
Communication Modeling by Channel

Rei�cation

M. Anconay W. Cazzolaz G. Doderoy V. Gianuzziy

y DISI-University of Genova, Via Dodecaneso 35, 16146 Genova, Italy

Tel: (+39) 10 353 660f5j3j2g Fax: (+39) 10 353 6699

E-mail: fanconajdoderojgianuzzig@disi.unige.it

z DSI-University of Milano, Via Comelico 39-41, 20135 Milano, Italy

Tel: (+39) 10 353 6709 Fax: (+39) 10 353 6699

E-mail: cazzola@dotto.usr.dsi.unimi.it

April 7, 1997

Abstract

The paper presents a new reective model, called Channel Rei�cation, which can

be used to implement communication abstractions. After a brief review of existing

reective models and how reections can be used in distributed systems, channel

rei�cation is presented and compared to the widely used meta-object model. An

application to protocol implementation, and hints on other channel applications are

also given.

Keyword: Object-Oriented, Computational Reection, Reective Distributed Systems.

1 Introduction

Reective object-oriented programming paradigms have been proposed for devel-
oping incremental solutions to complex applications. A reective object-oriented
system is capable of monitoring its own behaviour, a more precise de�nition is
given below. What makes reection especially attractive in the design of complex
systems is that it allows a clear separation between the application (problem depen-
dent) and meta (dealing with implementation) functionalities, using a meta-level to
hide complex implementation details from the application programmer.
Models for reective systems appearing in the literature are: messages rei�cation,
meta-objects and meta-classes. A complete presentation is given in [6]. However,
there are problems arising in the implementation of distributed communication for

which none of the above models provides simple and clear solutions.
For this reason we have de�ned a new model for reective object systems, which
we have called channel rei�cation: its purpose is that of encapsulating and possi-
bly rede�ning object interaction models. Examples include the de�nition of object
communication protocols in distributed systems, where interaction modalities can
be made transparent to the user: from tightly coupled interactions in a multiproces-
sor, to connections via geographic networks. Transparency may be exploited to �nd
new interaction modalities with existing applications, moving them to a networked
or distributed environment, or superimposing properties like reliability and fault
tolerance.
The channel rei�cation model supports creation of a library of channel classes, each
instance of them being a communication channel. Di�erent implementations with
di�erent semantics or performance may be made available within a channel library.
Thus channel rei�cation provides a uni�ed and application transparent view of the
underlying communication subsystem.
The rest of the paper contains an overview of computational reection (section 2),
a short discussion on the use of reection in distributed environments (section 3), a
presentation of channel rei�cation (section 4) and, in section 5, a channel application
is presented, concluding with some hints on how to implement channels.

2 Computational Reections

Computational reection or simply reection is de�ned as the activity performed
by an agent when doing computations about its own computation [11].
An object-oriented reective system is logically structured in two or more levels,
constituting a reective tower. Entities (objects) working in the base level, called
base-entities, de�ne the system basic behaviour. Entities working in the other levels
(meta-levels), called meta-entities, perform the reective actions and de�ne further
characteristics beyond the application dependent system behaviour.
Each level is causally connected to adjacents levels, i.e. entities working into a level
have data structures representing (or, using a reection-like term, reifying) the ac-
tivities of entities working at the underlying level and their actions are reected
into such data structures. Any change to such data structures modi�es entity be-
haviour.
Meta-entities supervise base-entities activity. The concept of trap could be used
to explain how supervision takes place. Each base-entity action is trapped by a
meta-entity, which performs a meta-computation, then it allows such base-entity to
perform the action.
We observed, going beyond the reective tower of compilersjinterpreters, that each
reective computation can be separated into two logical aspects: computational
ow context switching and meta-behaviour. A computation starts with the compu-
tational ow in the base level; when the base-entity begins an action, such action is
trapped by the meta-entity and the computational ow raises at meta-level (shift-
up operation). Then the meta-entity completes its meta-computation, and when it
allows the base-entity to perform the action, the computational ow goes back to

2

the base level (shift-down operation).
The use of meta-level programming permits transparent separation of application
components from those providing additional properties to the application (separa-
tion of concerns). To this respect, it is useful to consider also reections granular-

ity [2], that is the minimal entity in a software system for which a reective model
de�nes a di�erent meta-behaviour. A �ner granularity allows more exibility and
modularity in the software system at the cost of meta-entity proliferation.
We now briey describe di�erent models for reection, highlighting their advantages
and limits.

2.1 Meta-Object Model

In this model, meta-entities (called meta-objects) are objects, instances of a proper
class. Each base-entity, called also referent, can be bound to a meta-object. Such
a meta-object supervises the work of the linked referent. The model makes few
assumptions about relationships between base and meta-entities: in principles, each
meta-object can be connected to many referents, and each referent can be linked to
several meta-objects (one at a time) during its lifecycle. However most implementa-
tions, for reason of e�ciency, restrict this freedom: in OpenC++ [4] and ABCL-R [14]
a meta-object is linked to one referent only, and each referent can have only one
meta-object during its lifecycle. As a consequence, reection granularity is at object
level.

2.2 Message Rei�cation Model

In this model, meta-entities are special objects, called messages, which embody the
actions that should be performed by the base-entities. The kind of a message de�nes
the meta-behaviour performed by the message; di�erent messages may have di�erent
kinds. At every method call, a message is created, in agreement with the kind of
the meta-computation required, and when the meta-computation terminates, such
a message is destroyed.
Then, granularity is at method level, since it is possible to de�ne di�erent behaviours
for method calls performed by each object. Messages are not linked to the base-
entity originating them and cannot access their structural information. Message
lifecycle is the duration of the embodied action. Thus it is impossible to store
information among meta-computations (lack of information continuity). On the
other hand, every method call creates and then destroys an object (the message).

3 Reection and Distribution

Distributed architectures let users of individual, networked computers share pro-
grams and data resources. Distribution can also enhance avaibility, reliability and
performance (through techniques such as replication of programs or data and paral-
lel computation). In achieving these bene�ts, distributed systems incur design costs
that are not present in unitary systems.

3

Critical design issues to be solved in distributed systems include locating programs
and data resources across the network, establishing and maintaining interprogram
communication on the network, coordinating the execution of distributed applica-
tions.
Coordination models [1] represent one way to handle these diverse design issues
coherently and uniformly. A coordination model establishes logical rules for execut-
ing distributed interactions. Rules specify who can initiate interactions, who can
respond, how to retrieve results, how to handle errors, and so on.
Clientjserver architecture represents a widely used coordination model: an object,
the client, requests an operation or service that another object, the server, is able
to provide. This coordination model o�ers simplicity in closely matching data with
control ow.
To achieve a better and clear separation of the application code from the interaction
code, a di�erent model, employing agents and brokers is increasingly used.
While an agent is a distinct, architectural component that mediates interactions
between an application and the communications kernel, a broker is a dedicated
control mechanism that mediates interactions between client applications needing
services and server applications providing them. Status of services is maintained
and recovered by the broker, so clients no longer need keep track about where and
how to obtain particular services.
As remarked in [13], today's distributed systems either include coordination code
very tightly coupled with the application code or completely separated from it,
working transparently and out of designer's control.
Using computational reection, the coordination model can be implemented at
meta-level. Meta-entities use objects to encapsulate coordination model entities
(brokers or agents). In this way, coordination code is clearly separated from ap-
plication code (within base-entities) and the programmer may customize the coor-
dination model without a�ecting application code (one such example is the Object

Communities described in [5]). As a consequence, many coordination models may
simultaneously be present in a system (one for each meta-entity), and meta-entities
implementing such models, once implemented, can be easily changed and reused in
di�erent applications.
In order to achieve the desired goals, reective distributed systems design should
solve new problems, such as how to interface entities and meta-entities at the same
time preserving transparency, and how to implement causality without sacri�cing
system e�ciency. Such topics are examined in [10] and [12].

4 Channel Rei�cation Model

We propose this model as an extension to the message rei�cation model, aimed at
solving some of its drawbacks, while keeping its advantages. Channel rei�cation is
based on the following idea: a method call is considered as a message sent through
a logical channel established between an object requiring a service, and another
object providing such a service. This logical channel is rei�ed into an object called
channel (as shown in �gure 1). A channel is characterized by a triple composed by

4

Receiver

Class

Reified

Sender

Class

Sender

Channel

Receiver

Channel

Class

Message

Instance of

Checks

Instance of

Instance of

Checks

 in

Figure 1: Channel Rei�cation Model Scheme

the objects it connects and by the kind of the meta-computation it performs.

channel � (sender, receiver, channel kind)

A channel kind identi�es the meta-behavior provided by the channel. In a typed
object-oriented language the kind is also the type of the channel class. The kind is
used to distinguish the reective activity to be performed: several channels (distin-
guishable by the kind) can be established between the same pair of objects at the
same moment.
The lack of information continuity of message rei�cation is eliminated by making
channels persist after each meta-computation. A channel is reused when a com-
munication characterized by the same triple is generated. In this way, meta-level
objects are created only once (when they are activated for the �rst time), and reused
whenever possible. When an object is destroyed, all channels established fromjto it
are destroyed too. This lifecycle limits channel proliferation, since a garbage collec-
tor erases pending channels.
The features of the model are:

? Method-level granularity, as for message rei�cation: di�erent method calls can
be handled by di�erent channels, thus specializing a reective behaviour for
each method.

? Monitored channel proliferation with pending channels elimination.

? Possibility to keep information among meta-computations (information conti-
nuity).

5

b) channel reification model

Channels

a) meta-object model

meta-objects

Meta-Level

Base-Level

MA

MB

C

B

AA

B

Figure 2: Meta-Object vs Channel Rei�cation

? Each channel completely supervises a communication, from the beginning to
the end, sender and receiver's work inclusive.

Each service request is trapped (shift-up action) by the channel of the speci�ed
kind connecting client and server objects, if it exists. Otherwise, such a channel
is created; in either case, it then performs its meta-computation and transmits the
service request to the supplier. The server's answer is collected and returned to the
requiring object (shift-down action).
A channel behaves like a reective broker. Each channel kind specializes the behav-
ior of a broker to speci�c requirements, and this specialization is transparent from
the underlying application.

4.1 Comparing Channels to Meta-Objects

Channel Rei�cation has been presented in the previous section as an extension to
the message rei�cation model. However channel persistency makes the new model
more similar to the meta-object model. The di�erence between meta-objects and
channels lies in their intended use, that is, a channel rei�es and monitors com-
munication between two objects, while a meta-object controls the behaviour of one
speci�c object (as shown in �gure 2). Meta-objects may be used to monitor commu-
nication as well, but only by means of cooperative actions with other meta-objects.
In a distributed environment, the channel is a reective abstraction of the bro-
ker model, mediating interactions between client applications needing services and
server applications providing them. On the other hand, a meta-object plays a role
closer to an agent, mediating interactions between applications and the communi-
cation kernel.

6

Thus the basic di�erence consists in the meta-communication protocol: in the meta-
object model, in order to monitor interactions among several base objects, we must
reify as many meta-objects as there are base objects. Such meta-objects interact
via a communication graph which duplicates (or includes as subgraph) the com-
munication graph at base level (see �gure 2.a). In the channel rei�cation model,
at the meta-level, we reify object interactions (instead of single objects) that need
not communicate between themselves (see �gure 2.b). The channel communication
graph, if any, is usually di�erent from that at base level. This simpli�es the re-
ective tower communication model at the expense of a larger number of rei�ed
meta-entities.
We believe that each application should make use of the reection model better
suited to its needs, the meta-object, the channel, or even both, in accordance with
the kind of support required by useful abstractions.

5 When and How to Use Channel

Channel rei�cation is designed for distributed communication. Channels are well
suited wrappers for several communication abstractions that can thus be layered
over application software:

� reliable messaging { obtained by encapsulating into channels all mechanisms to
achieve the degree of communication reliability required by each application,
instead of letting each applicative process provide its own mechanisms;

� implementing binding methods (eg., those supported by CORBA [9] or by OSF
DCE [7] name service), thus relieving applications of the error prone task of
retrieving and connecting to a compatible server;

� usual channel services such as: data marshalingjunmarshaling, communication
error handling, multipacked message management.

Channels may be used to modify and specialize the service request formality, the
next example shows how.

5.1 Implementing Protocols with Channels

Taking advantages of channel granularity, within the same object some services can
be synchronous, others asynchronous, or loosely synchronous. The application pro-
grammer need not worry about synchronizing client with server and how to do it,
the application need only specify a protocol to be used at each service request.
Such a behaviour is achieved by developing several channels classes (making a chan-
nel class library), one for each service protocol (for example, synch channel and
asynch channel) and specifying for each service which protocol must be used.
Each channel class de�nes the kind of its own instances. In order to discriminate
the protocol service it is necessary to bind each service to a channel kind. If the im-
plementation language allows it, dynamic binding can be used to perform run-time
selection of channel kind among available channel implementations.
For example, a server is o�ering services a, b, c, and d. At server start-up, we

7

may issue a binding request that all channels connecting any client to services a,
c should be of kind synch channel, those connecting to service d should be of kind
asynch channel, and those connecting to b should be as the client selects.

6 Conclusion and Future Works

The paper has illustrated channel rei�cation, a new model for distributed reective
systems. As the name suggests, this model is especially suited for reecting on com-
munication among objects. Other reective models have been compared to Channel
Rei�cation, and special attention has been devoted to the widely used meta-object
model.
This new approach can be used to implement communication abstractions in order
to extend communcation features of existing systems. The de�nition of a channel
class library, where channel properties are selected by channel kind, would provide
a signi�cant simpli�cation in application objects code.
The possibilities o�ered by channel rei�cation are exploitable only by means of an
e�cient implementation of a channel library on widely available systems. A study
of object-oriented and object based languages which would be suitable to support
e�cient channel implementation is presented in [3].
In such thesis the possibility to implement reective systems is considered within
several programming languages, such as SmallTalk, C++, Oberon and respective di-
alects (Oberon2, OpenC++ and so on). A minimal set of mechanisms needed for
building up reective systems into such languages has been studied. Such mech-
anisms should implement the shift-up and shift-down actions and consist on two
primitives for context switching between meta and base level. Furthermore a pro-
totype C++ implementation of channels on top of PVM [8] is also illustrated.
In another paper we discussed the use of channels in point-to-point communication.
However the most challenging extensions are those towards multi-point communi-
cations, where signi�cant applications are: multiple-RPC, broadcasts and object
group communication, client request serialization and load balancing.
Modellization of extensions such as the above ones, towards multi-point communi-
cation is planned for the next future, at the same time keeping into account the
implementation costs of these models.

References

[1] Richard M. Adler. Distributed coordination models for client/server comput-
ing. IEEE Computer, pages 14{22, April 1995.

[2] Massimo Ancona, Walter Cazzola, Gabriella Dodero, and Vittoria Gianuzzi.
Channel rei�cation: a reective approach to fault-tolerant software develop-
ment. In OOPSLA'95 (poster section), Austin, Texas, October 1995. ACM.
Available via anonymous ftp at ftp.disi.unige.it/ftp/person/CazzolaW.

[3] Walter Cazzola. Channel rei�cation: a new reective model. Analysis and com-
parison with other models and application to fault tolerant system. Master's

8

thesis, University of Genova { Department of Computer Science (DISI), April
1996. (Written in Italian).

[4] Shigeru Chiba. A meta-object protocol for C++. In proceedings of OOPSLA'95,
Sigplan Notices, Austin, Texas, October 1995. ACM.

[5] Shigeru Chiba and Takashi Masuda. Design an extendible distributed language
with a meta-level architecture. In proceedings of ECOOP'93, pages 482{501,
Kaiserslautern, Germany, July 1993. Springer-Verlag.

[6] Jacques Ferber. Computational reection in class based object oriented lan-
guages. In proceedings of OOPSLA'89, Sigplan Notices, pages 317{326. ACM,
October 1989.

[7] Open Software Foundation. Introduction to OSF DCE. Technical report, Open
Software Foundation, Cambridge, USA, 1992.

[8] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
and Vaidy Sunderam. PVM 3 User's guide and reference manual. Technical Re-
port ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge, Tennesee
37831, May 1994.

[9] Object Management Group. Common object request broker architecture and
speci�cation. Technical Report 96.3.4 Revision 2.0, OMG, 1995.

[10] Shinji Kono and Mario Tokoro. Parallel reection. Technical memo SCSL-TM-
90-011, Sony CSL, June 1991.

[11] Pattie Maes. Concepts and experiments in computational reection. In pro-

ceedings of OOPSLA'87, Sigplan Notices. ACM, October 1987.

[12] Hidehiko Masuhara, Satoshi Matsuoka, Takuo Watanabe, and Akinori
Yonezawa. Object-oriented concurrent reective languages can be implemented
e�ciently. In proceedings of OOPSLA'92, Sigplan Notices, Vancouver, Canada,
October 1992. ACM.

[13] Satoshi Matsuoka, Takuo Watanabe, and Akinori Yonezawa. Hybrid group
reective architecture for object-oriented concurrent reective programming.
In proceedings of ECOOP'91, pages 231{250, Switzerland, July 1991. Springer-
Verlag.

[14] Takuo Watanabe and Akinori Yonezawa. Reection in an object-oriented con-
current language. In proceedings of OOPSLA'88, Sigplan Notices, pages 306{
315, San Diego, September 1988. ACM.

9

	1 Introduction
	2 Computational Reflections
	2.1 Meta-Object Model
	2.2 Message Reification Model

	3 Reflection and Distribution
	4 Channel Reification Model
	4.1 Comparing Channels to Meta-Objects

	5 When and How to Use Channel
	5.1 Implementing Protocols with Channels

	6 Conclusion and Future Works

