature.
Meta-variables got a value during the pointcut evaluation and their values can also be
used by the advice.

In the caller swimlane?*, we look for the invocation of the foo (. .)> method whereas
in the callee swimlane we look at the method body for either the assignment to a generic
class field or, either the use of generic class field into the right of an assignment or the
use of the field in a return statement. The former should be an exact statement match,
— i.e., we are looking for exactly that call — whereas in the latter we are looking for
a specific use of a field in the whole method body. This difference can be expressed by
using the join point pattern syntax and a couple of stereotypes:

- a rounded rectangle, called template action, indicates that we are looking for the
use of a meta-variable in the next statements, a stereotype set a constraint for the
searching scope; <method> limits to the method body whereas «<blocks limits to
the current block;

— we can look for the use of a meta-variable in a left (1eft) or right (right) part of an
assignment, in a boolean expression (booleanCondition), in a generic statement
(statement), and in a return statement or in their logic combination;

— a rounded rectangle with the <exactmatch> stereotype, called (according to
UML) action, indicates one or more instructions, expressed following the Java
syntax; the names used inside this block can be either meta-variables, constant vari-
able names or if not useful to the pattern definition indicated as (i) with i € N.

The join point possible location is indicated by the <joinpoints stereotype at-
tached to an arrow. Each join point pattern can describe the context for many join points
that can be located by using a <joinpoint> stereotype with a different name. All the
captured join points are listed in the window in the low-right corner of the join point
pattern specification. In Fig. 2 we have two different join points called respectively
produce and consume.

4 A swimlane is a way to group activities performed by the same actor/object.
5 Please note that foo (. .) is meta-variable and method signature is not specified.

41

We have adopted a loose approach to the description of the computational flow.
In the join point pattern, based on activity diagrams, the lines with a solid arrowhead
connecting two elements express that the first one follows immediately the other, and
the lines with a stick arrowhead (see Fig.2) express that the first follows the other, but
not immediately, i.e., zero or more not relevant actions® could happen before the second
action, the number of actions that could happen is limited by the scope.

Our join point model is strictly based on the structure of the computational flow, so
we don’t need to differentiate between before and after advice but we can simply
attach the <joinpoint> stereotype in the right position, i.e., before or after the point
we would like to advice. A special case is represented by the around join point patterns
which match portions of the behavior instead of a single point; the whole matched
portion represents the join point and will be substituted by the advice code.

3.2 Aspects that Use Join Point Patterns

The showed join point pattern simply describes where the join points can be found, to
complete the process we must declare an aspect where the join point pattern is used to
associate the advice code at the interested join points.

The aspect definition, like in most AOP languages, includes pointcuts definition and
advices linked to these pointcuts. Moreover, the aspect must declare all the join point
patterns it uses and which join points it imports from them. Both pointcuts and advices
will use these information in their definition.

The following Observer aspect imports the produce and the consume join points
from the ObserverPattern join point pattern.

public aspect Observer {
void notify() { ... }
public joinpointpattern ObserverPattern(produce, consume) ;
public pointcut p(): produce();
public pointcut c(): consume();
advice() : p() {notify();}
advice() : c() {notify();}

4 Related Works

This paper propose to decoupling base programs and aspects using an UML-based join
point model by approaching the join points selection on a less syntactical and structural
basis. To get a semantic join point model to avoid the fragile pointcut problem is a quite
hot topic and several approaches are currently under investigations.

In [13], Noguera et al. present a mechanism to express type-safe source code tem-
plates in pure Java that improves the expressiveness of pointcut languages. To have a
more semantic pointcut language, they propose to match, not only on the signature, but

6 3These actions do not participate in the description of the join point position, so they are
considered not relevant.

42

also on the structure of the method. They propose a way to extend AspectJ pointcut
language with structural constructs in the form of typesafe native JOva source code
templates, where templates, define a source code model in which some elements are
variable. The basic idea is similar, i.e., identify join points not only on the base of
method signature but also on method behavior.

In [7] Kellens et al. propose a novel technique of model-based pointcuts, which
translates the fragile pointcut problem to a more conceptual level where it is easier to
solve. This is done by decoupling the pointcut definitions from the actual structure of
the base program, and defining them in terms of a conceptual model of the software
instead.

In [5] Gybels et al. present a logic-based crosscut language, called CARMA. The
use of a crosscut language based on logic programming it gets the use of unification
as a more advanced wildcard mechanism, the use of logic rules for writing reusable
pointcut.

In [8] Kellens et al. present a method for keeping the conceptual model documen-
tation consistent with the source code when the program evolves. In particular they
implement a particular solution to the fragile pointcut problem through an extension of
the CARMA aspect language combined whit the formalism of intensional views [12].

Pointcut delta analysis [14] tackles the fragile pointcut problem by analyzing the
difference in captured join points, for each pointcut definition, before and after an evo-
lution. Their approach to deal with the fragile pointcut problem for current languages.

Although such expressive pointcut languages permit to render pointcut definitions
much less fragile, but none of these languages approaches the problem in its entireness.
A pointcut definition still needs to refer to specific base program structure or behavior
to specify its join points. This dependency on the base program remains an important
source of fragility.

5 Conclusions

Current AOP approaches suffer from well known problems that rely on the syntactic
coupling established between the application and the aspects. This is a serious inhibitor
to evolution of aspect-oriented programs. A common attempt to give a solution consists
of freeing the pointcut definition language from these limitations by describing the join
points in a more semantic way.

This paper shows the robustness against evolution of a design-based approach to
join points identification. This approach allows of decoupling aspects definition and
base-code syntax and structure, and of rendering the pointcut definitions less fragile
against the base program evolution. Pointcuts are specified using UML-based join point
pattern. More precisely, a join point pattern is a template on the application behavior
identifying the join points in their context. In particular join points are captured when
the pattern matches portion of the application behavior.

Compared with current approaches, we can observe some advantages; first of all,
we have a pointcuts definition more behavioral. In the join point pattern definition we
identify the context of the computational flow we want to match, and precise point we
want to capture, weaken the coupling of the aspect to the base program and hence,

43

providing crosscuts that are more robust towards evolution. The graphical definition of
join point patterns is more intuitively and comprehensible for programmers. Moreover,
a visual view of the context in which locate the join points would be preferred since it
better demonstrates where and how an aspect can influence a program.

References

11.

12.

13.

14.

. Walter Cazzola, Antonio Cicchetti, and Alfonso Pierantonio. Towards a Model-Driven Join

Point Model. In Proceedings of the 11th Annual ACM Symposium on Applied Computing
(SAC’06), pages 1306-1307, Dijon, France, on 23rd-27th of April 2006. ACM Press.

. Walter Cazzola, Jean-Marc Jézéquel, and Awais Rashid. Semantic Join Point Models: Mo-

tivations, Notions and Requirements. In Proceedings of the Software Engineering Proper-
ties of Languages and Aspect Technologies Workshop (SPLAT’06), Bonn, Germany, on 21st
March 2006.

. Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is Quantification

and Obliviousness. In Proceedings of OOPSLA 2000 Workshop on Advanced Separation of
Concerns, Minneapolis, USA, October 2000.

. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Professional Computing Series. Addison-Wesley,
Reading, Ma, USA, 1995.

. Kris Gybels and Johan Brichau. Arranging Language Features for More Robust Pattern-

Based Crosscuts. In Proceedings of the 2nd Int’l Conf. on Aspect-Oriented Software Devel-
opment (AOSD’03), pages 60-69, Boston, Massachusetts, April 2003.

. Erik Hilsdale and Jim Hugunin. Advice Weaving in Aspect]. In Proceedings of the 3rd Int’l

Conf. on Aspect-Oriented Software Development (AOSD’04), pages 26-35, Lancaster, UK,
March 2004.

. Andy Kellens, Kris Gybels, Johan Brichau, and Kim Mens. A Model-driven Pointcut Lan-

guage for More Robust Pointcuts. In Proceedings of Software engineering Properties of
Languages for Aspect Technologies (SPLAT’06), Bonn, Germany, March 2006.

. Andy Kellens, Kim Mens, Johan Brichau, and Kris Gybels. Managing the Evolution of

Aspect-Oriented Software with Model-based Pointcuts. In Proceedings of the 20th Euro-
pean Conference on Object-Oriented Programming (ECOOP’06), Nantes, France, July 2006.
Springer.

. Gregor Kiczales. The Fun Has Just Begun. Keynote AOSD 2003, Boston, March 2003.
. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeff Palm, and Bill Griswold. An

Overview of Aspect]. In Proceedings of the 15th European Conference on Object-Oriented
Programming (ECOOP’01), pages 327-353, Budapest, Hungary, June 2001. ACM Press.
Christian Koppen and Maximilian Storzer. PCDiff: Attacking the Fragile Pointcut Problem.
In Proceedings of the European Interactive Workshop on Aspects in Software (EIWAS’04),
Berlin, Germany, September 2004.

Kim Mens, Andy Kellens, Frédéric Pluquet, and Roel Wuyts. Co-evolving Code and Design
Using Intensional Views - A Case Study. Journal of Computer Languages, Systems and
Structures, 32(2):140-156, July/October 2006.

Carlos Noguera and Renaud Pauwlak. Open Static Pointcuts Through Source Code Tem-
plates. In Proceedings of Open and Dynamic Aspect Languages Workshop (ODAL’06), Bonn,
Germany, March 2006.

Maximilian Storzer and Jiirgen Graf. Using Pointcut Delta Analysis to Support Evolution
of Aspect-Oriented Software. In Proceedings of the 21st IEEE International Conference on
Software Maintenance (ICSM’05), pages 653—656, Budapest, Hungary, September 2005.

44

15. Kevin Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang Chai, Macneil Shonle,
Nishit Tewari, and Hridesh Rajan. On the Criteria to be Used in Decomposing Systems
into Aspects. In Proceedings of the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2005), Lis-
bon, Portugal, September 2005.

45

Tools and Middleware for Software Evolution

Chairman: Mario Siidholt, Ecole des Mines de Nantes

Evolution of an Adaptive Middleware Exploiting
Architectural Reflection

Francesca Arcelli and Claudia Raibulet

DISCo - Dipartimento di Informatica Sistemistica e Comunicazione,
Universita degli Studi di Milano-Bicocca,
Via Bicocca degli Arcimboldi, 8, 20126, Milan, Italy
{arcelli, raibulet}@disco.unimib.it

Abstract. Nowadays information systems are required to adapt themselves
dynamically to the ever changing environment and requirements. Architectural
reflection represents a principled means to address adaptivity. It also represents
an emerging approach to deal with the software evolution issues. In this paper
we aim to point out how systems exploiting architectural reflection to achieve
adaptivity evolve in an organized, linear manner controlling easier their growth
and complexity than systems based on ad hoc solutions. To sustain this
affirmation we present the possible evolution improvements we gain through
our Adaptive and Reflective Middleware (ARM).

Keywords: Software evolution, architectural reflection, adaptive systems.

1 Introduction

One of the most challenging issues raised by nowadays information systems is to
adapt themselves dynamically and automatically in the attempt to accomplish the
anytime, anyone, anywhere paradigm in a constantly changing reality. In this context,
we describe our approach with the aim to provide support to identify, choose, and
exploit the appropriate system’s components able to satisfy users’ requests according
to different levels of quality of services in a dynamic mobile-enabled heterogeneous
environment.

Our solution for adaptive systems exploits reflection [13] at the architectural level.
Reflection (or computational reflection) has become popular because of the
mechanisms it provides to a system to observe and control itself by using appropriate
metadata. Initially, reflection has been successfully used by the programming
language community. Today, its benefits are extended to the architectural level.
Avrchitectural reflection [2, 5] introduces additional layers playing an intermediary
role between the representation and implementation of the system’s
components/functionalities, and applications. These reflective layers enable
applications to adapt to the systems’ features and, vice-versa, systems to adapt to the
applications’ requirements. Several works [1, 5, 22] aim to define the main elements
of the architectural reflection: base objects or levels, which define the components of
the system to be inspected, meta objects or levels, representing a reification of the

base objects/levels, and the causal connection mechanism [13], which enables the
synchronization between base and meta objects/levels.

The usage of reflection at the architectural level has both advantages (i.e., a
principled, as opposed to ad-hoc, way to achieve adaptivity [8], an explicit
representation of architectural aspects exploited at run-time) and disadvantages (i.e., a
significant increase of the number of software components which may reduce overall
efficiency, modifications of the reflective components may cause overall damage). In
this paper we focus on an additional and implicit advantage, which can be considered
a side-effect of applying reflection at the architectural level: the support for software
evolution [4, 16]. The benefits of using architectural reflection as a mechanism to
achieve software evolution are treated in several scientific works [3, 7, 9, 14, 20, 21].

Our aim is to point out those design aspects of a reflective architecture (or more
precisely of the reflective knowledge and its management) which ensure implicitly its
proper and consistent evolution. To achieve this goal, we present our solution for a
reflective and adaptive middleware (ARM) considering the main laws of software
evolution introduced by Lehman [11]: continuous adaptation, increasing complexity,
continuing growth, declining quality, organizational stability, and conservation of
familiarity.

The rest of the paper is organized as follows. Section 2 provides a brief overview
of our software architecture exploiting reflection to achieve adaptivity. Section 3
focuses on the design aspects of our approach that enable and ensure the evolution of
ARM considering the Lehman’s software evolution laws. Related works are described
within Section 4. Conclusions and further work are dealt within Section 5.

2 ARM: An Adaptive and Reflective Middleware

Our solution to achieve runtime adaptivity in service-oriented information systems
[10] defines a reflective middleware composed of two layers (see Figure 1). The first
layer defines the reflective knowledge. It reifies the system’s components in terms of
reflective objects (capturing their current state) and their related quality of services
(QoS) [6, 17]. For example, we represent a display device with its dimension,
resolution, color depth, or a transmission device with its bandwidth and latency. In
addition, we have introduced the concept of property. Properties [18] express the
characteristics of the system’s components that are not directly measurable at run-
time, but which are exploited together with the QoS to achieve adaptivity. Currently,
ARM defines three properties: structural, representing the physical structure of an
ARM-enabled node, topological, representing the connections between ARM-enabled
nodes, and location, representing the physical location of a component.

The second layer introduces the concept of views [18] on the reflective knowledge,
which represent organizational mechanisms of the reflective entities based on various
criteria. Views organize reflective objects based on their QoS, structure, location, and
topology. Each view has associated strategies that implement the logic necessary to
take decisions. For example, strategies identify the most appropriate system’s
component(s) to execute a service based on its QoS or on its location. Strategies

50

depend strongly on the application domain, thus they have not been inserted into
views, but represented through a separate class and associated to views.

‘ Application H Servicesl
|

Service Network
Manager Manager

|
Executor Manager I Reflective View
Manager
Servicy Views Strategy
View

‘ ht

| QoS I | Reflective Propertyl
Functional Cbject hﬁgﬁ;A Reflective Object |

Fig. 1. An Adaptive and Reflective Architecture

Management Mechanisms
of the Reflective Entities

Reflective Entities

To explain how our architecture exploits its reflective elements to achieve
adaptivity we describe how it chooses the most appropriate component to execute a
service characterized by specific QoS and properties. Users’ requests of services and
their related QoS/properties arrive to the service manager, which may interrogate both
the local ARM node and/or the remote ARM-enabled nodes. Once the service
manager identifies the type of request (i.e., service execution, inspection of the
available services, etc.), the request arrives to the reflective view manager. Based on
the service required and its QoS/properties, the reflective view manager determines
how to organize better the reflective knowledge to search for the most appropriate
component that may fulfill the current service request. It creates dynamically views
on the reflective knowledge to address efficiently a request. Views identify the most
appropriate component to execute a service based on their own semantic. By
composing the partial results provided by each view, we obtain the best component
available on the local ARM-enabled node, which is further compared with the remote
results provided by the network manager from remote ARM-enabled nodes in order to
obtain the best overall solution. The references of the identified components are then
passed by the service manager to the executor manager to inform the last which
component should execute the service.

Eventual modifications performed on the identified reflective entities for the
execution of the requested services are propagated to the functional objects through a
causal connection mechanism. Finally, the executor manager executes the service
exploiting the components identified by the reflective view manager.

51

2.1 The Functional vs. the Reflective Part of the Architecture

In our solution, the architecture has two main parts: the functional part, which defines
and implements the functionalities of a system, and the reflective part, which defines
the knowledge and the mechanisms to achieve adaptivity. The two parts have only
one connection point: the causal connection between the functional and reflective
objects. The objective of the causal connection is to ensure the synchronization
between the two architectural parts: a modification of a functional object is
automatically propagated to its correspondent reflective object, and vice-versa, a
modification of a reflective object is automatically propagated to its corresponding
functional object. Note that not all the functional objects are reified at the reflective
layers, but only those who are meaningful at run-time to achieve adaptivity.

Based on the service request, the reflective part of the architecture may or may not
be exploited. When adaptivity is required, the reflective part identifies the most
appropriate available resources to execute the current service request.

We have considered three main types of request:

- non adaptive requests, in which the reflective part of the system is not exploited;
requests are forwarded by the service manager directly to the executor manager; an
example of such a request is: “print this document on the hp370 printer”;

- low-adaptive requests, in which the reflective part of the system is exploited to
set the QoS of a specified device on the desired values; for example, “print this
document on the hp370 printer, in an A3 format, colored, and with a maximum
resolution”;

- high-adaptive requests, in which the reflective part of the system is exploited to
choose the most appropriate device to execute the service and, if necessary, to set its
QoS as close as possible to the required once; for example, print this document on the
nearest printer, in an A3 format, colored, and with a maximum resolution.

Maintaining separately the functional and the adaptive parts, we may modify the
reflective entities or their management mechanisms without causing modifications on
the functional part; or, the adaptive part is not affected when the functional one (its
current implementation) is modified. Usually, adaptivity is implemented at the
application level (also because it is strongly domain dependent — for example,
strategies which include the decision logic are implemented by applications), fact that
makes it hardly reusable or extensible. Our solution defines the main mechanisms
necessary to achieve adaptivity, mechanisms which are highly reusable, extensible
and/or customizable.

3 Evolution of ARM-Based Systems Exploiting Architectural
Reflection

It is well known that supporting the activities involved in software evolution is a very
expensive task. Hence, developing software architectures or environments which
enable the development of software easier to change, extend and adapt to new
requirements or contexts is certainly of great relevance for software evolution and
maintenance.

52

Continuous adaptation is one the well known Lehman’s laws of software evolution
[11] and certainly one of the main aims of our software middleware for adaptive
information systems, where adaptation can occur at different levels and at different
steps during the development lifecycle. In the following, we focus on the advantages
provided by our approach from the software evolution point of view by considering
the main Lehman’s laws.

Continuous adaptation refers to the ability of a system to address new
requirements and changes. In ARM, evolution aspects may regard the representation
and/or the management of the reflective knowledge. The representation can be easily
extended or changed because reflective objects capture only the state of a system
component, while QoS and properties are modeled as separate entities. Furthermore,
QoS and properties can be modified, added or removed independently because they
depend only on the underlying system’s components and features.

The management of the reflective knowledge is performed through two
mechanisms: views and strategies. Views organize reflective knowledge based on
various semantics, each one capturing an independent and orthogonal aspect of the
reflective entities. Each view has its own strategies, which implement the policies to
choose the most appropriate component to execute a service. Views and strategies can
be modified, added or removed independently of other software entities in the system.

In addition, the causal connection between the base and meta levels ensures the
consistency between the functional, and the reflective, the adaptive part of the
architecture.

Separation of concerns [13], the fundamental requirement of reflection, is
achieved: reflective knowledge (Reflective Objects) is separated from the base
knowledge (Functional Objects). The reflective layers provide only non-functional
information about the system being causally connected with the physical layer which
provides its functional information. In this way, overall change is avoided due to the
fact that modifications within the reflective layers cannot change the functionalities of
a system, it can only influence its performances

Increasing complexity as a consequence of the system evolution states that changes
in a system lead to the modification of its structure and, implicitly, to an increase of
its complexity.

We assert that the complexity of our architecture does not change during its
evolution. Its skeleton is composed of five main elements: reflective entities, QoS,
properties, views, and strategies. A modification of the reflective and adaptive part of
the system regards one or more of these elements. They are modeled independently
by separate entities, hence modifications are made separately on each type of element.
Their changes cannot increase the overall complexity. In our approach, reflective
knowledge is managed through strategies hence, modifications at the reflective layers
should not cause modifications at the application layer. The addition of further QoS or
properties, or views or strategies maintains complexity unchanged. For example,
strategies are implemented exploiting the Strategy design pattern [12], introducing a
new strategy in the system means the addition of a new object. In our case evolution
is translated into an increase of the number of objects, and not in an increase of the
overall complexity.

Continuing growth regards the continuously increase of the functionality offered
by a system to maintain user satisfaction.

53

The functionality of the reflective and adaptive part of our architecture is to
identify the proper system’s components to satisfy service requests. Due to the fact
that the reflective knowledge is causally connected to the base entities, when
additional services are added to the system they are reified at the meta-level, too. To
improve the functionality of the reflective part, various properties and views can be
added, for example, a property that specifies the cost of a service or its provider,
hence we can have a view on the reflective knowledge based on the newly added
property.

The continuing growth does not lead to a declining quality, because reflective
layers maintain their primary structure. To maintain or improve the quality of the
reflective layers, old properties and views can be replaced by new once. New
organizations of the reflective objects do not lead to a re-engineering of the reflective
layers, the main mechanisms of the representation and management of the reflective
knowledge remain unchanged. This ensures implicitly both the organizational
stability and the conservation of familiarity with the reflective layers.

3.1 ARM’s Design Issues Improving Evolution

In this section we introduce further aspects which contribute to the evolution and
maintenance of ARM.

As previously mentioned, views organize reflective entities based on various
semantics according to QoS and properties. From the evolution point of view they
provide at least two main advantages: the possibility to extend the number of views
on the reflective objects, implicitly to improve the system’s adaptivity, and to
represent and exploit information such as location, costs, topology, providers in the
adaptivity process together with the QoS of the reflective entities. Note that a
reflective entity may be used in various views, but it has only one representation in
the system, each view containing a list of references to the entities it manages. In this
way consistency among views is implicitly achieved. Based on its semantic, a view
associates a score to its reflective entities. The reflective entity with the highest score
represents the most appropriate one to provide the service claimed by the current
request.

To further improve its evolution and maintenance several design patterns [12] have
been applied:

e chain of responsibility pattern to implement the service view; it addresses
two main problems: the dynamic control of a collection of service views, and
the management of complex services (i.e., a send e-mail service may be seen
as a composition of two elementary services type and send e-mail);

e composite pattern to implement the structure of strategies of the service
view; the strategy analyzing a complex service is a composition of strategies
related to the elementary sub-services of the complex one; this improves
significantly the implementation of strategies by requiring the definition of
the elementary strategies, and the definition of the complex once as the
composition of the already defined strategies; modifications of elementary
strategies are automatically propagated to the complex once;

54

e strategy pattern to implement the policies based on which views assign
scores and choose the most appropriate entity for a service request;

e observer pattern to implement the causal connection mechanism; this pattern
provides an efficient mechanism for the synchronization between the base
and the reflective objects.

Trying to accomplish a well-defined delimitation of the various aspects of an
adaptive and reflective architecture/system, we implicitly achieve maintainability,
reusability and integrability.

4 Related Work

Several works address evolution through techniques coming from the software
architecture community, especially architectural reflection. Therefore, reflection at the
architectural level is exploited more and more frequently to enable and improve
software evolution. The main difference between our solution and the other works is
that, in ARM, software evolution is an implicit advantage, a side-effect of applying
architectural reflection to achieve run-time adaptivity.

In the following we consider only three of the most relevant related works [1, 3,
19] on using reflection for software evolution focusing on the similarities and
differences with our approach.

In [1], authors assert that computational reflection [13] provides a programming
mechanism which enhances extensibility, reuse and maintenance of a software
system. Thus, they define a run-time environment focusing on the main elements that
should be defined when applying reflection. Even if the paper does not deal with the
advantages of using reflection at the architectural level to enable software evolution,
we consider it relevant in that it points out how reflection improves extensibility and
maintenance also at the computational level.

[3] describes how reflection may be used at the architectural level to achieve the
evolution of a system, which has to face run-time changes. In this case, the objective
of the meta-level is to supervise the evolution of the underlying system. To achieve its
goal, the meta-level defines two main elements: an evolutionary meta-object, which
plans the possible evolutions of the system to satisfy the adaptation requests, and a
consistency checker object, which validates the solutions proposed by the
evolutionary object. The main similarity between our solution and the one proposed in
[3] is that both consider the adaptation of a system to the run-time changes. The main
difference (which is very subtle) is the primary objective of using reflection. ARM
aims to achieve adaptivity (which implies also evolution); it defines the reflective
knowledge and its related management mechanisms in such a way to efficiently
choose the most appropriate solution for the current request. The solution may or may
not lead to changes in the system, hence to its evolution. The reflective layer proposed
in [3] aims to ensure the evolution of a system against run-time changes. Thus, the
reflective mechanisms are designed from another point of view although having the
same final objective: adaptation to changes.

55

The approach presented in [20] starts from the idea that the development of a
software system involves the manipulation of several views on the system and the
coupling of these views is fundamental in achieving the system’s evolution.
Therefore, in [20], architectural reflection represents the glue between the low-level
aspects of a system (described at the base level, i.e., source code) and its high-level
aspects (described at the reflective level: design, deployment, interaction). Through its
mechanisms which are defined to synchronize the various views, reflection ensures an
automatic identification of the inconstancies between the low and high level views
enabling an easier evolution of a system. There is a main similarity between our
solution and the one proposed in [20]: both introduce the concept of views. However,
in ARM, views have been defined for an efficient management of the reflective
knowledge: views consider knowledge from different angles enriching and
diversifying in the same time the perspectives on the information related to a software
system. While in [20], views are associated to the different phases and development
aspects of a system. The author defines a use case, a class, a deployment, an
interaction and a code view. He aims to have a single and common representation of a
system on which to look at from various points of view. Implicitly, the common
representation ensures the consistency among views.

5 Current and Further Work

In this paper we briefly described how adaptive systems developed through the ARM
approach and hence, exploiting architectural reflection, are easier to maintain. The
evolution of these systems, as the capacity to adapt themselves to environment and
requirements changes, is largely improved. Representing explicitly information
(usually non-functional) necessary to achieve adaptivity makes them easier to
understand, maintain and evolve. Hence, through our approach we aim to provide a
way to preserve the quality of an adaptive software system independently from its size
and complexity.

Reflection is a key feature for architecture centered evolution: all the architectural
relevant changes made at the architectural level have to be reflected at the code level,
assuring synchronization between the two levels. Often software evolution is focused
mainly on software maintenance and defect repairs, where only source code evolves,
and not the architecture and design. In our approach we adopt an architecture-centered
development process and evolution.

Further work will focus on other important aspects such as resource negotiation
and allocation as well as mechanisms to choose dynamically strategies based on the
application domain. We would like also to explore, as outlined in [14], how reflective
modelling of software architectures can support run-time adaptive software evolution.
Future work on ARM includes also its evolution towards a service-oriented
architecture. This implies the extension of the current architecture in order to consider
both the services provided by the underlying hardware components, as well as the
services provided by software applications [19].

ARM has been developed by extending and evolving the software architecture
designed during the MAIS (Multichannel Adaptive Information Systems) project

56

[15]. We have reused and improved the representation of the reflective objects and
their related QoS, as well as the causal connection mechanism. Furthermore, we have
significantly improved the management of the reflective knowledge by introducing
properties and views on the reflective entities. Strategies, also present in MAIS [2]
and associated to the reflective objects (one specific strategy for each reflective
object), have been redesigned and now they can be reused in various views and
application domains from multimedia to telemedicine, or from video-surveillance to
disaster recovery applications [18].

References

1. Ancona, M., Cazzola, W.: The Essence of Reflection: a Reflective Run-Time Environment.
In Proceedings of the 2004 ACM Symposium on Applied Computing, ACM Press, Cyprus,
(2004) 1503-1507

2. Arcelli, F., Raibulet, C., Tisato, F., Adorni, M.: Architectural Reflection in Adaptive
Systems. In Proceedings of the 16th International Conference on Software Engineering &
Knowledge Engineering (SEKE’2004), Banff, Alberta, Canada, June, (2004) 74-79

3. Cazzola, W., Ghoneim, A., Saake, G.: Software Evolution through Dynamic Adaptation of
Its OO Design. In Objects, Agents and Features, Lecture Notes in Computer Science, Vol.
2975. Springer-Verlag, (2004) 67-80

4. Cazzola, W., Pini, S., Ancona, M.: The Role of Design Information in Software Evolution. In
Proceedings of the 2@ ECOOP Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE’2005). Glasgow, Scotland. (2005) 59-72

5. Cazzola, W., Sosio, A., Savigni, A., Tisato, F.: Architectural Reflection. Realising Software
Architectures via Reflective Activities. In Proceedings of the 2nd International Workshop on
Engineering Distributed Objects. Lecture Notes in Computer Science, Springer-Verlag
(2000) 102-115

6. Chalmers, D., Sloman, M.: A Survey of Quality of Service in Mobile Computing
Environments. IEEE Communications Surveys. (1999) 2-10

7. Dowling, J., Cahill, V.: Dynamic Software Evolution and the k-Component Model. In
Proceedings of OOPSLA 2001 Workshop on Software Evolution. (2001)

8. Elianssen, F., Andersen, A., Blair, G.S., Costa, F., Coulson, G., Goebel, V., Hansen, O.,
Kristensen, T., Plagemann, T., Rafaelsen, H. O., Saikoski, K. B., and Weihai, Yu.: Next
Generation Middleware: Requirements, Architecture, and Prototypes. In Proceedings of the
7th IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’99).
(1999) 60-65

9. Ebraert, P., Tourwe, T.. A Reflective Approach to Dynamic Software Evolution. In
Proceedings of the Workshop on Reflection, AOP and Meta-Data for Software Evolution.
(2004) 37-44

10. Erl, T. Service-Oriented Architecture: Concepts, Technology and Design, Prentice Hall
PTR, USA, 2005

11. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics and Laws
of Software Evolution — The Nineties Views. In Proceedings of the 4th International
Symposium on Software Metrics, IEEE CS Press. (1997) 20-32

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley, Reading MA, USA, (1994)

13. Maes, P.: Concepts and Experiments in Computational Reflection. In Proceedings of the
Object-Oriented Programming Systems, Languages and Applications (OOPSLA’87). (1987)
147-155

57

14. Masuhara, H., Yonezawa, A.. A Reflective Approach to Support Software Evolution. In
Proceedings of International Workshop on the Principles of Software Evolution. (1998) 135-
139

15. MAIS Project — www.mais-project. it

16. Mens, T.: Challenges in Software Evolution. In Proceedings of the International ERCIM-
ESF Workshop on Challenges in Software Evolution (ChaSE). Berne Switzerland, (2005)

17. OMG Adopted Specification. UML Profile for Modelling Quality of Service and Fault
Tolerance Characteristics and Mechanisms. ptc/2004-06-01, http://www. omg.org, 2004

18. Raibulet, C., Arcelli, F., Mussino, S., Riva, M., Tisato, F., Ubezio, L.: Components in an
Adaptive and QoS-based Architecture. In Proceedings of the ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS’06), Shanghai, China.
(2006) 65-71

19. Raibulet, C., Arcelli, F., Mussino, S.: Exploiting Reflection to Design and Manage Services
for an Adaptive Resource Management System. In Proceedings of the International
Conference on Service Systems and Service Management (IC SSSM’06), IEEE CS Press,
Troyes, France. (2006)

20. Rank, S.: Architectural Reflection for Software Evolution. In Proceedings of the 2nd
Workshop on Reflection, AOP and Meta-Data for Software Evolution. (2005)

21. Rank, S.: A Reflective Architecture to Support Dynamic Software Evolution. PhD Thesis,
Department of Computer Science, University of Durham, UK (2002)

22. Suzuki, J., Yamamoto, Y.: OpenWebServer: An Adaptive Web Server Using Software
Patterns. IEEE Communications Magazine, VVol. 37, No. 4, (1999) 46-52

58

An Aspect-Oriented Adaptation Framework for Dynamic
Component Evolution-

Javier Camara?, Carlos Canal®, Javier Cubo?, Juan Manuel Murillo?

!Dept. of Computer Science, University of Malaga (Spain)
{jcamara, canal, cubo}@lcc.uma.es
2 University of Extremadura (Spain),
*Dept. of Computer Science, Quercus Software Engineering Group,
juanmamu@unex.es

Abstract. This paper briefly describes the design of a dynamic adaptation
management framework exploiting the concepts provided by Aspect-Oriented
Software Development (AOSD) -in particular Aspect-Oriented Programming
(AOP)-, as well as reflection and adaptation techniques in order to support and
speed up the process of dynamic component evolution by tackling issues
related to signature and protocol interoperability. This will provide a first stage
to a semi-automatic approach for syntactical and behavioural adaptation.

1 Introduction

One of the most significant trends in the software development area is that of
building systems incorporating pre-existing software components, commonly
denominated commercial-off-the-shelf (COTS). These are stand-alone products
which offer specific functionality needed by larger systems into which they are
incorporated. The purpose of using COTS is to lower overall development costs,
reducing development time by taking advantage of existing and well tested products.
But this approach to systems engineering has its drawbacks: development teams have
no control over the functionality, performance, and evolution of COTS products
because of their Black-Box nature. Moreover, in most of the cases these components
are not designed to interoperate with each other, requiring customized adaptation
which has to be performed time and again when teams face their integration along the
evolution of the system. These activities are highly demanding, consuming time and
resources which could otherwise be devoted to the enhancement or development of
new functionality.

The need to automate the aforementioned adaptation tasks has driven the
development of Software Adaptation (SA) [5], a field characterized by highly
dynamic run-time procedures that occur as devices and applications move from
network to network, modifying or extending their behaviour. SA promotes the use of
software adaptors [22], specific computational entities for solving interoperability

* This work has been supported by Spanish MCYT Project TIN2004-07943-C04-01.

problems between software entities (i.e. components) which can be classified in four
different levels:

Signature Level: Interface descriptions at this level specify the methods or
services that an entity either offers or requires. These interfaces provide names, type
of arguments and return values, or exception types. This kind of adaptation implies
solving syntactical differences such as method names, argument ordering and data
conversion and synthesis.

Protocol Level: Interfaces at this level specify the protocol describing the
interactive behaviour that a component follows, and also the behaviour that it expects
from its environment. Indeed, mismatch may also occur at this protocol level, because
of the ordering of exchanged messages and of blocking conditions. The kind of
problems that we can address at this level is, for instance, compatibility of behaviour,
that is, whether the components may deadlock or not when combined.

Service Level: This level groups other sources of mismatch related with non-
functional properties like temporal requirements, security, etc.

Semantic Level: This level describes what the component actually does. Even if
two components present perfectly matching signature interfaces, they also follow
compatible protocols, and are compatible at the service level as well, we have to
ensure that the components are going to behave as expected.

This work is focused in the design of a framework based on Software Adaptation
techniques and how these can be applied in order to support and speed up the process
of Software Evolution, particularly at the signature and protocol levels. Considering
the aforementioned opaque nature of COTS components, the techniques provided for
the development of this framework should be non-intrusive. In this sense, AOP [10]
makes a perfect candidate, providing mechanisms to extend and modify the behaviour
of components without directly altering them (i.e., their code). Automatic and
dynamic procedures are also required in order to enable adaptation just in the moment
in which components join the context of the system (or are substituted as the system
is running). The development of this kind of framework can provide a new breeding
ground for the development of agile methodologies for Software Evolution by
reducing integration effort through the support of (semi)automatic component
adaptation.

In this paper, Section 2 discusses the advantages provided by different approaches
to dynamic AO component adaptation, and justifies the convenience of selecting
Dynamic Adaptor Management. Although signature level is the state-of-the-art in
adaptation (e.g. CORBA’s IDL-based signature description), several proposals have
been made in order to enhance component interfaces with a description of their
concurrent behaviour [2, 4, 12], allowing automatic adaptor derivation in some
circumstances [3]. Section 3 briefly describes the design of a dynamic adaptation
management framework based on the concept of automatic adaptor derivation and
gives some tips on implementation issues using Aspect). At last, section 4 presents
some conclusions and open issues.

60

2 Supporting Unanticipated Dynamic Software Evolution:
Alternative Strategies based upon AO and Adaptation

The application of AOSD to adaptation is not a new idea [1, 21], and currently lots
of works on adaptation are based on it. If we consider for instance [19], focused on
the evolution of data models, we can observe that this work deals with the problems
of structural and behavioural consistency arising after data model evolution. While
structural consistency addresses the problem of accessing objects whose definition is
no longer accessible after evolution, behavioural consistency refers to the problem of
legacy applications having invalid references and method calls. The proposal of the
authors is to encapsulate into aspects the adaptation code to access the evolved
model, thus managing a more flexible result than those provided by approaches based
on conventional class versioning.

Another proposal in this field is [9], which presents an architecture to manage the
adaptation of non-functional concerns. The concerns that will be adaptable are given
the shape of an aspect. The proposed architecture supports dynamic adaptation. In
[18] it is shown how aspect oriented techniques can help adaptation in the context of
pervasive computing environments. Again the idea is aspectizing those facets of the
system which could be adapted. Similarly, [8] is focused on the Adaptive Object
Model (AOM) architectural style, which supports adaptable systems not being
adaptable itself. Using aspect oriented techniques the authors provide an adaptable
AOM.

In [7], some suggestions to make join point models more open are proposed, in
order to provide aspect oriented programming languages with a better support for
adaptation. In [20], the Iguana/J architecture and programming model to support
unanticipated dynamic adaptation is presented. Here, each functional class is
associated with a set of adaptation classes which contain the adaptation code. The
association is also specified in separated entities achieving improved flexibility.

Furthermore, aspect oriented techniques not only give support to code adaptation.
In [14], it is shown how evolution and adaptability of software architectures can be
managed combining aspect oriented techniques and coordination models. The
different evolution needs are introduced as aspects for managing architectural
adaptation.

But performing dynamic component adaptation requires information only available
at runtime in most of the cases. If we want to take advantage of this information, we
have to find a way to apply it at runtime as well in order to modify the behaviour of
the components on the fly. We may consider two alternative strategies which have
not been described in previous works:

Dynamic Aspect Generation: Adaptors are implemented by means of aspects
which are generated, applied and removed at runtime as required. This approach
increases the complexity of the infrastructure required for execution, demanding
some non-trivial modifications to it, such as the inclusion and integration of new
functionality (runtime aspect code generation and compilation). On the other hand,
this approach would provide a high degree of flexibility in adaptor generation.

61

Dynamic Adaptor Management: Several precompiled aspects manage adaptation.
In this approach, the different aspects form several managers which are able to
retrieve and interpret the dynamic information required for adaptation. Different
adaptors can be built using the algorithm described in [3], and managed specifically
for each interaction between components as they join the context of the system.

So far, several efforts have been made in the community in order to develop
platforms such as CAM/DAOP [16] or PROSE/MIDAS [17], which are already
capable of performing dynamic aspect weaving, a mechanism that allows aspect code
to be woven into an application at any point of its execution. This technique will
enable the application of adapting aspects independently of the selected approach.
Although the state of the art does not currently make Dynamic Aspect Generation a
feasible approach, it is a promising choice to consider for future research. Dynamic
Adaptor Management, on the other hand may be less flexible but suffices the
requirements to perform dynamic adaptation, and the required infrastructure in
comparison is much simpler. This justifies the adoption of this strategy for the first
stage of this proposal. In the following sections, a new approach is described in which
the main focus is put into using aspects for the implementation of the adaptation
framework itself, rather than for aspectizing some facets of the system. Adaptation
code is encapsulated into aspects, although not in a static way. On the contrary,
aspects act as interpreters of the design information gathered from the components
and as coordinators of the interaction between them.

3 Dynamic Adaptation Management Framework

3.1 System Architecture

When performing dynamic adaptation, signature and protocol information is
required from the components being adapted to produce a consistent mapping or
correspondence between their interfaces in order to solve potential mismatches. This
can either be obtained from the components using techniques for the incorporation of
metadata such as annotations [7], or semantic techniques [13] exploiting the already
available information from the components, and inferring protocol related
information such as order of message exchange in a similar fashion to OWL-S [15],
used in the field of Web Services. While in the former a Grey-Box approach is taken
for the extension of the system (increasing the accuracy of adaptation), the latter does
not require the component to be specifically prepared. However, the available
information may vary depending on the specific platform where adaptation is being
performed, so a compromise may be necessary, such as taking a hybrid approach by
adding some complimentary information to the components if it is required. Anyway,
the construction of the aforementioned mappings falls out of the scope of this paper,

62

and it is an issue to discuss in itself in further work. For the purposes of this work, the
mapping is considered to be already available, so the focus is put on the design of the
aspect-based adaptation management framework. As it is depicted in Fig.2, the
architecture of the system contains three basic functional modules in charge of the
different tasks required for adaptation:

1. Interface Manager: Gathers information about the components’ interfaces.

2. Adaptor Manager: Derives adaptors using the algorithm presented in [3] for the
interaction between the components making use of the aforementioned
mappings.

3. Coordination Manager: Coordinates the interaction between components,
translating the messages based on the description of the adaptors previously
derived.

The implementation of these tasks, grounded on the principles of AOP, exploit the
join point model which enables clean message translation, since components do not
need to be internally modified and pointcut definition provides a compact way to
capture relevant events (component initialization and method invocation are of
special interest). Although this framework relies on a standard join point definition
language (a thing which usually implies suffering the consequences of structural and
syntactical dependency from the base code [6, 11]), this does not affect the way in
which the different managers operate, since the pointcut definitions used are trivial
and do not include any specific syntactical nor structural patterns.

The implementation of these tasks as aspects, separating coordination from
concerns such as adaptor generation, or interface description management grants a
clear organization to the structure of the framework.

3.2 Interface Manager

Inspects the interfaces of the components as they join the context of the system,
and keeps their description in an interface repository in order to use them later for
mapping generation. For this purpose we will use reflection techniques. Upon
initialization of the component ¢ of class C, the manager checks for the existence of
an entry for C in the repository, and if it does not exist, it creates one for it.

Since components usually exchange messages in a client-server manner, a
complete description of both their offered and required interfaces is necessary. In the
particular case of Java, the only information available is the description of the
messages which belong to the offered interface M, (through reflection), so the
component must be complemented with a description of the signature of its required
interface M,. A complete description of both interfaces must include a minimum set
of information for each method consisting on:

- Message (i.e. method) name.
- Ordered parameter names and types.

63

- Return value types.
- Exception types raised.

Component interfaces are also extended by including protocol information on their
interface descriptions. The behaviour of the components can be specified by means of
a Finite State Grammar (FSG) [22] which takes the set of available messages as input
alphabet (M, U M;).

Summarizing, as it is observed in Fig.1l, each of the entries in the interface
repository contains a description of both offered and required interfaces and an
automaton which specifies the protocol followed by the component.

Interface Sample(hnqaonem:{ o
offers {
int Methed0l (Strimg pl, int p2);
String Metlwmddf () raises el, =23;
i ; : .
Respuires { | li
veaid MethodRL (int pl, int p2); A !

int MethedBR2 (Strimg pl) raises el;

Fig. 1. Example of an interface description entry from the interface repository.

3.3 Adaptor Manager

It generates new adaptors as required by the conditions of the system. Once a
component of class S joins the context, it may generate or receive one or several
messages to/from other components. Every time one of these messages is generated
or received, the manager captures it and checks if it is the first one consigned to or
received from a target component class T. If that is the case, a mapping is produced
between the source and target component classes, and subsequently an adaptor is
automatically generated (Fig 3.c) making use of the algorithm described in [3]. This
adaptor is stored in a repository and it will be used for interaction management
between any pair of components of classes (S, T). This module will incorporate an
inference engine based on pre-agreed ontologies explicitly defining resources,
preconditions, and effects of processes, as well as domain related properties and
relationships. In such a way, the system is provided with a machine-interpretable
description of the semantics of the components. This enables the use of inference

64

techniques traditionally used in Al (knowledge representation, goal-oriented
planning, logic, etc.) in order to infer relevant properties from the components and
adapt them. Once generated, these adaptors allow syntactical adaptation providing
message and parameter name translation, data conversion, and parameter reordering.
They also provide a mechanism to perform protocol adaptation, storing messages
whenever required for a delayed delivery, and establishing correspondences between
them which can be one-to-one as well as one-to-many. By accessing the Adaptor
Manager, engineers can supervise and tune the behaviour of the components by
editing the mappings produced by the inference engine in order to fit specific needs.
The characteristics of these mappings may also be constrained by manual
introduction of contextual information in the engine. This capability enables a semi-
automatic approach in which the engineer can easily evolve components worrying
mostly about coarse-grained issues.

3.4 Coordination Manager

Monitors and translates all messages between components. Each time a component
s; sends a message to a component t;, the manager translates it making use of the
already available adaptor for (S, T) stored in the adaptor repository. A repository for
session information is established in this manager in order to store specific
information about the state of the components and their interaction. For each pair of
interacting components (s;, t;), a session is created in the repository the first time s;
sends a message to t; (see Fig 3.c). This session information is updated if necessary
with each message between components. Session information will be publicly
available to the mechanisms in the coordination manager since some interactions
between components may influence that of others.

Mapping
Generation

Interface Method call
Inspection Adaptor Dem.rahon franslation
Interface Manager Adsptor Manager oordination Manager
FRAMEWORK /
LEVEL
y;) tory Acdantor 2 tory Session Repository

4
BASE CODE _/ J l
LEVEL / b

Fig. 2. Framework architecture diagram.

65

a)

iy

at i b1 % b1
i ni % n1
[SR AR } R
c)
ail i b1 [JI% b1
b2 ? 02 ‘ % »
IR: SR——— AR R———,
[A T [AE)| et] []| [fe1b2)]
]

Fig. 3. Simple component interaction example: Components al,b1, and nl join the
context. Interfaces A, B, and N are stored in the interface repository (a). Component
b2 joins the context (b). al sends a message to b2. Interfaces for A and B are mapped
and adaptor (A ,B) is generated in the adaptor repository and a session entry for
components (al,b2) is created in the session pool. The message is then translated by
the coordination manager (c).al sends a message to bl. A session entry is then
created for components (al,bl) in the session pool and the message translated by the
coordination manager (d).

3.5 Implementation Issues

In order to illustrate some of the issues related to the implementation of the
proposal, Aspect] is used. This is a language level Java AOP extension which is
highly representative of the AOP systems currently used. In this section some of the
key structures and mechanisms provided to implement the functionality of the
adaptation management framework are highlighted. Regarding the framework’s
design, a minimum set of pointcuts to define in order to provide the required

functionality is:

66

Component initialization: It is satisfied whenever a new component enters the
context of the system. It will be used by the interface manager in order to store
interface related information.

Component invocation: Specifies all the messages sent from one component to
another within the context of the system. Used by the adaptor manager for adaptor
generation and by the coordination manager for session creation, message translation,
and session information updating.

It is worth mentioning that since multiple aspects are present in the system, pieces
of advice in the different aspects corresponding to each of the managers, may apply to
a single join point. When this situation is given, the order in which advices are
applied to the join point must be explicitly defined. This is the case of component
invocation, which is used both by the adaptor and the coordination managers. In order
to observe this order, Aspect] uses precedence rules to determine the sequence in
which advices are applied. Aspects with higher precedence execute their before
advice on a join point before the ones with lower precedence. When the method of a
component is invoked, the sequence to follow is: (a) the adaptor manager checks if an
adaptor needs to be generated. (b) The coordination manager checks if a session entry
must be created, and (c) the coordination manager translates the message and updates
session information. This translation is driven by the previously generated mapping
and implemented through the join point model provided by AOP. This provides an
elegant and non-invasive way of performing message translation.

Aspect] also provides mechanisms for source and target component identification
through the use of thisJoinPoint getThis() and getTarget() methods. The
coordination manager can monitor argument values in method invocations making
use of the getArguments() method provided by thisJoinPoint as well. In order to
obtain information related to methods such as exception, return, and parameter types,
as well as argument and method names the getSignature() method provided by
thisJoinPointStaticPart can be used.

Table 1. Pointcut definition and main API classes used for the framework.

Sample pointcut definition
Component Initialization

pointcut pcComponentlnitialization() :
staticinitialization(exp.adapt.component.*);
. pointcut pcComponentlnvocation() :

Component Invocation cal 1 (* exp.adapt.component.*.*(..));

API structures and mechanisms
e org.aspectj.lang.JoinPoint
Con1ponent|denhﬁcahon thisJoinPoint(getThis() and getTarget())
org.aspectj.lang.JoinPoint
Argunmnt\kﬂues thisJoinPoint.getArguments();
org.aspectj.lang.JoinPoint.StaticPart

Method Information org.aspectj.lang.Signature
(thisJoinPointStaticPart.getSignature())

Class
e java.lang.reflect.Class
Identification and Interface }ava_ |ang_reﬂect_Method

Inspection

67

Component class identification and interface inspection can be performed using
the Java Reflection API. Through this API the class of each component can be
obtained, along with information from it such as name, public attributes, and method
signature description. It is worth noticing that parameter name information is not
stored in standard Java .class files, so it is not retrievable using standard Java
reflection. However, the Aspect] compiler does enrich compiled classes with that
information. We will consider that we have that information readily available for our
purposes.

4 Conclusions and open issues

In this paper, we have discussed the potential approaches to Aspect-Oriented
Dynamic Component Adaptation in order to support Dynamic Component Evolution,
as well as their advantages and drawbacks. We have justified the choice of dynamic
adaptor management in a first approach and illustrated its foundational difference in
comparison with previous proposals, which are usually focused on aspectizing some
facets of the system. Then, a design for an adaptation management framework is
proposed, showing its potential advantages as a tool to support the process of
component evolution. In order to test this approach, a prototype in currently being
developed in Aspect]. Although the platform does not support dynamic weaving, it is
capable of performing load-time weaving, which is enough in order to prove the
operational basis of the framework. The ontologies we are planning to use in this
prototype will be stored in OWL. This will make it easier to create and read the
ontologies since tools and libraries to process OWL are available. So far, only the
signature and protocol levels have been tackled, and further study has to be
performed related to mapping generation in order to provide suitable techniques for
the semantic level as well. All this new functionality will be packed into the inference
engine since all semantic level concerns are deeply interwoven with the process of
mapping generation.

Dynamic component adaptation has proved to be a non-trivial problem which
requires a vast amount of information about components for them to be successfully
adapted in production environments. If it does not seem realistic on a first stage to
take a White or even Crystal-Box approach considering the use of COTS products,
adaptation, the most reasonable option seems to be taking a Grey-Box approach, by
including key information on components (protocol, non functional concerns, etc.) in
order to adapt them.

Although the current approach suffices the requirements to perform dynamic
adaptation in simple cases, it is necessary to explore alternatives such as dynamic
adaptor generation in further work in order to scale the problem to more complex
scenarios.

68

References

1. Aksit M., Tekinerdo Gan B., Bergmans L. Achieving Adaptability through Separation and
Composition of Concerns. Muhlhauser M., Ed., Special Issues in Object-Oriented
Programming, dpunkt, 1996, p. 12-23.

2. Allen R. and Garlan D. A formal basis for architectural connection. ACM Trans. on
Software Engineering and Methodology, 6(3):213-49, 1997.

3. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation. The
Journal of Systems and Software. Special Issue on Automated Component-Based Software
Engineering 74 (2005), pp. 45-54.

4. Canal, C., Fuentes, L., Pimentel, E., Troya, J.M., Vallecillo, A.: Adding roles to CORBA
objects. IEEE Transactions on Software Engineering 29 (2003), pp. 242-260.

5. Canal, C., Murillo, J.M. and Poizat, P. Software Adaptation. in L'objet, 12(1):9-31, 2006.
Special Issue on Coordination and Adaptation Techniques for Software Entities. to appear.
2006.

6. Cazzola, W., J'ez’equel, J.M., Rashid, A. Semantic Join Point Models: Motivations, Notions
and Requirements. In Proceedings of the Software Engineering Properties of Languages and
Aspect Technologies Workshop (SPLAT’06), Bonn, Germany, on 21st March 2006.

7. Cazzola, W., Pini, S. and Ancona, M. The Role of Design Information in Software
Evolution. In Proceedings of the 2nd ECOOP Workshop on Reflection, AOP and Meta-
Data for Software Evolution (RAM-SE’05).

8. Dantas A., Borba P., Yoder J., Johnson R. Using Aspects to Make Adaptive Object-Models
adaptable. Cazzola et al. in Reflection, AOP, and Meta-Data for Software Evolution, report
num. Research report C-196, 2004, Dept. of Mathematical and Computing Sciences, Tokyo
Institute of Technology , p. 9-20.

9. David P.-C., Ledoux T. Towards a Framework for Self-Adaptative Component-Based
Applications. Distributed Applications and Interoperable Systems (DAIS), vol. 2893 of
Lecture Notes in Computer Science, Springer, 2003, p. 1-14.

10.Filman, Robert E., Friedman, Daniel P.: Aspect-Oriented Programming Is Quantification
and Obliviousness. In Mehmet Aksit, Siobhan Clarke, Tzilla Elrad, and Robert E.
Filman, editors, Aspect-Oriented Software Development. Addison-Wesley, 2004.

11.Koppen, C., Storzer, M. PCDiff: Attacking the Fragile Pointcut Problem. In Proceedings of
the European InteractiveWorkshop on Aspects in Software (EIWAS’04), Berlin, Germany,
September 2004.

12.Magee J., Kramer J., and Giannakopoulou D. Behaviour analysis of software architectures.
In Software Architecture, pages 35-49. Kluwer, 1999.

13.Mcllraith, S.A., Martin, D.L.: Bringing semantics to Web Services. IEEE Intelligent
Systems, 18(1):90-93, Jan/Feb, 2003.

14.Navasa A., Pérez M., Murillo J., “Aspect Modelling at Architecture Design”, Morrison R.,
Oquendo F., Eds., European Workshop on Software Architecture (EWSA), vol. 3527 of
Lecture Notes in Computer Science, Springer, 2005, p. 41-58.

15.“0WL-S: Semantic Markup for Web Services”, The OWL Services Coalition (2004),
http://www.daml.org/services.

16.Pinto, M.: CAM/DAOP: Component and Aspect Based Model and Platform, PhD thesis.
Dpto. de Lenguajes y Ciencias de la Computacién, Universidad de Malaga (2004).

17.Popovici, A., Frei, A., Alonso, G.: A proactive middleware platform for mobile computing.
In: 4th ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro, Brazil
(2003)

18.Rashid A., Kortuem G. Adaptation as an Aspect in Pervasive Computing. Workshop on
Building Software for Pervasive Computing at OOPSLA, 2004.

69

19.Rashid A., Sawyer, P., Pulvermueller, E. A Flexible Approach for Instance Adaptation
during Class Versioning, Objects and Databases, vol. 1944 of Lecture Notes in Computer
Science, Berlin, 2000, Springer, p. 101-113.

20.Redmond B., Cahill V. Supporting Unanticipated Dynamic Adaptation of Application
Behaviour. Object-Oriented Programming (ECOOP), vol. 2374 of Lecture Notes in
Computer Science, Springer, 2002, p. 205-230.

21.Sanchez F., Hernandez, J., Murillo, J. M., Pedraza E. Run-time adaptability of
synchronization policies in concurrent object-oriented languages. Workshop on Aspect
Oriented Programming at ECOOP (AOP), June 1998.

22.Yellin, D.M., Strom, R.E.: Protocol specification and component adaptors. ACM
Transactions on Programming Languages and Systems 19(2) (1997)

70

An Aspect-Aware Outline Viewer
(Work in progress)

Michihiro Horie Shigeru Chiba

Tokyo Institute of Technology
http://www.csg.is.titech.ac. jp

1 Introduction

An aspect-oriented programming (AOP) is for modularising a crosscutting con-
cern so that it can be easily attached and detached to/from software. Because of
this functionality, AOP is one of key technologies for enabling evolvable software.
However, critics have been mentioning that AOP makes modular reasoning diffi-
cult since join points where an aspect and an object are connected to each other
tend to spread over a whole program. Developers often have a problem finding
join points specified by pointcut definitions in an aspect. To help developers, a
tool such as AJDT has been developed.

For better modular reasoning in AOP, this paper presents a new interpre-
tation of AOP, in which an aspect is an extension to an existing module but
the extension may be effective only when the module is accessed from specific
accessor modules. This interpretation should let developers consider an aspect
is just an extension in the same sense that a subclass extends a super class and
override some methods. Thus developers would be able to think that each mod-
ule has an external interface and the internal implementation of the module is
never directly accessed by other modules including an aspect.

To support AOP according to this interpretation, we have developed an
Eclipse plugin. It is a programming tool for AspectJ and it shows an outline
view of a class woven with an aspect. It presents how each method is extended
by showing javadoc comments taken from the definitions of the class and the as-
pect. This tool gives developers a totally different illustration of AOP programs
from AJDT, which is a standard programming tool for AspectJ. AJDT mainly
shows the locations of join points (or join point shadows) selected by pointcuts.
In other words, it only illustrates where an aspect and an object is connected to
each other.

2 An event-based interpretation

A famous paper by Filman and Friedman [2] explained that AOP is quantifi-
cation and obliviousness. According to their interpretation, program execution
is modeled as a sequence of events, such as method calls and field accesses. An
advice is an reaction to an event, i.e. a join point, selected by a pointcut. Thus,

to understand an AOP program, developers must know which events (i.e. join
points) are selected for connecting an object and an aspect.

This event-based interpretation makes modular reasoning difficult since most
of selected join points are part of the internal implementation of a module. For
example, if a pointcut selects a join point representing a call to a setX method
within a move method in a Line class (Figure 1), then that method call is part
of the implementation of the move method and it should not be exposed to
the outside of the Line class. Note that, here, the move method is not a callee
method but a caller method. However, to understand the behavior of an aspect,
developers must know the body of the move method contains the call to the setX
method and it causes the execution of an advice body. The readers would think
that the encapsulation principle is broken.

class Line {
Point pl, p2;
void move(int x, int y) {

pl.setX(newX);
Fig. 1. The move method in Line calls the setX method in Point.

3 An extension-based interpretation

Although the encapsulation principle might seem broken in AOP, it is not really
broken. To illustrate this fact, we present a different interpretation of AOP.

According to our interpretation, an aspect is an extension to a class although
it might be effective only under some conditions. This is obviously acceptable if
an aspect includes an advice associated with an execution pointcut, which selects
the execution of a method body as a join point. Since the advice is executed
together with that method body, the aspect can be regarded as an extension
to the method body. Note that the extension does not break the encapsulation
of the extended method body as an extension by inheritance does not. The
extended method body is reused as is or the whole body is overridden.

An interesting case is an advice associated with a call pointcut, which selects
the execution of a method-call expression at a caller side. Suppose that a move
method in a Line class calls a setX method in a Point class and a call pointcut
selects a call to setX (Figure 1). We explain that the advice associated with that
call pointcut extends the behavior of the setX method in the Point class. An
advice always extends the behavior of a callee-side method even if a pointcut

72

Havignte Segch Fromct Eon Wedw Help
B-0-Q- | BEEE-|S® | S e =

13 Pockeen Expl. 52 %1 = O)[1] Dusplawiaen | 3] Loeiavs | (5] Pt srva 22 L] Finttarle v) Braem i | A UedaleSuralne s =0 o 3 =)
Bas1ic olass POLaT. implements Shape (& LW e W
public int x: —g—
i vample
public int yr ES
o ximt
public ink getki) | s yimt
retumn x; i
public ink gecti) |
retuen y: @ . meremiyli,)
* Setn the horisontal position te a glven acgusent,
public void seci(int x|
this s
Prsbime | Declarstion | Crose Fsfeences J;.mm_ nEEEIn; CE)

Fercier fontsetn]
N

7| void setXint)

Sets the honzontal posiion to a grven asgument

An after adice sgnale the

chamges

Fig. 2. Our outline viewer for a class extended by aspects (lower panel surrounded by
a blue rectangle). It shows javadoc comments on both a method and an advice.

is call. It does not extend a caller-side method, for example, the move method
in Line. Note that, under the event-based interpretation, that advice is often
regarded as an extension to the caller-side method move.

A call pointcut can be combined with other pointcuts such as within and cflow.
In this case, we explain that the behavior of a callee is extended by an aspect
only when a caller satisfies the conditions specified by those other pointcuts such
as within and cflow. For example, if a pointcut is the following:

call(void Point.setX(int)) && within(Line)

Then the advice associated with this pointcut extends the behavior of the setX
method only when setX is called from a method declared in the Line class. This
conditional extension cannot be implemented by subclassing; it needs AOP.

We similarly deal with get and set pointcuts as well. They extend the behavior
of the fields that the pointcuts specify. For example, if a pointcut is get(int
Point.xpos), then we consider that the advice associated with that get pointcut
extends the behavior of the read access to the xpos field in Point. Without the
extension, a read access to xpos simply returns the value of xpos. On the other
hand, with the extension, a read access to xpos involves not only returning the
value of xpos but also executing the associated advice.

73

void setX(int)
Sets the horizontal position to a given argument.

Extended if:
call(void Point.setX(int)) €6 within(Line)
An after advice signals the Display to update whenever a shape changes.

Fig. 3. The Javadoc comments on the setX method

4 Tool support

Our extension-based interpretation encourages developers to treat modules only
through external interfaces even if aspects are woven with a program. The effects
by aspects can be described as part of external interfaces. To support this idea,
we have developed a AspectJ programming tool on top of the Eclipse IDE (Inte-
grated Development Environment). It is an outline viewer of a class (Figure 2);
it lists all the methods and fields declared in a specified class. If some of those
methods and fields are extended by aspects, then our outline viewer also shows
that fact. Furthermore, the outline viewer shows javadoc comments taken from
both a class and an aspect. If developers select a method or a field extended by
an aspect, then the outline viewer shows the javadoc comments on a pointcut
and an advice as well as that method or field. For example, in Figure 2, the setX
method in the Point class is selected. Thus, the outline viewer shows comments
(a larger image is presented in Figure 3) in the right pane.

5 Concluding remarks

This paper presents the extension-based interpretation of AOP, in which an
aspect is an extension to a callee class. Each advice in an aspect extends the
behavior of a target method or a target field; it never extends a method at
a caller (or accessor) side. If a pointcut includes a pointcut designator such
as within and cflow, the extension is effective only when the execution context
satisfies such a pointcut designator.

Our outline viewer presented in this paper helps programming with this in-
terpretation. It is different from existing AspectJ tools such as AJDT, which
supports the event-based interpretation. The outline view shown by our tool is
similar to the aspect-aware interface [3]. Although our work shares basic ideas
with the aspect-aware interface, we have further pursued appropriate concrete
representation of modules in the presence of crosscutting concerns. For example,
the article about the aspect-aware interface [3] does not mention how call, get,
and set pointcuts should be reflected on a module interface. It does also not
mention javadoc comments. Our outline viewer considers that an extension by
an aspect is conditional if a pointcut includes within etc. This conditional exten-

74

sion is similar to the idea of Classbox/J [1] although Classbox/J is not an AOP
language.

References

1. Bergel, A., S. Ducasse, and O. Nierstrasz, “Classbox/J: Controlling the Scope of
Change in Java,” in Proc. of ACM Conf. on Object-Oriented Programming Systems,
Languages, and Applications, 2005.

2. Filman, R. E. and D. P. Friedman, “Aspect-Oriented Programming is Quantifica-
tion and Obliviousness,” in Aspect-Oriented Software Development (R. E. Filman,
T. Elrad, S. Clarke, and M. Aksit, eds.), pp. 21-35, Addison-Wesley, 2005.

3. Kiczales, G. and M. Mezini, “Aspect-Oriented Programming and Modular Reason-
ing,” in Proc. of the Int’l Conf. on Software Engineering (ICSE’05), pp. 49-58,
ACM Press, 2005.

75

Technological Limits for Software Evolution

Chairman: Hidehiko Masuhara, University of Tokyo

Solving Aspectual Semantic Conflicts in
Resource-Aware Systems

Arturo Zambrano, Tomés Vera, and Silvia Gordillo

LIFTA, Facultad de Informética Universidad Nacional de La Plata
50 y 115 ler Piso
1900 La Plata, Argentina
[arturo, tomasv, gordillo]@lifia.info.unlp.edu.ar

Abstract. Aspects sometimes conflict between them in scenarios where
they reify resource awareness concerns. These conflicts are the result of
the scarcity of resources and the fact that, frequently, aspects are mutu-
ally oblivious. This kind of conflict can be solved by managing aspects
according to the context. Obliviousness, even between aspects, can be re-
tained and, at the same time, specific (per situation) conflict resolution
strategies can be applied.

1 Introduction

Mobile applications must face a continuously changing environment. Resource
and service availability can change dramatically during run-time. Then, resource-
awareness is a must in such applications. Context and resource awareness are
per se invasive, and prone to produce tangled designs and code. Because of this,
a common practice is to isolate such behavior in the middleware layer. In [9] and
[18] it has been suggested that the use of aspect orientation constitutes a means
of decoupling context aware functionality from mobile applications.

The advanced separation of concerns provided by AOSD fits in the field of
middleware in general [1,2,4], and it is specially suitable for implementing mid-
dleware for mobile context-aware systems. Aspects reifying different resource
related concerns provide a modular way of handling them. On the other hand,
aspects in resource-awareness middleware often compete for common (shared)
resources they need. Conflicts are usual in this domain [16] and lead to aspect
interactions which are related to the aspects’ behaviour semantics (the way re-
sources are utilised by aspects). These interactions cannot be detected just by
syntactic means. As a result, they cannot be detected in compile time, since
they depend on run-time conditions. Consequently, new approaches are needed
to cope with this kind of conflicts.

In this work we will exemplify conflicts between aspects in a resource aware
environment. We also present our approach for semantic-conflict resolution. This
is based on the use of meta information attached to aspects, such metadata is
used afterwards for conflict detection and aspect management.

This paper is organised as follows: Section 2 presents the motivation for
our work. Section 3 summarises previous related research works. In Section 4 a

conflict resolution mechanism is proposed. Finally, we present our conclusions
and future work in Section 6.

2 Aspectual Semantic Conflicts

2.1 Context

In an aspectual middleware for mobile applications, several aspects adapt ap-

plication’s behaviour to run-time conditions to ensure they use the available
resources in the most effective way. This approach releases the application of
resource management responsibilities, modularising behaviour that otherwise
would be tangled with application’s one.

We argue that even when no interference is a desirable state for aspects,
this condition is not always held in runtime; since aspects for mobile client-
side middleware implement a concern consuming (possibly) shared resources.
Examples are provided in section 2.2.

It can be said that aspects should be represented in such a modular way that
they do not affect other aspects or concerns. On the other hand, any behaviour
added by aspects will consume resources; at least it will consume the processing
cycles needed to execute its instructions. In some cases, this is not a problem,
but in the context of mobile computing, where resources are scarce, a resource-
conflict! could be a major problem. Therefore, it is a pragmatic problem that
has to be considered when several aspects that manage resources are running in
a mobile application.

The general idea is illustrated in figure 1 a). Each aspect manage a resource,
the objective of the aspect is to perform the action indicated by the solid arrows,
but its behavior produce a side-effect on another resource (dotted arrows). If the
aspects and resources form a cycle, the result may be system with unstable
behavior, as we will see later.

2.2 Examples

In this section we will exemplify some conflicting scenarios in the context of
mobile computing. The examples show several aspects which interfere with each
other while trying to accomplish their objectives.

Memory Saver Vs Battery Optimiser
Memory Saver Aspect monitors the memory usage by periodically checking
the amount of free program memory. When it detects there is little available
memory, this aspect forces all caches to flush their content.
Battery Optimiser Aspect is in charge of maximising battery lifespan. Since
wireless network connections consume a lot of power, this aspect delays such

! In the context of this work, a conflict means the use of a given resource in an
uncoordinated way, which may be dangerous for a system

80

- ; releases
releases . consumes . consumes
releases, :
activation A}

A
N actﬁn ~ » acti}ﬁon
- consumes

o - /eleases | - /r(eleases

a) b)

Fig. 1. a) Abstract conflict schema. b) A concrete conflict schema.

connections; that is, whenever the mobile client tries to send data to the server,
the optimiser captures the outgoing data and stores it temporarily. When enough
data has been collected, the optimiser performs a real network connection and
sends all the stored data to the server.

As the reader can see, Battery Optimiser is affecting the resources it needs
to perform optimisations, mainly memory, which is also the focus of the Memory
Saver aspect.

Both Memory Saver and Battery Optimiser are oblivious to each other. Even
though each aspect is aimed to work on its own concern, each one is influenced
by the behaviour of the other.

It is important to note that the kind of conflict we are dealing with cannot
be determined in compile or static weaving time. This example is illustrated in
figure 1 b).

Network Optimiser Vs Security Vs Processing Time

Suppose that in the context of a wireless network, low traffic is desired in order
to minimise packet loss problems and improve the response time. Also, as it is a
wireless network, some security mechanism is needed, namely encryption. Con-
versely, encrypted messages are usually larger than their non-encrypted counter-
parts; therefore, they increase network traffic. Consequently we can have security
but paying with a higher bandwith usage. In order to lighten this problem, we de-
cide to compress messages before sending and decompress after receiving them.
Now we have paid with CPU time.

A more sensible approach could be an adaptive one, where security is al-

ways provided using encryption, and compression is applied just when there is
excessive network traffic and idle processor time.

Discussion From the previous paragraphs it is clear that conflicts among
aspects exist, even if they are not working on the same joinpoints.

While considering aspect conflicts, it is important to keep in mind the notion
of obliviousness [11]. Despite the fact that obliviousness is not a requirement for

81

an aspect oriented system, it is an important property that, if it is reached,
it brings additional loose coupling. In this work we intentionally try to build
context aware aspects that are mutually oblivious.

We argue that semantic conflicts can be solved by expressing the aspects’ se-
mantic without losing obliviousness. Aspects’ semantics can be denoted through
metadata; and modern programming languages, such as Java and C# provides
means of expressing it. Therefore, it is fairly possible to develop metadata-based
approaches, which can be easily implemented using the mentioned facilities.

3 Related Work

Recent research work in aspectual conflict detection has been developed by
matching pointcuts syntactically[7]. Dounce et al. [10] propose a theoretical anal-
ysis framework to detect conflicts. However, little has been said regarding how
to solve or avoid semantical aspectual conflicts; i.e. conflicts arising from the
composition of behaviours that do not fit or are counterproductive, even when
they might act on different joinpoints.

Concern Oriented Requirement Engineering techniques face the problem of
conflicting concerns [14] at requirements level. In that work requirements are
grouped into concerns, and the impact derived from the relationship between
concerns is calculated. This impact is used to determine the existence of con-
flicts which can be solved by priorisation or renegotiation with the stakeholders.
This approach may lead to a coarse grained aspect priorisation. In addition, this
priorisation is fixed and applied to the whole system; since no specific situation
customised priorisation is given. As it has been shown in Section 2.2, some con-
flicts may arise on runtime, and the time of their occurrence cannot be foreseen
during requirements engineering phase.

Tessier et al. present, in [17], a model-based methodology which allows the
detection of direct conflicts between aspects. In that work a taxonomy of conflicts
is offered; the categorisation includes Crosscutting Specifications, Aspect-Aspect
Conflicts, Base-Aspect Conflicts and Concern-Concern Conflict. Our work can
be framed by the later category, in particular by the subcategory Inconsistent
Behaviour, that refers to conflicts where one aspect can alter the state used by
other aspects.

Bergmans [6] propose the use of annotations as a means of detecting conflicts
among cross-cutting concerns. In his approach, conflicts can be detected when
multiple concerns works on the same join point. As we previously said, our
work aims to solve conflicts arising even when involved aspects work on different
joinpoints.

This work is different with respect to previous conflict resolution approaches
because it is focused on the semantic and behaviour of aspects, rather than their
syntactic pointcut clashing.

82

4 Semantic Conflict Resolution for Resource-Awareness

4.1 Analysing Conflicting Situations

Despite the fact that conflicts cannot be completely foreseen using syntactic
techniques, it is possible to anticipate conflicting situations by performing a
domain analysis and reasoning about risky system situations.

In the context of resource-awareness, conflicting situations can be charac-
terised as “malformed” combinations of resources’ states. By “malformed”, we
mean situations where aspects executing normally, but in a non-coordinated
way, can affect the proper system’s behaviour. Following our first example, a
conflicting situation arises when the system has little memory, and data cached
by Battery Optimiser must be flushed very quickly. In this case, a sensible ap-
proach can be to deactivate the Battery Optimiser aspect. It is clear that if
there was enough available memory, all aspects would run smoothly, so that no
conflict would arise.

A list of conflicting situations must be constructed. Each situation must be
described as [resource-state] pair list, which must be accompanied with corre-
sponding corrective actions.

How to find those conflicting situations is outside the scope of this paper,
and it is part of our related and future work.

4.2 Solving Conflicts

Network Memory Security
Optimization Management Concern
Concern Concern

Metadata -

denoting Releases Bandwith

Aspect-resource

relationship Consumes Memory Releases Memory {Consumes Processor
Aspects Network Opt Memory Saver Security

Base Application

Fig. 2. Aspects’ metadata indicating effects on resources.

In this section we present the corner-stones of our vision of conflict resolution.

83

Semantic Labels Java annotations [12] (and .Net attributes [15]) are powerful
mechanisms that enable lightweight language extensions. They are used with
multiple purposes such as attaching domain modelling information and enabling
constraint enforcement. More recently, they have been used, along aspects, to
demark and modularise crosscuting-cuttings concerns [13]. In order to explicit
the use we make of annotations and to differentiate them from other general
purpose annotations, we will call them semantic labels when they are utilised in
the context of this work.

In order to solve/avoid runtime aspectual conflicts we propose the use of
semantic labels. Semantic labels are descriptors added to aspects. These de-
scriptors expose aspects’ metadata indicating the kind of resources utilised by
the aspect and the way they are affected (for instance, consumed or released),
that is, the relationship between an aspect and the resources manipulated by it.
In other words, semantic labels denote the role played by the aspect regarding
a resource.

Figure 2 shows each aspect with their respective metadata, which describes
the kind of operations the aspect performs on a resource.

Semantic labels provide a more abstract way of talking about aspects, as we
shall see later. In fact, they define a discourse domain for aspects and resources.

Coordinator Aspect An extra aspect is necessary in order to control the
execution of other aspects and solve conflicts. We call this aspect “Coordinator”.
Semantic labels are consumed by the Coordinator aspect in order to have a
complete picture of aspects, resources and their relationship.

The Coordinator monitors resources’ state looking for patterns indicating
conflicting situations (Section 4.1), that is, certain state-resource pair patterns.
Coordinator is supplied with a set of strategies. Each strategy is associated to a
conflicting situation, and is defined as actions to be taken on the aspects involved.
For example, a strategy can be defined as switch off all memory consumers as-
pects. Therefore, strategies are expressed as operations on aspects playing defined
roles. Furthermore, since roles are used to express strategies, quantification can
be achieved.

When a conflicting situation is found, the Coordinator applies the corre-
sponding strategy. This means that it looks for the aspects playing the roles and
performs some management operations on them. By performing the operations,
the system behaviour is affected, and the conflicting situation eliminated.

Notice that, for sake of paper’s length, we are talking about a coordinator
aspect as a single module, when it is actually splitted in several parts.

4.3 Design Detalils
Figure 3 outlines the design of the proposed solution’s prototype. The abstract

ResourceHandler aspect provides the basic functionality that allows aspect man-
agement, that is switch-on/off behaviour.

84

Resourceugage(:pumzer]; AspectManagemen]

<<aspect>> <<aspect>> | engine
ResourceHandler Coordinator RuleEngine

L 1
+switchon () : void
+switchOff () : void| ----| annotated Aspects

[[]
| MemoryOptimizerl | BatteryOptimizerl | NetworkOptimizerl
I 1 I 1 | |

L

stratlegies

1..n

ConflictResolutionStrategy
I

'
AN
@AffectsMemory(“released")

<<ppintcut>>

T
1
1
1
1
1
1
1 L 1 1
H 1
<kpo

intcs

g
v

>
@AffectsBandwitdh("released")
@AffectsProcessor("consumed")

@AffectsBandwitdh("released")
@AffectsEnergy('released")
@AffectsMemory("consumed")

- 4 - - = = = = -

BaseApplicatio;I ResourceMode]
Resource
1
BaseClassA /\
I
————
> > | | |
BaseClassB
—
————

|Memory| | Processor | |Bandwitdh|
I 1 | |
L 1 L

Fig. 3. Conflict Resolution Approach Class Diagram.

1 QAffectsMemory (CONSUMED)
@AffectsBattery (RELEASED)
& public aspect BatteryOptimiser

Listado 1.1. Annotated Aspect

\V]

Subaspects are defined in order to perform several optimisations on the base
program. These aspects must declare which resources they affect and the way
it is done (denoted as UML comments 2 in the diagram). Such declarations are
performed by annotating the aspects’ code, as shown in Code Listing 1.1. Each
annotation refers to a particular resource, and the parameter express how the
resource is used.

The Coordinator aspect monitors the evolution of resources states. When
a change is detected, a snapshot of resources states should be passed to the
rule engine. Then, some strategies will be activated according to conflict-prone
situations at hand. These active strategies perform corrective actions on the
application’s aspectual world. They can switch on/off aspects as necessary, so
that conflict is neutralised. Aspects are not directly named by strategies, instead
annotations are used to refer to aspects in an abstract form (see code listing 1.2).

2 Since there is no unified way of expressing annotations in UML we follow one of the
possibilities presented in [8]

85

rule "ControllMemory"
no-loop true

when

m : Resource(name == "memory",
availability < 10)

then

Coordinator.stop("@AffectsMemory
(CONSUMED) ")

0 ~J O O W

Listado 1.2. A simple rule for aspect management

5 Prototype Implementation

In order to have a proof of concept we have implemented a prototype using Java
Annotations [12], Aspect]J [5] and JBoss Rules [3] as rule engine. In the imple-
mentation the coordinator intercepts the creation of each resource-management
aspect. At this point it inspects the metadata and keep a reference for each as-
pect, so that it can be easily located when it is needed to perform a management
operation.

The coordinator intercepts any resource state change. With this information
it feeds the rule engine and fires the rules evaluation. When a rule matches its
condition with the current resources’ state combination it asks the coordinator
to perform specific management operations on registered aspects.

6 Conclusions and Future Work

In this paper it has been shown how semantic conflicts can be solved. The
foundations for semantic conflict resolution among aspects have been stated.
They include the use of semantic labels for aspects, the early characterisation of
conflicting situations, and the use of a coordinator aspect to detect and resolve
runtime conflicting situations.

The proposed approach brings the benefits of coordinated aspectual be-
haviour. At the same time, obliviousness among aspects is preserved by using
metadata.

Aspects can be designed and implemented separately and, later on, in an in-
tegration phase, their conflicts can be studied and strategies for solving them im-
plemented. Since strategies are expressed in terms of aspects’ metadata, strate-
gies are loosely coupled to aspects. Therefore, they can be easily reused. Besides
this, strategies define tailored priorisation for aspects in each specific situation,
this feature contrasts with other fixed priorisation approaches such as [14].

Unlike other approaches, where a redesign of the aspects is required when
a conflict is found [7,10], this approach allows the independent development of
aspects, leaving conflict resolution isolated from the aspects.

86

Using this approach it is actually possible to prevent conflicting situations by
building a set of strategies that carefully depict potential problematic situations
and deactivate them before becoming a real problem.

These ideas have been illustrated in the field of resource aware, but they
can be extrapolated to other situations where aspects manage a common base
of resources. This approach has been develop to deal with non-core aspects.
Working with core aspects require a careful and complete study of all possible
situations, since manage such aspects may lead the system to stop complying
its functionality. Our future work includes the generalisation of the presented
approach in order to cope with aspectual conflicts in different usage contexts.
Part of this work may involve the development of onthologies and the definition
of conflict resolution strategies in terms of them.

References

Java aspect components. http://jac.objectweb.org/.

Jboss aop. http://www.jboss.org.

Jboss rules engine. http://www.jboss.com/products/rules.
Spring framework. http://www.springframework.org.

Al

AspectJ project.

http://www.eclipse.org/aspectj/.

6. L. M. J. Bergmans. Towards detection of semantic conflicts between crosscutting
concerns. In J. Hannemann, R. Chitchyan, and A. Rashid, editors, Analysis of
Aspect-Oriented Software (ECOOP 2003), July 2003.

7. S. Casas, C. Marcos, V. Vanoli, H. Reinaga, L. Sierpe, J. Pryor, and C. Saldivia.
Administracién de conflictos entre aspectos en aspectj. In Proceedings of the Fourth
Argentine Symposium on Artificial Inteligence, pages 1-11, 2005.

8. V. Cepa and S. Kloppenburg. Representing explicit attributes in uml. 7th Inter-
national Workshop on Aspect-Oriented Modeling (AOM), 2005.

9. A. Dantas and P. Borba. Developing adaptive j2me applications using aspectj. J.
UCS, 9(8):935-955, 2003.

10. R. Douence, P. Fradet, and M. Siidholt. Composition, reuse and interaction
analysis of stateful aspects. In K. Lieberherr, editor, Proc. 3rd Int’ Conf. on
Aspect-Oriented Software Development (AOSD-2004), pages 141-150. ACM Press,
Mar. 2004.

11. R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification
and obliviousness. pages 21-35. Addison-Wesley, Boston, 2005.

12. JCP. A metadata facility for the javatm programming language, 2004.
http://www.jcp.org/en/jsr/detail7id=175.

13. R. Laddad. Aop and metadata: A perfect match, March 2005. http://www-
128.ibm.com/developerworks/java/library/j-aopwork3/.

14. A. M. D. Moreira, J. Araijo, and A. Rashid. A concern-oriented requirements
engineering model. In O. Pastor and J. F. e Cunha, editors, CAiSFE, volume 3520
of Lecture Notes in Computer Science, pages 293—-308. Springer, 2005.

15. MSDN. C # language specification - attribute specifica-

tion. http://msdn.microsoft.com/library/default.asp?url ~ =/library/en-

us/csspec/html/velrfesharpspec_17_2.asp.

87

16.

17.

18.

C. Shin and W. Wook. Conflict resolution method using context history for
context-aware applications. In First International Workshop on Ezxploiting Context
History in Smart Environment. Pervasive 2005, 2005.

F. Tessier, M. Badri, and L. Badri. A model-based detection of conflicts between
crosscutting concerns: Towards a formal approach. In M. Huang, H. Mei, and
J. Zhao, editors, International Workshop on Aspect-Oriented Software Develop-
ment (WAOSD 2004), Sept. 2004.

A. Zambrano, S. E. Gordillo, and I. Jaureguiberry. Aspect-based adaptation
for ubiquitous software. In F. Crestani, M. D. Dunlop, and S. Mizzaro, editors,
Mobile HCI Workshop on Mobile and Ubiquitous Information Access, volume 2954
of Lecture Notes in Computer Science, pages 215—226. Springer, 2003.

88

Statement Annotations for Fine-Grained Advising

Marc Eaddy Alfred Aho

Department of Computer Science
Columbia University
New York, NY 10027
{eaddy,aho}@cs.columbia.edu

Abstract. AspectJ-like languages are currently ineffective at modularizing het-
erogeneous concerns that are tightly coupled to the source code of the base
program, such as logging, invariants, error handling, and optimization. This
leads to complicated and fragile pointcuts and large numbers of highly-
repetitive and incomprehensible aspects. We propose statement annotations as
a robust mechanism for exposing the join points needed by heterogeneous con-
cerns and for enabling declarative fine-grained advising.

We propose an extension to Java to support statement annotations and As-
pect)’s pointcut language to match them. This allows us to implement hetero-
geneous concerns using a combination of simple and robust aspects and explicit
and local annotations. We illustrate this using a logging aspect that logs mes-
sages at specific locations in the source code. Statement annotations also sim-
plify advising specific object instances, local variables, and statements. We
demonstrate this using an aspect that traces method calls made to specific object
instances and calls made from specific call sites.

Keywords: statement annotations, byte code annotations, fragile pointcut prob-
lem, logging problem, statement-level join points, instance-local advising

1 Introduction

Aspect-Oriented Programming (AOP) improves the separation of concerns by modu-
larizing the code related to a concern that would otherwise be scattered throughout a
program and tangled with the code related to other concerns. AspectJ-like languages
are designed to modularize homogeneous concerns, which crosscut at module bounda-
ries [17] and have a regular structure and common behavior [23].

1.1 Heterogeneous Concerns

Unfortunately, heterogeneous concerns, which exhibit irregular logic, are located at
arbitrary places in the source code, and/or are highly coupled to the low-level struc-
ture of the code, are difficult to modularize using AspectJ-like languages [23]. Work-
arounds include creating complex and fragile pointcuts, writing a large number of
highly-repetitive aspects, refactoring the base program to artificially expose the
needed join points, or even abandoning AOP in favor of non-AOP solutions. The in-

ability for AOP languages to effectively express heterogeneous concerns severely lim-
its the potential for AOP to separate crosscutting concerns.

This problem was first observed by researchers working on refactoring programs to
use aspects. Murphy et al. needed to identify join points “in the middle of methods”
to refactor graphical user interface code [15]. Since Aspect] could not capture these
join points directly, their solution was to insert dummy method calls “which exist
solely to provide access to the desired join points.” This workaround has become so
common in the Aspect] community that it is considered a de facto aspect refactoring
idiom [8] [13].

In another refactoring exercise, Sullivan et al. observed that the logging concern
was scattered across 180 different locations in the HyperCast application [20]. The
arbitrary locations of the log messages required 20-30 complicated pointcut declara-
tions that could only approximate the actual locations. Furthermore, the pointcuts
were highly dependent on the structure of the underlying source code and would easily
break when the code is modified. This is referred to as the fragile pointcut problem
[14] [20]. Pointcut fragility in turn leads to the AOSD-evolution paradox [22], where
programs written using AOP are actually harder to evolve, even though they are more
modular. Other researchers have commented on the fragility of logging, optimization,
and error handling aspects and the need for more robust and powerful pointcut lan-

guages [1] [5] [14] [17] [18] [19].

1.2 Our Approach: Statement Annotations

Statement annotations allow us to “name” any statement in a method body in a de-
clarative fashion and attach arbitrary metadata. Statement annotations can be used to
expose the join points needed to implement a heterogeneous concern or to perform
fine-grained (instance- and statement-level) advising. This provides many benefits:

Pointcuts are simple and robust because they depend on semantically meaningful
annotations instead of arbitrary program syntax or source locations [14] [3];

Advising is more fine-grained because advice can be applied to individual state-
ments or object instances. While this is possible using other techniques, statement an-
notations provide a simple declarative way to perform fine-grained advising;

Advice is more reusable because it can access annotation metadata instead of hard-
coding it;

Concerns can be easily integrated using a unified AOP solution instead of requir-
ing a mixture of an AOP solution (for homogeneous concerns) and a non-AOP solu-
tion (for heterogeneous concerns);

The relationship between the base code and aspects is local and explicit, improv-
ing comprehensibility and maintainability [11].

Statement annotations must be invasively scattered throughout the base program
and are thus crosscutting. We view this as an engineering tradeoff: we gain robust-
ness, explicitness, and locality at the expense of obliviousness and modularity. Modu-
larity is not sacrificed completely, however. Indeed, the parts of the concern that can
be modularized effectively are specified in the aspect; the remainder is specified using
annotations.

90

public class HelloWorld {
public static void main(String args[]) {
@State(State.Starting)
System.out.println ("Hello, World!");

Listing 1. Statement annotation example.

1.3 Outline

In Section 2 we describe statement annotations, show how pointcut matching in As-
pectl-like languages can be easily extended to match them, and how they can be used
to implement the heterogeneous logging concern. In Section 3 we describe fine-
grained advising and how it can be used to enable instance- and statement-level trac-
ing. We discuss the tension between locality/explicitness and modularity with respect
to statement annotations in Section 4 and related work in Section 5. Section 6 con-
cludes.

2 Statement Annotations

Java and C#/.NET provide a flexible mechanism for allowing the programmer to at-
tach annotations to program elements such as classes, methods, and fields. The anno-
tations are stored in the class file as metadata and can be retrieved via reflection.
However, these languages do not support annotating statements or byte code within
the method body. This is unfortunate because statement annotations have the potential
for a wide variety of uses:

Optimization — Statement annotations could potentially be used to enable
OpenMP!-style parallel processing directives for Java. For example, some researchers
have annotated for-loops to guide loop parallelization [2]. In addition, a compiler or
other tool could annotate byte code with static analysis results to improve opportuni-
ties for optimization at JIT-time.

Bookkeeping — A form of byte code marking is used by Aspect] to prevent recur-
sive weaving [10], by Steamloom to allow efficient enabling/disabling of advice at
runtime [9], and by Spec#? to ignore injected code when performing static analysis.
However, none of these systems allow arbitrary user-defined metadata to be associated
with byte code.

! http://www.openmp.org
2 http://research.microsoft.com/specsharp

91

Debugging and fault isolation — A debugger could selectively show or hide in-
jected code based on the programmer’s desired level of obliviousness. Injected byte
code could be marked to indicate the source weaver or tool to improve fault isolation.
Listing 1 shows an example of what a statement annotation could look like in Java.?

2.1 Statement Annotation Matching

In Aspect] 5, pointcut expressions may contain annotation patterns, but they can only
match regular Java annotations defined on methods, fields, etc. We extend the point-
cut expression matching algorithm to match statement annotations, effectively extend-
ing the Aspect] join point model to include any annotated statement. This gives us
fine-grained control over when advice is applied and can simplify pointcut expressions
that have many special cases.

Our proposed extension is very simple: Any pointcut expression that allows an an-
notation pattern should consider statement annotations in addition to regular annota-
tions. For example, if method foo has the method annotation MA, and the statement
annotation SA is used at a particular call-site, then the following Aspect] pointcuts
will match that call-site:

call (@MA * *(..))
call (@SA * *(..))
@annotation (MA)
@annotation (SA)

This matching algorithm allows us to use the same annotation at either method- or
statement-level granularity. If in the future we decide we need to be able to distin-
guish the two, we can introduce a new pointcut that only matches statement annota-
tions.

2.2 Statement Annotations Simplify Complicated Pointcuts

In the HyperCast paper, Sullivan et al. observed that while it is sometimes possible to
create pointcuts that match specific statements, they can become quite complicated
[20]:

pointcut LogicalAddrChanged (Node node) :

set (LogicalAddress Node.MyLogicalAddress)

&& (withincode (void Node.messageArrived (Message))
|| withincode (void Node.timerExpired (Object))
|| withincode (void Node.resetNeighborhood()))

&& target (node);

Tourwé et al. observed that these kinds of complicated pointcuts arise because the
pointcut language is too simplistic [22]. This hinders the evolvability of the base pro-
gram because the pointcuts are likely to break if the underlying code changes.

3 For the remainder of the paper we will use examples in Aspect] and Java. However, our ex-
tensions can be easily made to other languages.

92

This pointcut can be simplified if we are allowed to annotate the base program us-
ing method annotations:

pointcut LogicalAddrChanged (Node node) :
set (LogicalAddress Node.MyLogicalAddress)
&& withincode (@MyAnnotation * *(..))
&& target (node);

We can further simplify the pointcut by annotating the specific statements that re-
quire advising:*

pointcut LogicalAddrChanged (Node node) :
set (@MyAnnotation LogicalAddress
Node.MyLogicalAddress)
&& target (node);

In general, annotations allow program elements to be explicitly named, eliminating
the need for complicated pointcut expressions [3] or meta-programming. Annotations
are explicit and collocated with the source code so they are more likely to be main-
tained as the program evolves. Pointcuts are only dependent on the annotations in-
stead of the underlying structure of the code so they are more robust to changes and
more reusable.

In the next section we show how to use a simple pointcut that matches statement
annotations to implement the heterogeneous logging concern.

2.3 Heterogeneous Concern Example: Logging

Logging is the ability to record user-defined messages at specific points during the
execution of the application. Logging is an example of a heterogeneous concern be-
cause its very nature is ad hoc—each log message is unique and often located at arbi-
trary points in the source code. Although both the tracing and logging concerns are
complementary, and indeed often co-exist within the same application, logging is
cumbersome to express using existing pointcut languages. This problem has become
known colloquially as the logging problem [4] [12] [1] [21], however, it is a general
problem that occurs anytime we try to capture a heterogeneous concern using AspectJ-
like pointcut languages.

Listing 2 shows how the Note statement annotation can be used to expose specific
join points within a method and attach arbitrary user-defined messages which can be
logged by an aspect. When naming annotations, Kiczales and Mezini advice is to
“choose a name that describes what is true about the points, rather than describing
what a particular advice will do at those points.” [11] Using their terminology, we

4 Sullivan et al. took a different approach to simplify the pointcut that requires the base pro-
grammer to update a finite state machine (FSM) [20]. We believe our approach is comple-
mentary. Indeed, statement annotations can be used to update the FSM.

93

...several statements...
a. @Note("Searching for plug-ins...")
...several statements...

@Note ("Entering long, but not infinite, loop")
b. while (true) { ... }
@Note ("Loop exited successfully")

a-b. Using statement annotations to expose interesting events.

aspect LogNotesAspect {
before (Note noteAnnotation)
@annotation (noteAnnotation) {

System.out.println (noteAnnotation.value () +
" [" + thisJoinPoint + "1");
}
} c. Aspect for logging notes.

Listing 2. Logging using statement annotations.

chose an “annotation-property”-like name for the annotation, e.g., Note, as opposed to
an “annotation-call”-like name, e.g., Log.’

Statement Annotations versus Procedure Calls and Macros. The statement anno-
tations in Listing 2 could be replaced with plain old procedure/method calls or mac-
ros. However, advice methods are more powerful because they have access to richer
join point context information and more evolvable because they can access this con-
text implicitly. Another difference is that plain old method calls are always called,
and therefore always incur some overhead, even if the aspect is disabled. While mac-
ros can be used to alleviate this overhead by expanding to nothing at compile time,
they do not help us at runtime.

Finally, resorting to method calls and macros to implement a crosscutting concern
represents a fundamental failure of our AOP language. Some crosscutting concerns
are implemented using AOP and some using non-AOP techniques even though the
concerns may be very similar (e.g., tracing versus logging, error detection versus error
handling) and may even share a common base implementation.

Statement Annotations versus Dummy Method Calls. In Listing 2a, an Event an-
notation appears at an arbitrary location in a method body. Without the annotation it
would be difficult or impossible to identify the join point using an Aspect] pointcut,
and, even if we could, the resulting pointcut would be very fragile [20]. An alterna-
tive to using a statement annotation is to insert a dummy method call at this location, a
common Aspect] programming idiom.

5 We thank Dean Wampler for suggesting this.

94

However, we find this unsatisfactory for several reasons. Dummy methods require
a proliferation of empty methods which adversely affects design and code quality and
can be confusing to the base programmer [15]. Statement annotations obviate the
need for empty methods. Furthermore, statement annotations are less confusing be-
cause programmers familiar with annotation usage in Java and .NET are accustom to
the interpretation of annotations at compile-time or postcompilation. Functionality
that is woven into the base program as a result of the annotations will be less surpris-
ing, than, say, using around advice to replace empty method calls.

Unlike a statement annotation, a dummy method call is not directly associated with
the next statement in the method body. Instead, it adds a new join point to the pro-
gram. In the cases where the use of a statement annotation mirrors a method call or
macro (aka an “annotation-call”), a dummy method call can be used instead. How-
ever, in the cases where a statement annotation is used to name and/or associate meta-
data with another statement (aka an “annotation-property”’), dummy methods cannot
be used. This makes dummy methods unsuitable for expressing some heterogeneous
concerns such as local variable invariants and loop optimization hints [7] [6] and for
performing fine-grained advising.

Statement Annotations Improve Statement-Level Pointcuts. Listing 2b shows
statement annotations that bracket a while-loop. While Aspect] cannot match loops,
some researchers have proposed extensions to the pointcut language to support match-
ing statement-level join points of this kind [7] [6] [17]. While these proposed point-
cuts make it easier to advise arbitrary statements, they are still fragile when they are
used to identify specific statements.

Statement annotations allow individual statements to be discriminated without rely-
ing on the specific statement syntax. This means that if a while-loop is changed to a
for-loop by the base programmer, the aspect will be unaffected. Furthermore, because
statement annotations are explicit they are more likely to be kept up to date when the
base source code is modified.

3 Declarative Fine-Grained Advising

Statement annotations are the first technique we are aware of for supporting declara-
tive (as opposed to programmatic) instance- and statement-level advising. Examples
of systems that support programmatic advising are Steamloom [9] and Eos [16]. The
Aspect] aspectOf construct supports this to a lesser extent. The benefit of using
statement annotations is that they only declare the programmer’s intention. The actual
advising is done by the aspect, where low-level decisions such as if and how instances
will be advised can be deferred, rather than scattering these decisions throughout the
base program, thus improving the separation of concerns.

95

class BankAccount {
public void transferFundsTo (float amount,
BankAccount destination) {
// Trace all calls made to the ar object
@Trace AuthorizationRequest ar =
new AuthorizationRequest (this, destination);

// Trace a call made at a specific call site
@Trace destination.deposit (amount) ;

a. Statement annotations for tracing instances and specific method calls.

aspect TraceAspect {
static Set instances = new HashSet ();

after () returning(Object o)
call (@Trace *.new(..)) {

instances.add (o) ;

}
before (Object o) : call(* *(..)) && target (o) &&
if (instances.contains (o)) {

System.out.println("Calling: " + thisJoinPoint);
}
before : call (@Trace * *(..)) {
System.out.println("Calling: " + thisJoinPoint);
}
} b. Trace aspect using statement annotation matching.

Listing 3. Instance- and statement-level tracing. The statement annotations in
(a) indicate that all calls to the ar instance should be traced as well as the desti-
nation.deposit method call The first advice in (b) adds instances created with
the Trace annotation to the set. The second advice traces all calls to instances in the
advised set. The third advice traces all calls originating from call-sites marked with
the Trace annotation.

Tracing is the ability to record some or every method call® made during the execu-
tion of an application. Unlike logging, tracing is a homogeneous concern because it is
highly structured in nature—the message format is consistent and the message is re-
corded at regular points in the execution of the application that are easily quantified
using Aspect]-like pointcuts.

Annotations allow us to use tracing in a more heterogeneous fashion. For example,
imagine we have a Trace annotation. We can use it as a method annotation and attach
it to a particular method so that all calls to that method will be traced. Or we can use

¢ As well as other join points that can be easily expressed using Aspect]-like pointcut lan-
guages, such as field access.

96

it as a statement annotation to trace calls made to a specific object instance or to ad-
vise specific call-sites. This would be hard to do using existing pointcut languages.

Listing 3 shows an example of instance-level advising. The Trace statement anno-
tation marks the ar object instance which will cause all method calls to it to be traced.
The TraceAspect has advice that matches constructor calls that are marked with the
Trace annotation and adds the object instance to the set of advised instances. Another
advice matches any method call to an instance in the advised set.

In their paper on optimization aspects, Siadat et al. needed to advise a specific
method call out of multiple calls to that method in the method body, but observed that
Aspect]J-like pointcut languages did not support this level of granularity [19]. Listing
3 shows an example of how this statement-level advising can be achieved using state-
ment annotations.

Notice that the Tracing aspect is a normal Aspect] aspect. Without statement anno-
tation matching support, the aspect will trace method calls to any instance of a class
that has a Trace annotation on its constructor. With annotation support, we can nar-
row the focus to specific instances and call sites.

4 Discussion

Looking at the examples, it may appear that the logging and tracing concerns have not
been modularized at all. However, the parts of these concerns that can be modular-
ized effectively, including how messages are formatted, what join point context is
used, and where messages are sent, are modularized by the aspect. For example, it
would be relatively easy to change the aspects to send messages to a different location
or to support asynchronous logging and tracing.

The parts of these concerns that cannot be modularized effectively, namely the
user-defined messages, the locations in code, and which object instances and state-
ments to advise, are better captured using statement annotations. The explicitness and
locality of statement annotations makes it less likely that changes to the source code
will invalidate the aspects, and makes it unnecessary for the programmer to have
global system knowledge to assure that the pointcuts match correctly [14].

5 Related Work

Rho et al. present a fine-grained generic aspect language called LogicAJ2 [22]. Their
pointcut language can match arbitrary declarations, statements, and expressions, and
can bind to arbitrary join point context. The use of meta-variables in pointcuts, intro-
ductions and advice enables them to achieve heterogeneous, context-dependent ef-
fects. Unfortunately, identifying specific statements still requires referencing concrete
base entities. This introduces dependencies which might break if base entities change.
By explicitly annotating the base code, using our statement annotations, for exam-
ple, the base programmer could express these conceptual dependencies of aspects on

97

base entities in a less fragile way at the expense of giving up obliviousness and intro-
ducing scattering in the base code. This remains interesting future work.

6 Conclusion

We showed that by combining statement annotations and pointcuts, we can support in-
stance- and statement-level advising, simplify pointcut expressions to make them more
robust and reusable, and elegantly express heterogeneous concerns such as logging.
We did this by proposing a natural extension to the Aspect] pointcut matching algo-
rithm that is consistent with Aspect]’s overall language philosophy.

For identifying individual statements and code locations, statement annotations are
more robust than using complex pointcuts or meta-programming, and more elegant
and obvious than using dummy methods. For advising specific object instances and
statements, statement annotations are simpler and more succinct than using program-
matic advising.

Unfortunately, annotations require intrusive (nonoblivious) changes to the base
program and do not completely modularize concerns. It remains our future work to
develop an AOP solution that can completely modularize heterogeneous concerns,
possibly involving aspect visualization or automatic aspect refactoring, in a way that is
easy to understand, maintain, and evolve.

Acknowledgements. We thank Boriana Ditcheva for creating a preprocessor for le-
galizing statement annotations for C#, Vibhav Garg for adding support for statement-
level advising to Steamloom, and Kevin Sullivan and Yuanyuan Song for information
about HyperCast. We also thank Matthew Arnold, Pascal Costanza, Giinter Kniesel,
Dean Wampler, and the RAM-SE workshop committee for their feedback.

References

1. R. Bodkin, A. Colyer, and J. Hugunin. “Applying AOP for Middleware Platform Independ-
ence,” Practitioner Rpt.. In Proc. of Aspect-Oriented Soft. Dev. (AOSD’03), Mar 2003.

2. W. Cazzola, A. Cisternino, D. Colombo. “[a]C#: C# with a Customizable Code Annotation
Mechanism,” In Proc. of the Symposium on Applied Computing (SAC'05), Mar 2005.

3. V. Cepa and S. Kloppenburg. “Representing Explicit Attributes in UML,” In Proc. of the
Workshop on Aspect-Oriented Modeling (AOM’05), Mar 2005.

4. J. W. Cocula. “Can AOP really solve the ‘logging problem’?,” Online posting. Aspect]
Disc. Forum. Apr 2003. http://dev.eclipse.org/mhonarc/lists/aspectj-users/msg00383.html

5. A. Colyer, A. Clement, R. Bodkin, and J. Hugunin, “Using Aspect] for component integra-
tion in middleware,” Practitioner Rpt.. In Proc. of Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’03), Oct 2003.

6. B. Harbulot and J. Gurd. “Using Aspect] to Separate Concerns in Parallel Scientific Java
Code,” In Proc. of Aspect-Oriented Soft. Dev. (AOSD’04), Mar 2004.

7. B. Harbulot and J. Gurd. “A Join Point for Loops in Aspect],” In Proc. of Aspect-Oriented
Soft. Dev. (AOSD’06), Mar 2006.

98

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

W. Harrison, H. Ossher, and P. Tarr. “Asymmetrically vs. Symmetrically Organized Para-
digms for Software Composition,” IBM Rsch. Rpt. RC22685 (W0212-147), Dec 2002.

M. Haupt, M. Mezini, C. Bockisch, T. Dinkelaker, M. Eichberg and M. Krebs. “An Execu-
tion Layer for Aspect-Oriented Programming Languages,” In Proc. of Virtual Execution
Environments (VEE'05), Jun 2005.

E. Hilsdale and J. Hugunin. “Advice weaving in Aspect],” In Proc. of Aspect-Oriented
Software Dev. (AOSD’04), Mar 2004.

G. Kiczales and M. Mezini. “Separation of Concerns with Procedures, Annotations, Ad-
vice and Pointcuts,” In Proc. of the European Conference on Object-Oriented Programming
(ECOOP’05), Springer LNCS, Jul 2005.

G. Kiczales. “Can AOP really solve the ‘logging problem’?” Online posting. Aspect]
Disc. Forum, Apr 2003. http://dev.eclipse.org/mhonarc/lists/aspectj-users/msg00390.html
G. Kiczales. “General Best Practice Question,” Online posting. Aspect] Disc. Forum, Jul
2003. http://dev.eclipse.org/mhonarc/ lists/aspectj-users/msg00726.html

C. Koppen and M. Stoerzer. “PCDiff: Attacking the Fragile Pointcut Problem,” In Proc. of
the European Interactive Workshop on Aspects in Software (EIWAS’04), Aug 2004.

G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard. “Separating Features in Source
Code: An Exploratory Study,” In Proc. of the International Conference on Software Engi-
neering (ICSE’01), May 2001.

H. Rajan and K. Sullivan. “Eos: Instance-Level Aspects for Integrated System Design,” In
Proc. of the European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE’03), Sept 2003.

H. Rajan and K. Sullivan. “Generalizing AOP for Aspect-Oriented Testing,” In Proc. of
Aspect-Oriented Soft. Dev. (AOSD’05), Mar 2005.

T. Rho, G. Kniesel, and M. Appeltauer. “Fine-Grained Generic Aspects,” in Proc. of the
AOSD Workshop on Foundations of Aspect-Oriented Languages (FOAL’06), March 2006.
J. Siadat, R. J. Walker, and C. Kiddle. “Optimization Aspects in Network Simulation,” In
Proc. of Aspect-Oriented Soft. Dev. (AOSD’06), Mar 2006.

K. Sullivan, W. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari, and H. Rajan, “Informa-
tion Hiding Interfaces for Aspect-Oriented Design,” In Proc. of the European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE’05), Sept 2005.

K. Sullivan. “Handling Logging and Tracing Concerns,” Online posting. AOSD.NET
Disc. Forum, Jul 2005. http://aosd.net/pipermail/discuss_aosd.net/2005-July/001621.html
T. Tourwé, J. Brichau, and K. Gybels. “On the Existence of the AOSD-Evolution Para-
dox,” In Proc. of the AOSD 2003 Workshop on Software Engineering Properties of Lan-
guages for Aspect Technologies, Mar 2003.

M. Trifu and V. Kuttruff, “Capturing Nontrivial Concerns in Object-Oriented Software,” In
Proc. of the Working Conference on Reverse Engineering (WCRE'05), Nov 2005.

99

Dynamic Refactorings: improving the program
structure at runtime

Peter Ebraert * and Theo D’Hondt

Programming Technology Lab, Vrije Universiteit Brussel, Pleinlaan 2, B-1050
Brussel, Belgium

Abstract. Many software systems must always stay operational, and
cannot be shutdown in order to adapt them to new requirements. For
such systems, dynamic software evolution techniques are needed. In this
paper, we show how a restructuring technique — called refactoring — can
be applied on running systems in order to facilitate future evolutions. We
extend the pre- and post-conditions of the basic refactorings in order to
ensure application consistency before and after the restructuring takes
place.

1 Introduction

People always say that you should never change a system that is working fine.
However, even if a software system seems to work properly from a user’s point
of view, it may be difficult to maintain or adapt from a developer’s point of
view. As such, it may be very cumbersome to evolve the system by adding a new
feature, fixing a bug or porting the system to a new environment [1].

In all these situations where a software system is not flexible enough to allow
a certain change, the technique of software refactoring can be used [2]. According
to Fowler [3], a refactoring is “a change made to the internal structure of software
to make it easier to understand and cheaper to modify without changing its
observable behaviour”. Refactorings can be used to simplify the structure of a
software system in order to prepare it for a certain evolution step.

Now suppose we have a running system, and we would like to evolve it without
shutting it down. This is a much bigger challenge since there are considerably
more constraints on the running system [4]. Refactoring techniques would be
very useful here too. For example, by reducing the coupling between objects in
a running system, we could at the same time increase the system performance
(from a user point of view) and its understandibility and evolvability (from a
developer point of view).

Until now, refactorings have only been investigated in the context of source
code restructuring [5]. The main contribution of this paper is to show the use
and feasibility of applying dynamic refactorings, i.e., refactorings that modify a
running system.

* Author funded by a doctoral scholarship of the “Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT Vlaanderen)”

The remainder of the paper is structured as follows. In the next section, we
introduce the notion of atomic change sequences, which we will use throughout
this paper for expressing refactorings. Every atomic change from such a sequence
has a set of pre- and post-conditions. The pre-conditions represent some clauses
that must hold for allowing the change. The post-conditions are clauses that hold
after the change has been carried out. Section 3 presents an approach in which
the pre- and post-conditions of the ordinary refactorings are extended in order
to meet with the extra requirements that come with the dynamicity. In section
4 we provide a glimpse on how this approach can be applied in Visual Works, an
IDE for the Smalltalk programming language. We conclude by evaluating our
approach on a conceptual level in section 5.

2 Atomic Change Sequence

Refactoring object-oriented programs typically replaces a set of classes C7, Cs,
Cs, ... by their new versions C{, C}, C%,... We use the notation AC; to denote
the difference between C; and C}. In this section, we first define a set of atomic
changes that can be used as the building blocks for specifying the atomic change
sequence — the AC that must be applied in an atomic way in order to apply the
corresponding refactoring.

Most of the differences we want to express can be represented by methods and
instance variables. This is why our meta-object protocol currently implements
the set of atomic change transactions that is shown in table 1. In the future we
intend to extend this set to cover a more realistic set of applications.

Scope |Atomic Change|Explanation
Class AC Add an empty Class.
DC Delete an empty Class.
CC Changes a Class name.
Variable| AV Adds an instance variable to a class.
DV Remove an instance variable from a class.
Method [AM Adds a method to a class.
DM Deletes a method from a class.
CM Changes the implementation of a method.
ML Change the Method Lookup.

Table 1. Atomic Changes

The most simple atomic changes incorporate the ones on the scope of classes:
adding empty classes (AC), deleting empty classes (DC), and changing a class
name (CC) have a small impact on the system and can be performed without
too many constraints. The only pre-requisit of the AC and CC is that name-
clashes should be avoided, and only be tolerated only when intended (in case of
polymorphism).

The changes on the scope of instance variables are a bit harder. As a result
of an added variable (AV), all objects that are instance of this class have a new

102

variable they can use to store values. By default, the value will be set to nil. A
deleted variable (DV), deletes the variable in all the instances of the class. This
is a dangerous operation as it could lead to runtime exceptions, if the variable is
still used somewhere. That is why this atomic change has a prerequisite which
states that the variable is not used throughout the system. Note that there is
no operation of modifying a variable, as that can easily be modeled by deleting
and adding the variable.

Finally, there are the changes that affect the methods. As a result of an
added method (AM), all objects that are instance of this class will automatically
understand this new method thanks to the languages method lookup mechanism.
When a delete method (DM) is applied, all instances of this class may no longer
understand this method. Hence, one should be very careful with this operation
as it can give rise to runtime exceptions. The same counts for a changed method
(CM), as this also has an impact on all objects that are instance of this class or
one of its subclasses. This is why a CM and a DM have the prerequisites that
the method is either still visible (somewhere up the inheritance chain), or either
not called anywhere in the system.

3 Proposed solution

The following section describes the extension we want to make to the already
known refactorings so that they can be safely applied to running systems. We
start by explaining two basic refactorings and show how they are characterized
in [3]. We show that the mechanics of applying the refactorings — as they are
presented by Fowler — are not sufficient for applying the refactorings in a safe way
on a running system. We then introduce extra prerequisites which ensure safety,
and exemplify them by means of the corresponding two dynamic refactorings.
We conclude the section by showing how the dynamic refactorings can be carried
out on a running system.

3.1 Static Refactorings

In [3], Fowler presents a catalog of frequent refactorings. Every refactoring con-
sists of a name, a motivation and the mechanics for applying the refactoring.
We chose to explain our approach on 2 refactorings: “Pull Up Method” ([3] page
322) and “Push Down Method” ([3] page 328).

Pull Up Method Fowler introduced this refactoring for getting rid of unneeded
code duplication. Its idea is to lift the common behavior of some classes to a
common superclass as shown in figure 1. In table 2 we show the mechanics of
the refactoring (represented as an atomic change sequence). As the pulled up
method remains visible for all the subclasses and may even become visible for
more classes, there can only be an addition of behavior. Every step has its pre-
and post-conditions which must hold, for the refactoring to be valid. We can see
that an AM leads to the wvisibility of that method in the class and its subclasses.

103

We also see that before a DM, we must assure that the method is either not
called anymore, or either visible in one of the superclasses. Those requirements
are captured in the pre- and post-conditions of the atomic changes.

Employee
Employee
; gethlame
Salesman Engineer
Salesman Engineer
getNarne getNarme
Fig. 1. Pull Up Method.
Place Pre ‘Change‘Parameters Post
Employee AM ”getName” |visible
Salesmen |no callers or visible{ DM ”getName”
Engineer [no callers or visible| DM ”getName”

Table 2. The atomic change set for the Pull Up Method

Push Down Method Fowler introduced this refactoring for making the system
behave in a more logical way, by specifying the behavior in the place where it
makes more sense. Figure 2 shows that the refactoring is used for moving some
behavior from a super class to a subclass. In table 3 we show the mechanics
(represented as an atomic change sequence). Pushing down a method can be
seen as a removal of behavior for all the classes in which the method is not
visible anymore.

Place Pre ‘ Change ‘ Parameters ‘ Post
Salesmen AM ”getName” |visible
Engineer AM ” getName” |visible
Employee|no callers or visible| DM ”getName”
Engineer [no callers or visible| DM ”getName”

Table 3. The atomic change set for the Push Down Method

104

Employee
Employee

Salesman
Salesman Engineer Engineer

getQuota

Fig. 2. Push Down Method.

3.2 Extra needs for dynamicity

The difference between stopped and running systems lies in the system state,
which is only incorporated in the latter. In fact, a running system can be seen
as moving from one consistent state to another while the processing of trans-
actions goes on. A consistent state is a state from which the application can
continue processing normally, without processing to an error state. When ap-
plying refactorings at runtime, we should always make sure that the application
state remains consistent before and after the application of the update.

For ensuring state consistency before the application, we must make sure
that the affected classes are in a quiescent status. An object in a quiescent
status was proven to remain in a consistent state [6]. An object is in a quiescent
status if: (i) it is not currently engaged in a transaction that it initiated, (ii) it
will not initiate new transactions, (iii) it is not currently engaged in servicing
a transaction, and (iv) no transactions have been or will be initiated by other
objects which require service from this objects [6]. Theoretically, quiescence is
achieved by adding extra preconditions which must hold before a refactoring can
be applied. Practically, those preconditions are met by deactivating all objects
that are affected by the refactoring. The deactivation and activation itself are
added to the atomic change sequence of the refactoring. The post-condition of a
deactivation is that the object is in a quiescent status Q(O). The post-condition
of an activation is that the object is in an active status A(O).

Ensuring state consistency after the update clearly depends on the update
itself. In our case, the updates only consist of refactorings. Since Fowler defined
a refactoring as “a change made to the internal structure of software to make
it easier to understand and cheaper to modify without changing its observable
behaviour”, we are by definition only making structural changes. If we make
those changes in a correct way, state consistency can be easily assured.

3.3 Dynamic Refactorings

Extending the atomic change sequence of a refactoring is a process that can
be automated. We need to add pre-conditions, postconditions, and actions that
make sure that those pre- and post-conditions are eventually met. In general,

105

we first establish the set of all classes that are affected by the refactoring, and
for each of them, we add a quiescence pre-condition. In practice, however, this
process can be optimized, since quiescence is not needed for certain classes that
are involved in the refactoring. For example adding a method to a class can never
lead to run-time errors. We now exemplify the extension of the atomic change
sequences by showing the two refactorings that were presented before.

Dynamic Pull Up Method In table 4 we show the mechanics of the dynamic
refactoring (represented as an atomic change sequence). We can see that the
actual refactoring is performed when the affected classes reside in a quiescent
status and that it is surrounded by actions that ensure quiescence.

Place Pre Atomic cha.|Parameters|Post
Salesmen |A (Salesmen) Deactivate Q(Salesmen)
Employee|A (Employee) Deactivate Q(Employee)
Engineer |A(Engineer) Deactivate Q(Engineer)
Employee AM ?getName” |visible
Salesmen |Q(Salesmen), no callers or visible DM ? getName”

Engineer |Q(Engineer), no callers or visible DM ? getName”

Salesmen |Q(Salesmen) Activate A(Salesmen)
Employee|Q(Employee) Activate A(Employee)
Engineer |Q(Engineer) Activate A(Engineer)

Table 4. The atomic change set for the Dynamic Pull Up Method

Dynamic Push Down Method In table 5 we show the mechanics of the
dynamic refactoring (represented as an atomic change sequence). Again, we can
see that the actual refactoring is performed when the affected classes reside in a
quiescent status and that it is surrounded by actions that ensure quiescence.

3.4 Carrying out the refactoring

From the moment we have the change transaction sequence that corresponds
to a certain refactoring, we can start carrying out these changes on the run-
ning system. The changes are applied one by one on the running system, but in
an atomic way (or all changes are applied, or none of them is applied). While
most of the changes can be done transparently, some may require the program-
mer’s interference. This is the case when there is a state involved, that needs
to be preserved. Concretely, when an instance variable is deleted or modified,
the question arises what has to happen with the value of that instance variable.
Either the value can be ignored, or its is needed later in a new instance vari-
able that will be added. Consequently, when an instance variable is added, the
programmer is also requested to interfere, and to tell wether the variable should

106

Place Pre Atomic cha.|Parameters|Post
Salesmen |A(Salesmen) Deactivate Q(Salesmen)
Employee|A(Employee) Deactivate Q(Employee)
Engineer |A(Engineer) Deactivate Q(Engineer)
Salesmen AM ?getName” |visible
Engineer AM ”getName” |visible
Employee|Q(Employee), no callers or visible| DM ? getName”

Engineer |Q(Engineer), no callers or visible |DM ” getName”

Salesmen |Q(Salesmen) Activate A(Salesmen)
Employee|Q(Employee) Activate A(Employee)
Engineer |Q(Engineer) Activate A (Engineer)

Table 5. The atomic change set for the Dynamic Push Down Method

be initialized with a certain value. For example, using Euros instead of Belgian
Francs in our bank accounts requires us to use the following formula: 'take the
old value and multiply it by 40,3399, and use it as the new value’. For methods
in class-based systems, things are much simpler. Because methods are only ref-
erenced through the class itself, adapting them on the class level does the job.
Making these changes is done in practice by using interceptive techniques [7],
which incorporate all the atomic changes that are specified in the meta-object
protocol.

Ensuring quiescence is the hardest part, and consists of two phases. First,
we need to find all the affected objects. In a class-based language, the set of
affected objects of a change on class C' consists of the class itself, its subclasses
and all instances of those classes. Practically, this set can be assembled by using
introspective techniques [7], which allow us to query a class for all its subclasses
and instances.

In the second phase we have to ensure for each of the affected objects, that: (i)
it is not currently engaged in a transaction that it initiated, (ii) it will not initiate
new transactions, (iii) it is not currently engaged in servicing a transaction, and
(iv) no transactions have been or will be initiated by other objects which require
service from this objects. In class-based programming languages, (i) and (iii) can
be assured by making sure that the object is not on the runtime stack. (ii) and
(iv) can be assured by making sure that no messages will be send to the affected
object.

4 Experimental Setup

Because the focus of this paper is on refactorings, we restrict ourselves to class-
based object-oriented languages. Object-oriented languages like Java are ex-
cluded because of the limitations of their reflective capabilities. Smalltalk, on
the other hand, is fully reflective: everything is an object, and can thus be taken
apart, queried for information and possibly be modified. Even messages are ob-
jects, and can thus be monitored and modified when they are sent or received

107

[8]. This is why we chose Smalltalk as the language in which we plan to conduct
the experiments.

The Smalltalk development environment is very dynamic, in the sense that
developing smalltalk code happens in an incremental way, by inspecting the
newly created classes and objects. This is why developing Smalltalk programs
actually happens at runtime. The Smalltalk Refactoring Browser provides sup-
port for static refactorings [9]. But because it does not check for the extra re-
quirements that we have presented in this paper, it sometimes fails to ensure
consistency. That is why we plan to extend the Smalltalk Refactoring Browser
with the support for dynamic refactorings. We will make sure that, before a
refactoring is performed, the refactoring browser will check for the additional
requirements, making sure that the system remains in a consistent state.

5 Evaluation

The main benefit of applying refactorings at runtime is the preservation of the
state and object identity, as we will keep on working on the same (already
existing) class C. Replacing a class C would involve the creation of C’, the
swapping of all relations from C to C’, the deletion of C' and the mapping of the
state from C to C’. Evolving the existing C' component to C’ only involves the
creation of C’ and the propagation of the changes on C. This implies that there
will be no more relation swapping problems and less state mapping problems.

An auxiliary benefit of applying the refactorings at runtime is the presence
of runtime information. Using this information, we do not only depend on static
analysis for finding wether certain pre-conditions hold. In fact, the dynamic in-
formation can help us to overcome the two major shortcoming of the static anal-
ysis. First, because the calculating of some of the pre-conditions can be reduced
to the halting problem [10], static techniques must make approximations for find-
ing wether those pre-conditions hold. Dynamic information can help to improve
the approximations. Second, doing static analysis in a dynamically typed lan-
guage is always hard, because of the lack of type information. A solution to the
problem lies in making a liberal approximation on what the type of some vari-
able is. This is done by executing some scenario’s and by collecting the dynamic
information as the program is executed. Since it is impossible to observe every
possible run of the program, the result is still an approximation depending on
all the scenarios that were executed.

Most of this research is based on the Refactoring book of Fowler [3] in which
he presents for each refactoring, a set of pre-conditions that would ensure that
the refactoring would preserve behavior. The refactorings are defined in terms
of C4++, but many of them are applicable to other OO languages. The only
refactorings that are not applicable to Smalltalk are the ones dealing with types
and access privileges, since Smalltalk does not have these features. This explains
why we will not be able to implement those refactorings in practice.

‘While it is clear that this approach is impossible without reflection, reflection
itself also hinders the approach. Ensuring consistency on a program that uses

108

reflection is a lot harder then on a program that does not allow reflection. So
in a sense reflection can be seen as both our best friend, and our enemy. In this
position paper, we presented two static refactorings and their dynamic equiva-
lents. It is our goal to present a dynamic equivalent for all of the refactorings
that were identified in. For doing so, we will have to extend our metaobject
protocol and maybe introduce new prerequisites. This, however, is subject for
further investigation.

6 Conclusion

In some cases, software systems can not be turned off for carrying out an evo-
lution. This triggers the need for supporting dynamic evolution. We suggested
to apply dynamic refactorings to improve the runtime component structure of
object-oriented software systems for easing future evolution. The approach relies
on the reflective properties of the underlying programming language in order to
modify the application’s behavior.

We start from the static refactorings that were presented by Fowler in [3],
and extend their mechanics in such a way that they can be applied on a running
system without braking consistency. For doing that, we use the quiescence prop-
erty, that was introduced in [6] as a sufficient condition for consistency. We add
quiescence as a prerequisite for the refactorings and show how this can be im-
plemented in a class-based environment that has full reflective capabilities. We
envision the extension of the Smalltalk Refactoring Browser for experimenting
with the dynamic refactorings.

References

1. Lientz, B., Swanson, E.: Software Maintenance Management: A Study of the Main-
tenance of Computer Application Software in 487 Data Processing Organizations.
Addison-Wesley (1980)

2. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. Phd thesis, University
of Illinois at Urbana Champaign (1992)

3. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)

4. Ebraert, P., Vandewoude, Y., D’Hondt, T., Berbers, Y.: Pitfalls in unanticipated
dynamic software evolution. In Cazzola, W., Chiba, S., Saake, G., Tourwé, T.,
eds.: RAM-SE’05 — ECOOP’05 Workshop on Reflection, AOP and Meta-Data for
Software Evolution, University of Magdeburg, Germany, Preprint No. 9 (2005)

5. Mens, T., Tourw’e, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering 30 (2004) 126-139

6. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change man-
agement. IEEE Transactions on Software Engineering 16 (1990) 1293-1306

7. Maes, P.: Computational Reflection. PhD thesis, Artificial Intelligence Laboratory,
Vrije Universiteit Brussel (1987)

8. Messick, S.L., Beck, K.L.: Active variables in smalltalk-80. In: Technical Report
CR-85-09, Computer Research Lab, Tektronix (1985)

109

9. Roberts, D., Brant, J., Johnson, R.: A refactoring tool for smalltalk. Theory and
Practice of Object Systems 3 (1997) 253-263

10. Hopcroft, J.E., Motwani, R., Rotwani, Ullman, J.D.: Introduction to Automata
Theory, Languages and Computability. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2000)

110

Implementing Bounded Aspect Quantification
in AspectJ

Christian Késtner, Sven Apel, and Gunter Saake

Department of Computer Science
University of Magdeburg, Germany
email: {kaestner,apel,saake}Qiti.cs.uni-magdeburg.de

Abstract. The integration of aspects into the methodology of stepwise
software development (SWD) is still an open issue. This paper focuses
on the global quantification mechanism of nowadays aspect-oriented lan-
guages that contradicts basic principles of SWD. One potential solution
to this problem is to bound the potentially global effects of aspects to
a set of local development steps. We discuss several alternatives to im-
plement such bounded aspect quantification in AspectJ. Afterwards, we
describe a concrete approach that relies on meta-data and pointcut re-
structuring in order to control the quantification of aspects. Finally, we
discuss open issues and further work.

1 Introduction

Aspect-oriented programming (AOP) aims at localizing, separating, and encap-
sulating crosscutting concerns [10]. Aspects, the main abstraction mechanism
of AOP, modularize those concerns that otherwise would be tangled with and
scattered over other concern implementations. While some studies illustrate the
success of AOP in several domains, e.g. middleware [7, 19], database systems [17],
and operating systems [12], several issues remain controversial or simply not ad-
dressed.

This paper aims at the connection of AOP and the methodology of step-
wise software development (SWD) [18,16]. The idea behind SWD is to evolve a
program starting from a minimal base by successively applying refinements that
encapsulate design decisions, called development steps. This evolutionary process
results in a conceptually layered design; each layer implements one refinement
and is associated with one development step.

While SWD is fundamental to software development and evolution, it has
been shown that the current understanding of AOP does not fit the practice
of SWD. Traditionally, aspects affect all elements of a program. This global
quantification violates the principle of SWD that refinements must not affect
subsequently applied refinements (local refinement). This is especially crucial for
continuously evolving software. Furthermore, it has been noticed that the current
precedence mechanisms of aspects, in particular AspectJ!, are not flexible enough
to express different orderings of aspects in layered designs [13,14].

! http://www.eclipse.org/aspectj/

In prior work we addressed some of these issues: We proposed an architec-
tural model to integrate aspects into layered designs [4]; we presented a concept
for understanding aspects as refinements that can be subject to refinement as
well [2, 3]; we proposed a mechanism for limiting the effects of aspects to previous
development steps [2].

However, the integration of aspects into SWD entails some deeper conceptual
and technical issues that remain open. This paper addresses issues regarding the
quantification and composition of aspects. Specifically, we present an approach
to implement a mechanism for bounding the quantification of aspects so that
they fit the practice of SWD. While bounded quantification has been discussed
theoretically [13,14], we address several issues that arise from the practical im-
plementation, i.e. in AspectJ. We discuss several alternatives to realize such a
mechanism and present our experiences and first results. Our work is based on
ARJ?, an extended compiler for AspectJ on top of the AspectBench Compiler3
framework.

2 Bounded Aspect Quantification

Traditionally, aspects are quantified globally. That means they may potentially
affect all program elements. Unfortunately, this attitude ignores the principle of
SWD that refinements are permitted to affect only those refinements that were
applied in previous development steps [18,16]. Several studies have shown that
this circumstance is directly responsible for inadvertent aspect interactions and
an unpredictable behavior in evolving software [14, 15,9, 8]

In order to address this issue, Lopez-Herrejon et al. proposed an approach
to aspect composition [14]. They model aspects as functions that operate on
programs. Applying several aspects to a program is modeled as function com-
position. In this way the scope of aspects is restricted to a particular step in
a program’s evolution. Such bounded quantification of aspects follows principles
of SWD. It has been argued that current AOP languages do not respect this
principle because it is not possible to distinguish between different development
steps [14, 5].

Suppose the following example: In a first development step we introduce
an abstraction for two-dimensional points containing two fields and two setter
methods (Fig. 1).

In a second step we add an extension for three dimensions and an aspect
that counts the updates of Point objects (Fig. 2). For that, we introduce a
counter variable to Point (Line 6) and we intercept and advise executions of
setter methods (Lines 7-10). In the present configuration, the Counter aspect
advises executions of setX, setY, and setZ. Now suppose we apply a further
refinement in a subsequent step that introduces a color feature (Fig. 3).

By adding this step, we also affect the counter feature. Although the Counter
aspect was applied by a previous development step, it affects the color feature

2 http://wwwiti.cs.uni-magdeburg.de/iti_db/arj/
3 http://abc.comlab.ox.ac.uk/

112

DU W

H O OO0 Uk W -

==

class Point {
int x;
void setX(int x){this.x=x;}
int y;
void setY(int y){this.y=y;}
}
Fig. 1. First step: Introduction of a Point class.
class Point3d extends Point {
int z=0;
void setZ(int z){this.z=z;}
}
aspect Counter {
int Point.cntr=0;
pointcut setCoordinates (Point p) : execution(* Pointx.set*(..)) && target(p)
after (Point p) : setCoordinates(p) {
p.cntr++;
}
}

Fig. 2. Second step: extending the Point class and adding a Counter aspect.

applied subsequently. It advises the setColor method and increments the counter
of the enclosing Point object. But this may not be intended by the programmer
when applying the Counter aspect in development step two.

Generally, patterns in pointcuts enable to match a whole bunch of join points
and to refine these using one coherent advice. While this is a powerful encapsu-
lation mechanism there are also certain pitfalls, e.g. when code evolves pointcuts
may not match anymore [1]. What is interesting for our discussion is that when
adding functionality subsequently, such patterns may inadvertently match new
join points, as the above example illustrates. Whether this is desired or not in a
particular case, it is undesirable for programmers to give up control over these
interactions.

One may argue to do not use such fuzzy patterns. But we counter that
these mechanisms commonly are considered as an (even though controversial)
improvement over other refinement mechanisms [11]. We believe programmers
should be encouraged to take advantage of these capabilities, but with certain
guarantees, e.g., to affect only things that are currently part of the program.
However, we are aware that some concerns are potentially global, e.g. tracing

1| class Point3dColor extends Point3d {
2 int Point.color;

3 void setColor (int c){this.color=c;}
4| ¥

Fig. 3. Third step: Introduction of a color feature.

113

or constraint enforcement. But it has been shown that in principle bounded
quantification is able to handle also these global concerns as well [14].

Our preliminary work on integrating aspects in SWD and layered designs al-
lows for the first time to implement and experiment with bounded aspect quanti-
fication. This paper presents our ongoing work in this direction. Even if bounded
quantification of aspects may be still controversial, our approach may help to
prove arguments and reveal empirical evidence.

3 Preliminary Work

This section reviews our previous results on integrating AOP and SWD that
form the basis for this paper.

The idea of SWD is that software is developed and evolved in multiple,
sequential steps. Each step refines the program that was developed in previous
steps. Aspects are one mechanism to implement such refinements. As mentioned,
current AOP languages do not directly support the incremental methodology of
SWD. Consequently, we proposed an approach that achieves this: The key idea
is that aspects are associated with development steps. Each development step
may be associated with several aspects [4,2, 3].

ARJ is a compiler on top of AspectJ that maintains meta-data about the
association of aspects and development steps [3]. One beneficial use of these
data is to exploit them for modifying the quantification mechanism: aspects are
only allowed to affect join points of previous development steps. With ARJ, each
development step is represented by a distinct directory, called containment hier-
archy [6]. A directory may contain several classes and aspects. A configuration
file with an ordered list of directory names is used to specify the development
steps to be included into the compilation process. Figure 4 shows (a) the di-
rectory structure and (b) the configuration file of our example. By mapping
steps to directories, the ARJ compiler associates each code fragment with its
development step and stores that as meta-data.

® program

TN T~

® thirdDim ® base ¥ color base
thirdDim
color

-
T
-

Pointjava Counter.aj Point.java Point.java

(a) (b)

Fig. 4. Program organization. (a) File system, and (b) configuration file.

Having this, the idea of bounding aspect quantification can seamlessly be
integrated into ARJ: Since the compiler knows for each aspect to which devel-

114

opment step it belongs, it can determine to which program elements the aspects
are permitted to bind. It uses the meta-data to influence the weaving process.

4 Implementation Alternatives

This section discusses three alternatives of implementing bounded quantification
in ARJ: incremental weaving, pointcut restructuring, and compiler annotations.

Incremental weaving. The first approach is to compile an aspect-oriented pro-
gram incrementally. The compilation process starts by compiling the first step
and by weaving aspects that belong to this step only. Afterwards, the second
step is applied and compiled. Then, aspects associated with that step are woven
into the current program consisting now of step one and two. Thereby, aspects
are automatically limited to the first two steps. The remaining steps are ap-
plied incrementally in the same manner. Figure 5 illustrates this approach for
our example. The Counter aspect is woven to the program after the second step.
Therefore it affects only the methods setX, setY and setZ. Although its pointcut
would originally also match setColor, it does not affect the code associated with
the third step at all.

Step2 | Point3d Counter

Step 3 | Point3dColor

Fig. 5. Incremental weaving approach.

Pointcut restructuring. The second approach enforces bounded quantification
by restructuring pointcut expressions. The original aspects are modified, so that
they do not match join points associated with subsequent steps. By restructuring
pointcuts, aspects can be woven into the program in one final step, using any
standard AspectJ compiler. As shown in Figure 6, the Counter aspect is woven
at the end, but still affects only the methods associated with the first two steps,
and not setColor that fits the pattern, too. This is achieved by excluding this
join point with a modified pointcut expression.

Compiler annotations. A third approach is to directly extend the AspectJ com-
piler to bound the quantification of aspects using internal annotations. The com-
piler’s frontend annotates all classes and aspects with information about the as-
sociated development steps. During the weaving process the compiler’s backend

115

Step1 | Point setX

Step2 | Point3d

Counter

Ng

Counter

Step 3 | Point3dColor setColor

Fig. 6. Pointcut restructuring approach.

uses these annotations to match permitted join points only. For this approach
the compiler’s frontend and the pointcut matcher must be adapted. Contrasting
the restructuring approach, this does not produce source code as a separate step
but directly weaves the aspects into the program. The aspect quantification is
bounded directly during the weaving process.

Discussion. All of the considered approaches have advantages and disadvan-
tages. The incremental weaving approach is very complex. It changes the whole
compilation process, so that the program is compiled in multiple steps. It also
requires major changes to the AspectJ compiler to disable the existing support
for advice precedence and to cope with semi-woven classes. It technically en-
forces bounded quantification very directly and consequently and without the
need of source code analysis.

The pointcut restructuring approach is not trivial either. To restructure an
aspect’s pointcuts, it is necessary to analyze all potential target join points (its
shadows) in each development step to determine their scope. This requires to
modify parts of the compiler’s frontend and the pointcut matcher. The benefit
of this approach is that a source-to-source conversion is possible. The result-
ing source code can be compiled with any AspectJ compiler. This helps the
programmer to get insight into the restructured code. In contrast to the incre-
mental weaving approach, it is not necessary to change the compilation process.
Additionally this approach is more flexible since it is possible to implement
transformations that allow defined exceptions from the bounded quantification
(cf. Sec. 6). Such exceptions cannot be implemented with the incremental weav-
ing approach because the strict bounding is enforced technically by the weaving
process.

The third approach annotates the code and extends the compiler with an
altered pointcut matcher. The approach is similar to pointcut restructuring,
but bounded quantification is enforced in the compiler’s backend, instead of
the frontend. Therefore, a source-to-source transformation is not possible. The
approach offers a similar flexibility as pointcut restructuring. However, it lacks
transparency for the programmer.

116

DU W

We choose to implement the pointcut restructuring approach in ARJ because
its flexibility and transparency are vital for the programmer and for further lan-
guage extensions. This furthermore allows us to experiment with exceptions from
the strict bounded quantification approach and to quickly change the restructur-
ing algorithm. In ongoing work, we will consider also the alternative approaches.
For now, we limit our considerations to pointcut restructuring.

5 Bounded Aspect Quantification in ARJ via Pointcut
Restructuring

Pointcut restructuring can be implemented completely in the frontend of the
ARJ compiler. It uses the available meta-data that map code fragments to de-
velopment steps.

5.1 Mechanisms for Pointcut Restructuring

We use two principle mechanisms to restrict pointcuts. The first replaces point-
cut patterns by method signatures (wildcard replacement). This way, it can be
ensured that a pointcut cannot accidentally match fitting methods introduced
in later development steps. This requires a complete static program analysis for
each step. However, every step reuses that information from previous steps.

Figure 7 shows one possible version of a restructured Counter aspect. In
this transformed version all pattern expressions have been replaced by fully
qualified method signatures (“Point*.set*(..)” was replaced with Point.setX,
Point.setY and Point3d.setZ). Thus, it matches only setX, setY and setZ that
were introduced in the first two development steps, and not setColor introduced
in the third step.

aspect Counter {
pointcut setCoordinates (Point p):
(execution(void Point.setX(int)) || execution(void Point.setY(int)) ||
execution(void Point3d.setZ(int))) && target(p);
}

Fig. 7. Restructured Counter aspect.

The second mechanism uses within pointcuts to restrict the pointcut matcher
to classes associated with certain steps (within constraints). The within pointcut
matches classes with a certain type pattern. It can be used to restrict an existing
pointcut with pattern expressions to one or more specific classes.

Figure 8 shows the restructured Counter aspect when using this mechanism.
In this example, two within pointcuts have been added to restrict the pattern
expression of the execution pointcut to Point and Point3d. It is not necessary

117

DU W N

to modify the original pointcut pattern (Line 3). The within pointcut can also
be used to restrict pointcuts that match the client side. i.e. get, set, and call. In
this case, pointcuts were restricted to all possible, permitted client classes.

aspect Counter {
pointcut setCoordinates (Point p):
execution (¥ Point*.set*(..)) && target(p)
&& (within(Point) || within(Point3d));

Fig. 8. Restructured aspect using the within pointcut.

=7 restructured
¥ B aspectfile

Develop. Step
Meta Data n
alternative
Aspect
compiler
T
+

Compiled
Program

Fig. 9. ARJ compilation process.

I
Y. T T
= = =

Java classes
and aspects

After the process of pointcut restructuring, the compiler can proceed in two
ways (Fig. 9). Either (a) weaves the transformed aspects directly to the target
classes or (b) it writes the modified aspect sources out. The sources can than be
used for debugging purposes or to compile the program with an external AspectJ
compiler.

5.2 Pointcut Semantics in AspectJ

In the following, we examine some selected pointcuts in the light of pointcut
restructuring for implementing bounded quantification.

During our attempts to implement bounded quantification in ARJ we real-
ized that the semantics of pointcuts in AspectJ are not really defined precisely.
Moreover, even between different compiler versions (ajc version 1.2 vs. 1.5) and
different vendors (ajc vs. abc), we found minor but significant variations in the
semantics. For our analysis we refer to the semantics that can be experimentally
determined from the ajc compiler version 1.5.

We limit our discussion to execution, call, set, and get because they are the
most commonly used ones and they reveal some open issues. To illustrate the

118

problems, we modify our running example as shown in Figure 10. We add a
Draw3D class to the second step that instantiates and uses the Point3d class
and that is extended in the third step by Draw3dColor. Additionally, the method
setY is extended by Point3dColor in the third step.

Step 2 | Point3d setZ Counter Draw3D

Step 3 | Point3dColor Draw3DColor

Fig. 10. Extended Example.

Ezecution pointcuts match method executions depending on the type of the
target class. Therefore, it is necessary to specify the exact target type in which
the method is defined. It is not possible to define an execution pointcut match-
ing a method inherited from a super class. Instead the method must be liter-
ally defined in the target class. In our initial example in Figures 1, 2, and 3
the pointcut “execution(* Point3d.setX(..))” would not match because the setX
method is not defined or extended in the Point3d class. In contrast, call, get and
set pointcuts match the client side that calls the method or accesses the field.
They match methods and fields either defined in the target class or inherited
from super classes. Therefore the pointcuts “call(* Point.setX(..))” and “call(*
Point3d.setX(..))” both match the calls from Draw3d to this method.

5.3 Semantics of Bounded Quantification

Ezecution pointcuts. Fzecution pointcuts are least problematic with regard to
bounded quantification. An ezecution pointcut is already bounded to the tar-
get class and thereby to a single development step. Hence, execution pointcuts
bear no potential for unexpected effects on subsequent development steps, unless
the target class is specified with a pattern expression. In such cases, as shown
in our example in Figure 7, the pattern expression is reduced to match target
classes from early development steps only. For the developer the reduced scope
of target class pattern expressions is the only change to the semantics of eze-
cution pointcuts. This change is intuitive and follows the semantics of bounded
quantification.

Call pointcuts. In contrast to execution pointcuts, call pointcuts match the
client side of a method invocation, i.e. the caller. The target object is not directly
affected. In our example, the advice code would be woven into the Draw3D class.
This causes two problems that might result in unexpected effects:

119

First, the call pointcut has to match only calls to methods that already were
introduced in the development step that the aspect belongs to. In our example
the Counter aspect — with a call instead of an execution pointcut — would only
match calls to the setX method that were invoked from the initial version of
the Draw3D class. Calls from the subclass Draw3dColor (third step) are not
advised because this extension has been added in a subsequent step. This might
surprise developers at first, but is explained with the basic principle of bounded
quantification. To match all calls to a method independently of the step where
the call originates from an execution pointcut may be used.

The second effect occurs when the target method itself is extended. The ad-
vice is woven into the caller, independently whether the target is extended or
overridden in a subsequent step. In our example, the Counter aspect — with a
call instead of an execution pointcut — matches the setY calls from the Draw3D
class, even though the setY method is extended later in the third step. Depend-
ing on the extension this may again lead to unforeseen behavior in some rare
cases, namely when the pointcut matches a call to a method changed in later
steps. However, this is not a specific problem of AspectJ in the context of SWD,
but a general issue about virtual methods calls. Nevertheless, due to the point-
cut restructuring approach the ARJ compiler is aware of those situations and
may issue warnings or even limit or change the strict requirements for bounded
quantification.

We propose not to modify the call pointcut semantics but to explicitly doc-
ument these possible effects. Furthermore, we suggest to evaluate in detail the
cases where call pointcuts can be used in SWD and to adapt the pointcut re-
structuring process accordingly.

Get and set pointcuts. The get and set pointcuts are woven into the program at
the caller side, similar to call pointcuts. Therefore the same problem occurs as
described for call pointcuts: The client that accesses a field value must already
exist in the development step where the aspect is added. In contrast to call
pointcuts, where it is possible to use to erecution pointcuts instead, there is no
equivalent alternative that matches the access to a field at the callee.

Therefore, we argue that strict bounded quantification limits the usability of
get and set pointcuts. It could be useful to introduce a pointcut type to AspectJ
that matches field access join points on the target side, similar to the execution
pointcut for methods. An alternative approach is the introduction of a controlled
possibility to specify unbounded aspects, as suggested in Section 6.

6 Discussion and Conclusion

The integration of AOP into the methodology of stepwise software development
and evolution promises various benefits, but also requires bounding the quanti-
fication of aspects. Aspects are not allowed to influence join points associated
with subsequent development steps.

In this paper, we presented a mechanism to implement bounded aspect quan-
tification in ARJ by restructuring pointcut expressions to match only join points

120

that are permitted to advise. Pointcut restructuring promised higher flexibility
and transparency than alternative approaches, i.e. incremental weaving or an-
notations.

Bounded aspect quantification is supposed to avoid inadvertent effects by
reducing the number of possible interactions between development steps [13, 14,
5]. However, the developer might want to add global, unbounded aspects to the
program. Examples are global constraint enforcement, tracing, profiling, etc. As
illustrated in Section 5.3, set and get pointcuts would benefit from a less strict
bounded quantification. We suggest to evaluate the necessity for global aspects
and possible language mechanisms that integrate bounded and unbounded as-
pects, e.g. via a global keyword for aspects, pointcuts, or advice.

For the ARJ project the integration of single aspects with bounded quanti-
fication into incrementally developed classes is only a first step. ARJ supports
mixin-based inheritance for classes and aspects themselves, as well as aspect
refinement, pointcut refinement and advice refinement [3]. Bounding the quan-
tification when working with refined classes and refined aspects induces new
issues: A composite aspect, evolved over several development steps, is associated
with these multiple steps. This makes it necessary to determine which parts of
the aspect are bound to which step.

Furthermore, mixin-based inheritance introduces a new problem to determine
the pointcut’s actual target, especially for execution pointcuts, because a tar-
get class may consist of multiple refinements associated to multiple development
steps. Finally, the semantics of pointcut refinement and advice refinement them-
selves require deeper evaluation. They enable advanced opportunities to restrict
or extend aspects in later development steps. Discussions must emphasize usabil-
ity and comprehensibility from the developers point of view, to make the effects
of refined aspects predictable and avoid inadvertent effects. For these extensions
the high flexibility and transparency of the pointcut restructuring approach is
vital. Our long term goal is to fully integrate aspects into the methodology of
SWD and layered designs.

Acknowledgments. This work was done while Sven Apel was visiting the group
of Don Batory at the University of Texas at Austin. It is is sponsored in parts
by the German Research Foundation (DFG), project number SA 465/31-1 and
SA 465/32-1, as well as by the German Academic Exchange Service (DAAD),
PKZ D/05/44809.

References

1. T. Tourwe abd J. Brichau and K. Gybels. On the Existence of the AOSD-Evolution
Paradox. In AOSD Workshop on Software Engineering Properties of Languages
for Aspect Technologies, 2003.

2. S. Apel, T. Leich, and G. Saake. Aspect Refinement and Bounding Quantification
in Incremental Designs. In Proceedings of Asia-Pacific Software Engineering Con-
ference, 2005.

121

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Apel, T. Leich, and G. Saake. Mixin-Based Aspect Inheritance. Technical
Report 10, Department of Computer Science, University of Magdeburg, Germany,
2005.

S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers: Aspects and Features
in Concert. In Proceedings of International Conference on Software Engineering,
2006.

S. Apel and J. Liu. On the Notion of Functional Aspects in Aspect-Oriented
Refactoring. In Proceedings of ECOOP Workshop on Aspects, Dependencies, and
Interactions, 2006.

D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Transactions on Software Engineering, 30(6), 2004.

A. Colyer and A. Clement. Large-Scale AOSD for Middleware. In Proceedings of
International Conference on Aspect-Oriented Software Development, 2004.

R. Douence, P. Fradet, and M. Siidholt. A Framework for the Detection and
Resolution of Aspect Interactions. In Proceedings of Generative Programming and
Component Engineering, 2002.

R. Douence, P. Fradet, and M. Siidholt. Composition, Reuse and Interaction Anal-
ysis of Stateful Aspects. In Proceedings of International Conference on Aspect-
Oriented Software Development, 2004.

G. Kiczales et al. Aspect-Oriented Programming. In Proceedings of FEuropean
Conference on Object-Oriented Programming, 1997.

R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programmaing. Manning
Publications Co., Greenwich, CT, USA, 2003.

D. Lohmann et al. A Quantitative Analysis of Aspects in the OS Kernel. In
Proceedings of ACM SIGOPS EuroSys Conference, 2006.

R. Lopez-Herrejon and D. Batory. Improving Incremental Development in As-
pectJ by Bounding Quantification. In AOSD Workshop on Software Engineering
Properties and Languages for Aspect Technologies, 2005.

R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined Approach to Aspect
Composition. In Proceedings of ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, 2006.

N. McEachen and R. T. Alexander. Distributing Classes with Woven Concerns:
An Exploration of Potential Fault Scenarios. In Proceedings of International Con-
ference on Aspect-Oriented Software Development, 2005.

D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering, SE-5(2), 1979.

A. Tesanovic et al. Aspects and Components in Real-Time System Development:
Towards Reconfigurable and Reusable Software. Journal of Embedded Computing,
October 2004.

N. Wirth. Program Development by Stepwise Refinement. Communications of the
ACM, 14(4), 1971.

C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in Middleware Sys-
tems. In Proceedings of International Conference on Object-Oriented Programming
Systems, Languages and Applications, 2004.

122

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

