
Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. Architectural Reflection:
Concepts, Design, and Evaluation. Technical Report RI-DSI 234-99, DSI, Università degli Studi
di Milano, May 1999.

Architectural Reflection:
Concepts, Design, and Evaluation

Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato

Department of Informatics, Systems, and Communication,
University of Milano Bicocca, Milano, Italy

{cazzolajsavignijsosiojtisato}@dsi.unimi.it

Abstract. This paper proposes a novel reflective approach, orthogonal to the
classic computational approach, whereby a system performs computation on its
software architecture instead of individual components. The approach supports
system’s self-management activities such as dynamic reconfiguration to be real-
ized in a systematic and conceptually clean way and added to existing systems
without modifying the system itself. The parallelism between such architectural
reflection and classic reflection is discussed, as well as the transposition of classic
reflective concepts in the architectural domain.
Keywords: Programming-in-the-large, Reflection, Software Architecture

1 Introduction

Within the software engineering field, growing interest is raised by the discipline of
software architecture. This discipline focuses on the gross organization of software sys-
tems and seeks ways to gather and formalize the structural ideas underlying success-
ful designs produced in current software engineering practice. The overall objective is
that of providing a clean conceptual framework for the formalization of architectural
knowledge so that architectural designs can be analyzed, compared, described in an un-
ambiguous way, taught to practicing engineers, and so on. To that aim, software archi-
tecture has already gone a long way, and several prototype of Architecture Description
Languages (ADLs) can be found in the literature.

We argue that the architectural level of abstraction is not only relevant in the design
of systems; it is also a convenient point of view from which to describe and implement
part of the system’s functionality itself. Any software system of some complexity de-
volves some part (often a relevant part) of its code to self-management activities i.e.,
activities whose domain is the system itself. Examples are bootstrap, shutdown, on-
line monitoring of the components’ activity (especially, but not only, for distributed
systems), and dynamic reconfiguration (with several goals, ranging from support for
end-user-tailoring to fault tolerance). In most cases, such functionality deals with the
architecture of the system rather than its components considered in isolation. This func-
tionality can be regarded as a set of activities a system is capable of performing on its
own architecture. Implementing this kind of functionality is usually overly complex;
most systems provide limited capabilities of this kind, usually realized by ad hoc tech-
nical solutions. We believe that the major source of such complexity is the implicit

architecture problem affecting current software engineering practice i.e., the fact that
architectural choices are dispersed in the components’ code in implemented systems
and intermixed with non-architectural (functional) code.

In a recent paper [4], we have proposed a novel approach to component-based soft-
ware development whereby architectures are made explicit. In this approach, termed ar-
chitectural programming-in-the-large (APIL), components are architecture-independent
entities, and architectural choices are expressed in a program-in-the-large which con-
trols the components’ instantiation and behaviour according to the specified architec-
ture. The original motivation for this work was that of enhancing components’ and
architectures’ reusability by a clean separation of concerns between programming-in-
the-small issues (i.e., those issues related to the components’ inner semantics) and
programming-in-the-large issues (those related to the system’s overall architecture).
As the work progressed, we observed that this approach also supports addressing self-
management activities in a clean and systematic way, which can be regarded as an
extension of the concepts and techniques of reflection to the architectural realm (i.e., to
the programming-in-the-large level). We coined the name architectural reflection (AR)
to describe this approach to dynamic self-management regarded as the activity of a
system performing computations on its own software architecture. AR builds on APIL
in that adding architectural reflective capabilities to a system is made feasible by the
explicitation of the architectural plan in a dedicated higher-level program.

AR has been described, in its very general lines, in [5]. In this paper, we dwelve
deeper into the matter and describe AR by means of a thorough comparison with clas-
sic (computational) reflection, we describe the behaviour of architectural meta-entities,
and we introduce the notion of architectural causal connection, which is the basic con-
cept for AR. To that aim, a rather complete example is developed, illustrating how AR
provides a clean and simple framework for managing dynamic reconfiguration activ-
ities. With respect to other approaches to system self-management, AR appears to be
more systematic, easier, and to preserve the concept of transparency of classic reflec-
tion i.e., self-management activities can be added to any system without modifying any
of its components.

The paper outline is as follows. Section 2 introduces preliminary notions for AR,
including both a brief summary of concepts from classic (computational) reflection, a
description of the implicit architecture problem, and the general lines of architectural
programming-in-the-large. Section 3 introduces the concept of AR in its general lines,
and compares AR with computational reflection. Section 4 introduces the concept of
architectural causal connection within the context set by the previous sections. Section 5
provides an example illustrating the advantages brought by AR, in particular to dynamic
reconfiguration. Section 6 compares our approach to other research efforts. Finally,
section 7 draws some conclusions and describes future work.

2 Preliminary Concepts

2.1 Computational Reflection

Computational reflection, or reflection, is defined as the activity performed by an agent
when doing computations about itself [15]. Behavioural and structural reflection are re-

flection sub-branches which involve, respectively, agent computation and structure [7].
behavioural reflection can be defined as the ability of the language to provide a com-
plete reification of its own semantics as well as a complete reification of the data it uses
to execute the current program. Structural reflection can be defined as the ability of a
language to provide a complete reification of both the program currently executed as
well as a complete reification of its abstract data types.

A reflective system is logically structured into two or more levels, constituting a
reflective tower. Entities working in the base level, called base-entities or reflective
entities, define the basic system behaviour. Entities working in the other levels (meta-
levels), called meta-entities, perform the reflective actions and define further character-
istics beyond the application-dependent system behaviour.

Each level is causally connected to adjacent levels i.e., entities belonging in a level
maintain data structures representing (or, in reflection parlance, reifying) the states and
the structures of the entities in the level below. Any change in the state or structure of
an entity is reflected in the data structures reifying it, and any modification to such data
structures affects the entity’s state, structure and behaviour.

Computational reflection allows properties and functionality to be added to the
application system in a manner that is transparent to the system itself (separation of
concerns) [20]. For a classification and comparison of classic approaches to reflection
see [3].

2.2 The Implicit Architecture Problem

Component-Based Software Development (CBSD) aims at supporting the development
of complex software systems through the assembly of large, independently developed,
reusable components. CBSD brings forth on a distinction between programming-in-
the-small (PIS, the development of individual components) and programming-in-the-
large (PIL, the construction of systems out of components) [8]. While object-oriented
technology provides a sound basis for the development of both fine- and coarse-grained
reusable components, we still lack adequate notations and tools for programming-in-
the-large. Such notations should let system designers specify the “plan of how compo-
nents fit together and cooperate” [14] i.e., the software architecture of the system [19].
The architecture of a software system is defined by stating:

¶ how the overall functionality is partitioned into components;
· how the components are topologically arranged i.e., which interacts with which;
¸ the protocols used by components to communicate and cooperate i.e., which con-

nectors exist between them;
¹ the global control structure of the system.

Existing notations for composing software modules are usually limited to expressing
some small subset of these issues (e.g., topology alone). This implies that most ar-
chitectural issues be addressed in the components’ code itself. For example, once the
system architect has designed a protocol for components’ cooperation, this protocol
will be split into a specification of individual components’ behaviour and then imple-
mented by components’ code. This code (implementing an architectural choice) will be

intermixed with architecture-independent, functional code. In current practice, all archi-
tectural choices follow this fate and get dispersed in the components’ code (at PIS level)
in implemented systems. This is what we termed the implicit architecture problem in a
previous paper [5].

Building system with implicit architectures has several drawbacks: most notably, it
hinders components’ reuse due to the architectural assumptions components come to
embed [11]; it makes it infeasible to reuse architectural organizations independent of
the components themselves; it makes it overly complex to modify software systems’
architecture; and it is also cause of the despiteful, yet empirically observed fact that
architectural choices produced by skilled software architects are always distorted and
twisted by implementers [16]. A more detailed discussion of the implicit architecture
problem and its consequences can be found in [4].

2.3 Architectural Programming-in-the-Large

In a recent paper [5] we have proposed a novel approach to PIL, termed Architectural
Programming-in-the-Large (APIL), explicitly aimed at solving the implicit architecture
problem. In this approach, a system comprises a set of architecture-independent com-
ponents (i.e., components embedding no architectural assumption) and a program-in-
the-large prescribing how components should be assembled and interact i.e., the archi-
tecture of the system. The program-in-the-large is executed at run-time by a dedicated
virtual machine to rule over the instantiation and behaviour of components.

More precisely, the overall system organization which results from our approach
comprises three layers. At the first layer reside components. Each component interacts
with the environment through a set of ports i.e., distinct interaction points. This interac-
tion is modeled as a set of events occurring on ports; such events are generated by the
environment and trigger a reaction within the component. The behaviour of a compo-
nent (in terms of the events it can react to) is modeled as a state machine. At the second
layer reside connectors. Connectors are entities ruling over the interaction among com-
ponents. Each connects two or more ports belonging to two or more components. A
connector reacts to a set of cooperation events generated by its environment and, as a
reaction, it triggers events on the components’ ports. The behaviour of a connector, in
terms of the cooperation events it can react to and the events it generates on ports as a
reaction to cooperation events, is also modeled as a state machine.

At the third layer resides the program-in-the-large virtual machine. The behaviour
of the program-in-the-large virtual machine consists in actuating a description of the
system’s architecture comprising two aspects: topology and strategy. The topology de-
scribes the structure of the system i.e., which components and connectors comprise
the system. Actuating the topology means instantiating components and connectors ac-
cordingly. The strategy defines the overall behaviour of the system. It is a plan stating in
which order(s) cooperation events should be triggered in connectors. As a result of what
stated above, this plan indirectly rules over the components’ behaviour, since triggering
a cooperation event indirectly triggers events on the components’ ports.

In the APIL approach, architectures are explicit in the sense that the program-in-the-
large is a description of the software architecture which, rather than being implemented
inside components, rules over the components’ creation, their interactions (by defining

connectors between components), and the system’s overall flow of control (the strat-
egy).

3 Architectural Reflection

Architectural Reflection is the computation performed by a system about its own soft-
ware architecture [2].

An architectural reflective system is structured into several (potentially infinite) lay-
ers1, called architectural layers, constituting an architectural reflective tower. Every
layer is architecturally causally connected to the layer below i.e., in every architectural
meta-layer entities work, called architectural meta-entities, which maintain data struc-
tures reifying the software architecture of the underlying system; every change made
to these data structures reflects on the underlying system architecture, and vice versa.
Therefore, according to the concept of domain as used by Maes in [15], the application
domain of the architectural meta-entities is the software architecture of the computa-
tional system.

Each architectural layer has the necessary hidden hooks that allow it to be linked to
a potential new meta-layer above, but each layer is created only when needed, in order
to avoid an infinite regression.

Each architectural meta-layer operates on the architecture of the level below and
adds new functionality to the original system. The property of transparency holds as in
classical reflection i.e., each layer is unaware of the presence and behavior of the layers
above.

Based on our definition of topology and strategy as orthogonal aspects of software
architecture, we can further refine the definition of architectural reflection by defining
topological and strategic reflection.

Topological reflection is the computation performed by a system about its own
topology. Examples of topologically reflective actions include adding or removing com-
ponents or connectors.

Strategic reflection is the computation performed by the system about its own com-
putation in the large i.e., observation of the abstract state of components and connectors
and observationjmanipulation of the strategy. An example of strategically reflective ac-
tion is changing priorities associated to transitions in a priority-based strategy.

In the next sections we examine in more detail each layer of the architectural reflec-
tive tower. In particular we illustrate the agents working in each generic architectural
base or meta-layer, their duties and the layers interconnection (the architectural causal
connection).

3.1 Architectural Base-Layer

Based on the model described in section 2.3 for APIL, we have devised a notation for
describing components, connectors, the system’s topology and the system’s strategy, as

1 In order to avoid confusion between classic and architectural reflection, we will use hereafter
the terms “level” and “layer” to distinguish, respectively, the levels of the classic reflective
tower from those of the architectural one.

well as an interpretation model where dedicated system entities encapsulate architec-
tural issues and rule over the execution of architecture-independent components. What
APIL (notation and interpretation model) describes will be referred to, in this paper, as
the architectural base-layer. This section dwelves into the details of how the architec-
tural base-layer is structured and how it works, and introduces the APIL notation.

Components are the locus of computation. A component is made up of two parts: an
architecture-independent core providing the required functionality and no architectural
issues; and an architectural component wrapping the core to let its functionality be
accessible according to the behaviour described in the APIL notation. A component’s
behaviour is described according to the following syntax2:

<componentSpecification> ::=
component <componentName> {

{<portSpecification>}
<portDependencies>

}

<portSpecification> ::= port <portName> {

initial_state: <stateName>
transitions: [<portTransition>[{, <portTransition>}]]

}

<portTransition> ::=
<componentEvent>: <portPreconditions> Þ <portActions> Þ <portPostconditions>

<portActions> ::= [core.<command>[{, core.<command>}]]

<portDependencies> ::= [dependencies: <dependence>[{<dependence>}]]

<dependence> ::= <portName>.<stateName> Þ <portName>.<stateName>

Each component’s behaviour specification is segmented into a set of ports i.e.,
points of interaction with the environment, each described by a state machine. A tran-
sition is labeled by a component event name, termed the trigger event, meaning that
its firing is triggered by the occurrence of such event. Preconditions are constraints on
the port’s state; for a transition to fire, the relevant event must occur and its precondi-
tions must be satisfied. A port is said to be ready for event e if it is in a state which
satisfies the preconditions of at least one transition with e as the trigger event. Postcon-
ditions describe the state of the port after the firing of the transition. The action clause
specifies actions that are taken by the component as a consequence of the firing of the
transition. In this context, actions are invocations of commands on the internal compo-
nent’s core. Such core actions model activities performed in the small. The execution
of a core action is the only link between PIL and PIS level i.e., from the architectural
component (whose behaviour is that modeled by the component specification) and the
component’s core. The dependencies section describes any interdependencies existing

2 Nonterminals are written in plain text, terminals are in typewriter.

between the state of different ports, with the intent of gluing the port specifications to-
gether. Each dependence p.s Þ q.t states that whenever port p is in state s, port q is
forcibly moved onto state t.

Connectors are the locus of cooperation between components, each playing a certain
role in the cooperation. Connectors’ transitions define cooperation events which may
correspond to a sequence of component events involving the components playing the
role supported by the connector. The syntax for describing connectors is very close to
that used for components:

<connectorSpecification> ::=
connector <connectorName> {

roles: <roleName> {,<roleName>}
initial_state: {<stateName>}
transitions: <connectorTransition> {,<connectorTransition>}

}

<connectorTransition> ::=
<cooperationEvent>: <connectorPreconditions> Þ <connectorActions>
Þ <connectorPostconditions>

<connectorActions> ::= [<roleName>.<componentEvent>
[{, <roleName>.<componentEvent>}]]

The connector’s behaviour is described as a state machine. Roles can be seen as
formal parameters; the connector can manage the cooperation among any set of entities
which can play the listed roles. In actual systems, roles will be played by components’
ports. Transitions describe the connector’s behaviour. Each transition is labeled by a
cooperation event name, termed the trigger event. As for port transitions, a connec-
tor transition fires if the relevant cooperation event occurs and the preconditions are
satisfied, and pre- and postconditions model the machine’s state before and after the
transition. As for ports, a connector is ready for cooperation event e iff its state
satisfies at least one transition whose trigger event is e. Connector actions represent the
fact that the firing of a connector’s transition recursively fires transitions in the entities
playing the roles by triggering some events. For any action r.e in the action clause, an
implicit precondition must be added to the explicit preconditions, namely that the entity
playing role r is ready for event e.

Topology. The program-in-the-large proper comprises a description of the overall sys-
tem’s topology and strategy. The system’s topology defines which components and
connectors comprise the system and how they are attached to each other (i.e., which
component ports play which connector roles). Components’ and connectors’ specifi-
cations can be regarded as subspecifications of the topology, describing in more detail
each of the entities referred to in the topology itself. A topology is described in a rather
straightforward way as follows:

<topologySpecification> ::=

topology <topologyName> {

components: {<componentName>}
connectors: {<connectorName>}
attachments:

{<componentName>.<portName> plays <connectorName>.<roleName>}
}

In the APIL interpretation model, the system’s topology is actuated by a topology
actuator (TA in the following). Given that one of the overall aims of our approach is
to keep the architecture of the system explicit, it would clearly be impossible to hard
code links between components and connectors inside them. Hence, the role of the TA
is twofold. On the one hand, it realizes the topology by instantiating the appropriate
components and connectors. On the other hand, it keeps track of the interconnections
between ports and roles dispatching events between component and connectors (i.e., it
dispatches component events generated by connectors to the appropriate component(s)).

Strategy. The system’s strategy is described by a set of rules governing the occurrence
of cooperation events. Such description is actuated at run-time by a strategy actuator
(SA in the following) which works as an inference engine interpreting rules and thereby
triggering cooperation events. A rule-based approach was chosen due to its flexibility,
since our intent was that of accommodating a wide range of global control policies,
such as event-driven hard real-time, hard real-time ART (i.e., time-driven), concurrent,
priority-based, and so on. The rest of this section is devoted to illustrating the syntax and
semantics of these rules, along with the necessary definitions. A rule is an expression
of the form:

rule <ruleName> {

<rulePreconditions> Þ <ruleActions> [Þ <rulePostconditions>]
}

The preconditions section is a boolean expression made up of two separate sub-
sections, which refer to the state of connectors and the state of time respectively. Note
that, due to the layered approach we adopted, the SA has no knowledge whatsoever of
components, as it can only see connectors’ states. Thus, we have:

<rulePreconditions> ::= <stateOfConnectors>
<rulePreconditions> ::= <stateOfTime>
<rulePreconditions> ::= <stateOfConnectors>, <stateOfTime>

The state of a connector can be formally defined as the set of cooperation events it is
ready to accept. In this way, the state of a connector does not coincide with its internal
state, but is rather an abstraction of it. Thus, the state of a connector is simply a list of
allowed events; more formally:

<stateOfConnectors> ::= <connectorEnabledEvents> {,<connectorEnabledEvents>}
<connectorEnabledEvents> ::= <connectorName> <enabledCooperationEvent>

{,<enabledCooperationEvent>}.

As far as time is concerned, the “state of time” serves to express both time-
related constraints and time events. The former is a set of clauses such as “time <
2:00pm”, while the latter can be expressed in the same fashion with expressions such
as “time = 3.00pm”, where time can be regarded as a predefined variable that refers to
the current date and time. In this way, a uniform notation can be used to express both
events and constraints, which allows the designer to build extremely diverse systems.
Formally:

<stateOfTime> ::= time <relop> <timeExpression>

where <relop> is the set of the usual relational operators and <time expression>
can be expressed in one of the standard ways.

Clearly, each of the two constituents of the precondition section can be omitted;
in this way very diverse systems can be designed, ranging from hard real-time ART
systems, in which only the state of time section exists, to rule-based systems proper,
where the order of rule activation is dictated entirely by the built-in inference engine of
the SA. For instance, the SA may need to be multi-threaded, in order to execute rules
that overlap in time.

Since the SA only knows about connectors and, possibly, time, the only entity on
which it can perform an action is a connector. Thus, the actions section of rules is but a
list of cooperation events triggered on the appropriate connectors. More formally:

<actions> ::= <connectorAction> {,<connectorAction>}
<connectorAction> ::= <connectorName> <cooperationEvent> {,<cooperationEvent>}

Note that a potential problem arises from the fact that multiple actions can coexist
in the action section of a rule. In fact, one connectorAction might bring the system in
a state that renders the preconditions of the following connectorAction false. In order
to address this problem, essentially two approaches can be followed:

¶ the SA, after executing each connectorAction, turns back to examining the state
of the system (i.e., the state of the connectors) and decides whether to execute the
next action;

· the SA simply ignores the problem and leaves every such issue with the strategist
(see section 3.2).

Following solution ¶ above, it is the task of the SA to ensure system consistency, while
adopting approach ·, inconsistencies are dealt with at the layer above.

The postconditions section is still a boolean expression that describes that state of
the system after the rule has been executed. This state includes, as for the preconditions,
the state of connectors (defined in the usual way), and the state of time; in this way, it
is possible to specify time constraints on actions. To this aim, a predefined variable
(called elapsedTime) is provided, which, used in conjunction with the usual relational
operators, allows the designer to easily specify time requirements in the form of time
elapsed from the moment the action starts to the moment the action ends. In symbols:

<rulePostconditions> ::= <stateOfConnectors>, <stateOfTime>
<rulePostconditions> ::= <stateOfConnectors>, <elapsedTime>
<elapsedTime> ::= timeElapsed <relop> <timeExpression>

Note that organizing the rules and setting the appropriate priorities in order to ensure
that time constraints are respected is entirely up to the SA; under this respect, the rules
constitute a high-level specification of the system behaviour, which can be implemented
in a number of different ways according to the will of the SA. The only constraint that
the set of rules must respect is that the rules it contains must be non-conflicting; apart
from that, every decision is up to the SA.

The overall definition of the strategy is as follows:

<strategySpecification> ::=
strategy <strategyName> {

[<ruleDefinition> [{, <ruleDefinition>}]]
}

A system is defined by a topology and a strategy:

<systemSpecification> ::=
system <systemName> {

topology: <topologyName>
strategy: <strategyName>

}

The APIL Virtual Machine. The virtual machine of the APIL programming-in-the-
large language is structured into a framework providing both a set of architectural prim-
itives to be used for actuating the topology and strategy (e.g., to instantiate components
and connectors, and to trigger cooperation events), and the two actuators which exe-
cute the topology and strategy description by using such primitives. This structure has
several purposes, one of which will be illustrated in the next section. In the general
context of APIL (i.e., if we abstract from its relevance for AR), it is mainly intended to
support reuse of architectural organizations (i.e., programs-in-the-large) across differ-
ent platforms (where the basic architectural primitives may have completely different
implementations e.g., CORBA, Java, JavaBeans, and so on).

3.2 Architectural Meta-Layer

Each architectural meta-layer is a portion of an architectural reflective system devoted
to observe and manipulate the software architecture of the underlying layers.

We can consider each meta-layer (see Fig. 1) as a shell which wraps the underly-
ing system. The domain of the meta-entities working at a given meta-layer is defined
inductively as follows:

Base step: the domain of the architectural meta-entities working in the first meta-layer
is the software architecture of the base-layer;

Legend

Reflective Entities

Meta-Entities

Computational
Reflection

Architectural
Reflection

Architectural
Meta-Entities

Architectural Base Layer

Architectural Meta-Meta-Layer

Architectural Meta-Layer

Base
Level

Meta
Level

Fig. 1. Base- and meta-layers structure

Inductive step: the domain of the architectural meta-entities working in the n-th meta-
layer is the software architecture of the base-layer, and of the first meta-layer, . . . ,
and of the (n-1)-th meta-layer i.e., the software architecture of the system composed
by these layers.

As discussed so far, in this work we only consider two of the numerous aspects of soft-
ware architecture: topology and strategy. In order to simplify the architectural reflective
model, strategical and topological reflection are charged to two distinct architectural
meta-entities, termed respectively strategist, and topologist.

Topologist and Strategist. The topologist reifies information about topology (com-
ponents, connectors, and their attachments), while the strategist relies on topological
information held by the topologist and reifies both the current state of components and
connectors and the specific strategy at hand.

Due to the structure of the considered systems, in order to access and to manipu-
late architectural information, the architectural meta-entities need only interact with the
actuators of the underlying layer.

Topologist and strategist could be implemented as a single entity for the sake of
efficiency, but a separated implementation enhances chances for design reuse.

System bootstrap and shutdown can also be handled by architectural reflection,
since they involve topological and strategic actions (creation and destruction of com-
ponents, activation of initialization activities, and so on). In this case, topologist and
strategist must exist before andjor after the creation andjor destruction of the system.

Figure 2 represents an architectural reflective system. In the base-layer are com-
ponents (gray spheres), connectors (little black spheres connected by arrows, the little
spheres represent component ports), and actuators (big black spheres) that shape and
activate the system. Also observe that each meta-layer has its own actuators ruling over

architectural

causal connection

connector

between ports

actuator, and
system state abstraction

Legenda

component

architectural metra−entity

actuator action

Architectural Meta−Layer

Architectural Base−Layer

Fig. 2. Architectural reflective system structure

the meta-layer’s architecture. The architectural meta-entities are represented by light
gray spheres. They directly interact with the underlying actuators, which abstract (or
reify to the meta-layer) topology, strategy, and system state. Architectural meta-entities
operate on the underlying system’s architecture by directing the underlying actuators.

Meta-Layer Architectural Modeling Let us now consider how the first meta-layer
is described at the architectural level (of course the same considerations apply to any
meta-layer). The idea is that the meta-layer is again a system of interacting entities
and hence can be modeled with the same syntax used for the base-layer. It comprises
two components (topologist and strategist), respectively in charge of manipulating the
topology and the strategy of the base-layer. Of course, just as for the APIL descrip-
tion of base-layer components we omit details on their semantics (i.e., their operation
on their domain), likewise when describing topologist and strategist in APIL language
we will not detail their actual operation on the base-layer. Architectural causal connec-
tion from meta- to base-layer (downwards architectural connection, or reflection) is thus
hidden at the architectural level; reflective actions performed by the topologistjstrategist
on the base-layer architecture will be modeled by core actions. Such core actions will
involve invoking architectural modification primitives (discussed in section 4). A com-
ponent (such as topologist and strategist) whose core action involves modification of
the underlying layer’s architecture is labeled with the keyword meta-component in-
stead of component. In the meta-layer architectural model we adopted, the strategist is
the only meta-component accessing the strategy actuator and the topologist is the only
meta-component accessing the topology actuator.

For what concerns the upwards architectural connection, or reification (making the
base-layer architecture observable at the first meta-layer), saying that the base-layer ar-
chitecture is observable at the first meta-layer actually means that its state can influence
the strategist’s and topologist’s operation. In other words, transitions and rules at the
meta-layer can have pre- or postconditions including predicates on the current state of
the base-layer’s architecture. To model this fact in the APIL language we use the key-

word reify in both the topology and the strategy. If a topology reifies a system, this
means that predicates on this system’s state can occur in the components’ and connec-
tors’ behaviour specification. Likewise, if a strategy reifies a system, this means that
predicates on this system’s state can occur in rules.

As another extension to the basic APIL model required to describe the first meta-
layer, we also introduce constructs for modeling the fact that the state of the actuators of
the base-layer is observable by the meta-layer. This is analogous to reifying the state of
the virtual machine of a language in classic reflection. In particular, to model informa-
tion about the strategy actuator’s state, we introduce meta-rules at the first meta-layer.
Meta-rules are labeled with the keyword meta-rule instead of rule, and they include
predicates about the firing (and time-related issues such as time of firing, duration, and
so on) of the base-layer rules. Notice that meta-rules are used in junction with the reify
keyword (the subsystem must be observed in order for meta-rules to be allowed on the
subsystem’s rules). Expressions on rules that can be included in meta-rules can have the
following forms:

h ruleNamei.enabled //boolean expression: this rule is enabled
h ruleNamei.disabled //boolean expression: this rule is disabled
h ruleNamei.fired //boolean expression: this rule has fired in the past
h ruleNamei.lastFired //boolean expression: this rule was the last one to be fired
h ruleNamei.time //time expression: this rule fired at time x
h ruleNamei.duration //time expression: this rule took x time to complete the

//last time it fired
h ruleNamei.failure //boolean expression: the last firing of this rule

//did not work to meet the rule’s postconditions

3.3 Architectural and Computational Reflection: the Dualism

Under several respects, architectural reflection is a transposition in the large of compu-
tational reflection. Starting from the fact that topology and strategy represent, respec-
tively, the system’s structure and behaviour in the large, two statements follow:

¶ topological reflection can be compared to structural reflection, as both act on the
structure of the entities they manipulate, the former operating in the large i.e., on
the topology of the system, the latter in the small i.e., on the code of a single entity;

· strategic reflection can be compared to computational reflection, as both act on the
behaviour of the entities they manipulate, the former in the large, by observing
and modifying the strategy of the system, the latter in the small, by observing and
altering the computational flow of a single entity;

In both approaches the two reflective aspects (structuraljtopological, and behaviouraljstrategical
reflection) are charged to different entities: the topologist, and the strategist in the ar-
chitectural approach; the object’s class, and specific meta-entities (meta-classes [6],
meta-objects [13], channels [2] or messages [10]) in the classic approach.

Both kinds of reflection can be viewed in a compositional way. In classic reflec-
tion, the meta-entities working in a generic meta-level of the reflective tower observe
and manipulate the meta-entities of the underlying level, which in turn observe and
manipulate the entities (base- or meta-) of the underlying level and so on down to the

base-level. Analogously, as stated previously, the architectural meta-entities working in
a certain layer of the architectural reflective tower observe and manipulate the software
architecture of the whole underlying system.

Of course the two approaches are orthogonal, because the software architecture of
a system includes the components and the connectors related to meta-entities (if any)
employed in the system. Therefore, as shown in Fig. 1, the reflective tower is a part of
the domain of the first meta-layer of the architectural reflective tower.

4 Architectural Causal Connection

In classic reflection, a reflective system must keep, at the (n+1)-th level, an appropriate
representation of the nth level and must be able to reify any changes in the level below
into its representation and to reflect any change in that representation into the base-level.
This process, called causal connection, is at the heart of a reflective system, as it allows
to manipulate the description of a system, rather than the system itself.

Architectural reflection is no exception, in that topology and strategy can be reified
at the meta-layer and any change in them is reflected in the base-layer; the entities
in charge of maintaining such description of topology and strategy are the topologist
and the strategist, respectively. As discussed in the previous section, the link between
the base-layer and the meta-layer is represented by the reify keyword for reflection
and by core actions in topologist and strategist for reification; both these features are
implemented based on a set of primitives, which will be set forth in the rest of this
section.

4.1 Topological Primitives

As mentioned earlier, the tasks of the topologist are:

– to keep a representation of the system topology;
– to update the representation in order to reify any changes that should occur in the

topology;
– to ensure that any changes in its representation are reflected in the base-layer (i.e.,

in the topology itself).

Thus, the domain of the topologist is the topology, and the base-layer entity it cooper-
ates with is the topology actuator. Therefore, we will not be concerned here with how
the topologist is made or how it works inside, nor with how it can be programmed to
accomplish its tasks, but only with how it interacts with the topology actuator in order
to observe andjor manipulate the topology. Therefore, the TA acts as a bridge between
the topologist and the APIL virtual machine; as such, it exports to the topologist the
appropriate directives for this to be able to accomplish its topology tasks.

In the context given above, the topologist, in order to reify the current topology of
the system, relies on the TA, rather than knowing the single components and connectors
directly. Every change in the system topology is known by the topologist through the
TA’s representation.

As far as reflection is concerned, the commands that the topologist can issue to the
TA can be broadly partitioned into three categories:

¶ creation of new types of entities (define primitive);
· creation of new entities of an existing type (instantiate primitive);
¸ destruction of entities (destroy primitive).

Each of the above commands applies to all kinds of entities, if with some limitations,
as we will see below. Thus, the directives exported by the TA to the topologist are the
following:

– define{Component|Connector}: defines a new type of entity;
– instantiate{Component|Connector|Attachment}: creates a new entity of an ex-

isting type3;
– destroy{Component|Connector|Attachment}: destroys an existing entity;

4.2 Strategical Primitives

As explained above, the system evolution is governed by the strategy actuator (SA),
which accomplishes its task by executing a set of rules; in other words, the system
behaviour is governed by those rules. In this context, the goal of the strategist is to
observe the system behaviour and to modify it as needed.

Reifying the system behaviour means essentially two distinct things:

¶ knowing the rules;
· observing the state of the SA.

As for point ¶, it is clear that the strategist knows the rules, as it makes them. Point ·
simply means that a getState primitive (or some similar mechanism) must be exported
by the SA to the strategist. For example if, after a rule is fired, the postconditions are
not respected, the SA enters an error state; this state is observed by the strategist that
can then take the appropriate measures (see section 5 for a complete example).

As the system behaviour is dictated by rules, modifying behaviour implies modify-
ing rules. Thus, the SA exports a set of primitives that allow the strategist to modify the
rule set, as follows:

– addRules: adds a specified set of rules;
– removeRules: removes the specified rules;
– inhibitRules: specifies a set of rules that, even having their preconditions satis-

fied, should not be fired;
– trigRules: specifies a set of privileged rules i.e., a set of rules that should fire

before the others. Obviously, the strongest requirement that a rule can only be fired
when its preconditions are met, still holds; this means that this directive has only
effect if and when the preconditions are satisfied.

Note that the above set of primitives is to be intended as a minimal set, which can be
enriched at will according to particular requirements.

3 Note that since attachments are all of the same type, there is no defineAttachment directive.

5 Advantages

The most important advantage introduced by our approach is represented by the pos-
sibility to dynamically reconfigure a running system. Given a running architectural re-
flective system, the architectural meta-entities have the power to modify the current
system’s topologyjstrategy according to their programming. When a running system
has the hooks (actuators, and the other entities needed for APIL [4]) required to bind
the meta- to the base-layer, it is extendible without stopping it, thanks to the properties
of transparency and separation of concerns of architectural reflection.

5.1 An Example

We will now give an example illustrating the idea of AR and the advantages it brings.
Since we are interested in the architectural structure of systems and reflection on such
architecture, in the example we will not get into the details of the components’ programs-
in-the-small (actual computation).

The Scenario and the Base-Layer. Let us consider a non-stopping distributed system,
periodically receiving a large input set, processing it, and generating a new output set.
The system considered is a subsystem of a more complex system, and inputs and outputs
come from, or go to external subsystems (which we don’t detail). The system performs
a task based on the data-parallelism paradigm, and is composed by several identical
components; each component works on an equal slice of the original input set. Those
components are described as follows:

component unit {
initial state: waiting for input
port input {

initial state: ready for input
transitions:

inValues(real *data):
ready for input Þ core.evaluate(real *data) Þ idle

}
port output {

initial state: idle
transitions:

outValues(real *data):
ready for output Þ core.retrieve(real *data) Þ idle

}
dependencies:

input.idle Þ output.ready for output
output.idle Þ input.ready for input

}

Units have two ports, the former for receiving the inputs to elaborate, the latter
for dispatching the elaborated outputs. The input and output entities are modeled as
components:

component input { component output {
port input { port output {

initial state: idle initial state: idle
transitions: transitions:

getValues(real *data): putValues(real *data):
idle Þ core.get(real *data) Þ idle idle Þ core.put(real *data) Þ idle

} }
} }

In this system there are two kind of connectors, the former handles the receiving of
data, while the latter handles the dispatching of the produced data.

connector inputConnector { connector outputConnector {
roles: in, unit roles: out, unit
initial state: empty initial state: empty
transitions: transitions:

transfer(real *d): transfer(real *d):
empty Þ in.getValues(real *d), empty Þ unit.outValues(real *d),

unit.inValues(real *d) Þ empty out.putValues(real *d) Þ empty
} }

They connect, respectively, a generic component with the input, or the output enti-
ties.

Topology and Strategy of this system are parametric (the value of n in the specifica-
tion) on the number of the components unit belonging to the system and consequently
of the number of connectors connecting them4.

topology topology base-layer {
components:

IN: input; OUT: output;
unit{1. . .n}: unit;

connectors:
INUnit{1. . .n}: inputConnector;
Unit{1. . .n}OUT: outputConnector;

attachments:
IN.input plays INUnit{1. . .n}.in;
OUT.output plays Unit{1. . .n}OUT.out;
unit{1. . .n}.input plays INUnit{1. . .n}.unit;
unit{1. . .n}.output plays Unit{1. . .n}OUT.unit;

}

The strategy is very simple, and consists of only one rule, which makes advance the
system when an input is ready to be elaborated

4 when we write: component_name.port_name plays connector_name{1...n}.rule_name; and
component_name{1...n}.port_name plays connector_name{1...n}.rule_name; we, respec-
tively, mean: 8i 2 f1; :::;ng:(component_name.port_name plays connector_namei.rule_na-
me); and 8i 2 f1; :::;ng:(component_namei.port_name plays connector_namei.rule_name);

strategy strategy base-layer {
rule advance{1. . .n} {

Þ INUnit{1. . .n}.transfer(), Unit{1. . .n}OUT.transfer() Þ

}
}

Finally, the system is represented by the composition of topology and strategy.

system base-layer {
topology: topology base-layer;
strategy: strategy base-layer;

}

The Meta-Layer. Let us now assume that a dynamic behaviour must be added to
the system, so that whenever a step takes too long, the number of units is doubled
to speed the computation up. In order to realize such a behaviour, the designer must
add a meta-layer hooking the subsystem up and in which topologist and strategist co-
operate for doubling the number of the computational units of the base-layer. As ex-
plained above, topologist and strategist are special components introduced by the key-
word meta-component, and in this case are described as follows:

meta-component topologist {
port double {

initial state: idle
transitions:

doubleComponents():
idle Þ core.istantiateComponents(

components:
unit{n+1. . .2n}: unit;),

core.istantiateConnectors(
connectors:

INUnit{n+1. . .2n}: inputConnector;
Unit{n+1. . .2n}OUT: outputConnector;),

core.istantiateAttachments(
attachments:

IN.input plays INUnit{n+1. . .2n}.in;
OUT.output plays Unit{n+1. . .2n}OUT.out;
unit{n+1. . .2n}.input plays INUnit{n+1. . .2n}.unit;
unit{n+1. . .2n}.output plays Unit{n+1. . .2n}OUT.unit;)

Þ idle
}

}

meta-component strategist
port double {

initial state: idle
transitions:

addRules():
idle Þ core.addRules(

rule advance{n+1. . .2n} {
Þ INUnit{n+1. . .2n}.transfer(),

OUT{n+1. . .2n}unit.transfer()
Þ)

Þ idle
}

}

Strategist and topologist reconfigure the system by adding units and connectors to
the base-layer, by attaching ports and connectors properly, and by adding the necessary
rules to coordinate the new elements’ work. As explained in section 3, they do so by
invoking architectural modification primitives on the actuators via core actions.

connector doublingCoordinator {
roles: topologyDoubler, strategyDoubler
initial state: idle
transitions:

coordinateDoubling():
idle Þ topologyDoubler.doubleComponents(),

strategyDoubler.addRule() Þ idle,
}

Topologist and strategist are of course coordinated by a connector, which guarantees
that topology and strategy are modified accordingly.

topology topology meta-layer {
reify: base-layer;
meta-components:

t: topologist;
s: strategist;

connectors:
dc: doublingCoordinator

attachments:
t.double plays dc.topologyDoubler;
s.double plays dc.strategyDoubler;

}

strategy strategy meta-layer {
reify: base-layer;
meta-rule doubleArchitecture {

advance().duration > "10ms" Þ dc.coordinateDoubling(), Þ

}

The strategy of this layer is very simple and consists of triggering the connector
when the computation of the base-layer takes too long. The fact that too much time has
elapsed is expressed by the precondition of the doubleArchitecture meta rule.

6 Related Work

The idea of making architectures explicit as exposed in this paper has been influenced
by several contributions in the software engineering literature, which obviously include
the very idea of programming-in-the-large introduced by DeRemer and Kron. Mary
Shaw, Robert Allen, David Garlan and other colleagues at CMU wrote several papers,
now collected in a book [19], proposing notations and models for explicitating architec-
tural designs. Their work is primarily aimed at specifying software architectures, usually
with analytical purposes, but with no notion of an executable architectural description.
As such, their work is similar in purpose to Helm’s formal contracts [12], except that it
addresses general rather than object-oriented architectures.

David Luckham from Stanford [14] proposes an executable architecture description
language termed Rapide. As a main difference to our approach, execution of a Rapide
architectural description is to be regarded as a simulation of the behaviour the system
will have once implemented (with conventional means).

Separating architectural information in general from application-dependent infor-
mation is one of the possible application of Object-Oriented frameworks [18]. While
object-oriented frameworks address this problem in terms of a static separation achieved
through inheritance (whereby an architectural design is represented by a set of abstract
classes from which concrete component classes are derived, which ultimately embed,
through inheritance, both architectural and application functionality), our work deals
with maintaining such separation at run-time.

Several proposals have been made in the software engineering literature aimed at
localizing information about the cooperation of components in dedicated run-time en-
tities (like our connector) and insulating components from such information. Pintado’s
gluons [17] are intended to be the locus of cooperation patterns definition, but in his
model components are aware of the gluon they interact with and they are actually de-
signed explicitly for being connected through a specific gluon (protocol-centered de-
sign). A similar consideration holds for Aksit et al.’s composition-filter approach [1].
Sullivan’s mediator concept [21] supports both localization of cooperation patterns and
cooperation-transparent components. As a major difference to our connectors, media-
tors do not control components but they only enforce state interdependencies among
them.

The closest approach to APIL is that of Stéphane Ducasse and Tamar Richner, who
propose introducing connectors as run-time entities with much the same purpose con-
sidered here (making architectural designs explicit in implemented systems) in the con-
text of an extended object model termed FLO [9]. FLO’s connector model is very rich
and interesting, and has several similarities to APIL’s connector. Nevertheless, FLO is
based on a simpler component model which does not include a notion of a port or a
behavioural component specification.

While the mentioned efforts are close to APIL in several respects, none of them
addresses dynamical modification of the architecture as a reflection problem; dynam-
ical modifications are at best regarded as destruction and creation of connectors (glu-
ons, mediators, etc.), but no clean conceptual model is provided for ruling over such
events. Moreover, none of them includes the idea of maintaining at run-time a (logi-
cally) centralized description of the system’s architecture (our program-in-the-large).

With respect to the three levels of system description outlined in section 2, all these ef-
forts reach at most level two (description of cooperation patterns), and none addresses
level three (description of the whole system as a composition of cooperation patterns).
For this reason, while AR could be based on several of these models (particularly FLO),
APIL seems most convenient to that aim.

7 Conclusions

This paper presents an extension of classic reflection to the software architecture level.
The basic application of this extension is to allow for a systematic and conceptually
clean approach to designing systems with self-management functionality (such as dy-
namic reconfiguration) which also supports such functionality to be added to an ex-
isting system without modifying the system itself. Since dynamic reconfiguration and
other self-management activities are conceived as operations performed by a system
on its own architecture, the approach is strongly related to the idea of localizing and
explicitating architectural designs in implemented systems, as realized by Architectural
Programming-in-the-Large. The ideas presented in this paper formalize those presented
in a previous paper on the same topic [5], explain the relationship between AR and
APIL, and between AR and classic reflection.

At present, a prototype APIL environment is under development. We believe that
making AR feasible is one of the major advantages of the APIL approach itself, so that
integrating architectural reflective capabilities in this environment will be a prominent
goal in the near future. On a more conceptual level, the presented work can be extended
by including other aspects of software architecture (distribution, performance, hierar-
chical organization in subarchitectures) in the APIL model and extending AR to include
reflection on these new aspects.

References

[1] Mehmet Akşit, Ken Wakita, Jan Bosch, Lodewijk Bergmans, and Akinori Yonezawa. Ab-
stracting Object Interactions Using Composition Filters. In Proceedings of Object-Based
Distributed Programming (ECOOP’94 Workshop), Lecture Notes in Computer Science
791, pages 152–184. Springer-Verlag, July 1994.

[2] Massimo Ancona, Walter Cazzola, Gabriella Dodero, and Vittoria Gianuzzi. Channel
Reification: A Reflective Model for Distributed Computation. In Roy Jenevein and Mo-
hammad S. Obaidat, editors, Proceedings of IEEE International Performance Computing,
and Communication Conference (IPCCC’98), 98CH36191, pages 32–36, Phoenix, Ari-
zona, USA, on 16th-18th February 1998. IEEE.

[3] Walter Cazzola. Evaluation of Object-Oriented Reflective Models. In Proceed-
ings of ECOOP Workshop on Reflective Object-Oriented Programming and Sys-
tems (EWROOPS’98), in 12th European Conference on Object-Oriented Programming
(ECOOP’98), Brussels, Belgium, on 20th-24th July 1998. Extended Abstract also pub-
lished on ECOOP’98 Workshop Readers, S. Demeyer and J. Bosch editors, LNCS 1543,
ISBN 3-540-65460-7 pages 386-387.

[4] Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. A Fresh Look at
Programming-in-the-Large. In Proceedings of 22nd Annual International Computer Soft-
ware and Application Conference (COMPSAC’98), pages 502–506, Wien, Austria, on 19th-
21st August 1998. IEEE.

[5] Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. Architectural Re-
flection: Bridging the Gap Between a Running System and its Architectural Specification.
In Proceedings of 6th Reengineering Forum (REF’98), pages 12–1–12–6, Firenze, Italia,
on 8th-11th March 1998. IEEE.

[6] Pierre Cointe. MetaClasses are first class objects: the ObjVLisp model. In Norman K.
Meyrowitz, editor, Proceedings of the 2nd Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’87), volume 22(10) of Sigplan Notices,
Orlando, Florida, USA, October 1987. ACM.

[7] François-Nicola Demers and Jacques Malenfant. Reflection in Logic, Functional and
Object-Oriented Programming: a Short Comparative Study. In Proceedings of the IJCAI’95
Workshop on Reflection and Metalevel Architectures and their Applications in AI, pages
29–38, Montréal, Canada, August 1995.

[8] Frank DeRemer and Hans H. Kron. Programming-in-the-large versus Programming-in-the-
small. IEEE Transactions on Software Engineering, SE-2:80–86, June 1976.

[9] Stéphane Ducasse and Tamar Richner. Executable Connectors: Towards Reusable Design
Elements. In Proceedings of ESEC’97, LNCS 1301, pages 483–500. Springer-Verlag, 1997.

[10] Jacques Ferber. Computational Reflection in Class Based Object Oriented Languages. In
Proceedings of 4th Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’89), volume 24 of Sigplan Notices, pages 317–326. ACM, October
1989.

[11] David Garlan, Robert Allen, and John Ockerbloom. Architectural Mismatch, or, Why It’s
Hard to Build Systems out of Existing Parts. In Proceedings of XVII ICSE. IEEE, April
1995.

[12] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: Specifying Com-
positions in Object-Oriented Systems. In Proceedings of OOPSLA/ECOOP’90, pages 169–
180. ACM, 1990.

[13] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, Cambridge, Massachusetts, 1991.

[14] David C. Luckham, Larry M. Augustin, John J. Kenney, James Veera, Doug Bryan, and
Walter Mann. Specification and Analysis of System Architecture Using Rapide. IEEE
Transactions on Software Engineering, SE-21:336–355, April 1995. Special Issue on Soft-
ware Architecture.

[15] Pattie Maes. Concepts and Experiments in Computational Reflection. In Norman K. Mey-
rowitz, editor, Proceedings of the 2nd Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’87), volume 22 of Sigplan Notices, pages
147–156, Orlando, Florida, USA, October 1987. ACM.

[16] Gail C. Murphy. Architecture for Evolution. In Alexander L. Wolf, Anthony Finkelstein,
George Spanoudakis, and Laura Vidal, editors, Proceedings of 2nd International Software
Architecture Workshop (ISAW’96), pages 83–86, San Francisco, CA, USA, October 1996.
ACM.

[17] Xavier Pintado. Gluons: A Support for Software Component Cooperation. In Proceedings
of ISOTAS’93, LNCS 742, pages 43–60. Springer-Verlag, 1993.

[18] Wolfgang Pree. Design Patterns for Object-Oriented Software Development. Addison
Wesley, 1995.

[19] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, Upper Saddle River, NJ 07458, 1996.

[20] Robert J. Stroud. Transparency and Reflection in Distributed Systems. ACM Operating
System Review, 22:99–103, April 1992.

[21] Kevin J. Sullivan, Ira J. Kalet, and David Notkin. Evaluating the Mediator Method: Prism
as a Case Study. IEEE Transactions on Software Engineering, 22(8):563–579, August
1996.

	1 Introduction
	2 Preliminary Concepts
	2.1 Computational Reflection
	2.2 The Implicit Architecture Problem
	2.3 Architectural Programming-in-the-Large

	3 Architectural Reflection
	3.1 Architectural Base-Layer
	Topology.
	Strategy.
	The APIL Virtual Machine.

	3.2 Architectural Meta-Layer
	Topologist and Strategist.
	Meta-Layer Architectural Modeling

	3.3 Architectural and Computational Reflection: the Dualism

	4 Architectural Causal Connection
	4.1 Topological Primitives
	4.2 Strategical Primitives

	5 Advantages
	5.1 An Example
	The Scenario and the Base-Layer.
	The Meta-Layer.

	6 Related Work
	7 Conclusions

