
Lorenzo Capra and Walter Cazzola. A Reflective PN-based Approach to Dynamic Workflow Change. In Proceedings of the 9th International Symposium in
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’07), pages 533–540, Timişoara, Romania, September 2007. IEEE.

A Reflective PN-based Approach to Dynamic Workflow Change

Lorenzo Capra
Department of Informatics and Communication,

Università degli Studi di Milano, Italy
capra@dico.unimi.it

Walter Cazzola
Department of Informatics and Communication,

Università degli Studi di Milano, Italy
cazzola@dico.unimi.it

Abstract

The design of dynamic workflows needs adequate mod-
eling/specification formalisms and tools to soundly handle
possible changes occurring during workflow operation. A
common approach is to pollute design with details that do
not regard the current workflow behavior, but rather its evo-
lution. That hampers analysis, reuse and maintenance in
general.

We propose and discuss the adoption of a recent Petri
Net based reflective model (based on classical PN) as a sup-
port to dynamic workflow design, by addressing a localized
problem: how to determine what tasks should be redone and
which ones do not when transferring a workflow instance
from an old to a new template.

Behind there is the idea that keeping functional aspects
separated from evolutionary ones, and applying evolution
to the (current) workflow template only when necessary, re-
sults in a simple reference model on which the ability of
formally verifying typical workflow properties is preserved,
thus favoring a dependable adaptability.

Keywords: Dynamic Workflow, Petri Nets, Reflection,
Evolution.

1. Introduction

A dynamic workflow can change/evolve during execu-
tion. Change occurs frequently in current business pro-
cesses due to two primary reasons [20]: i) at design time the
workflow specification is incomplete due to lack of knowl-
edge, ii) errors or exceptional situations can occur during
the workflow execution; these are usually tackled on by de-

viating from the static schema, and may cause breakdowns,
reduced quality of services, and inconsistencies.

Most of existing workflow management solutions (e.g.,
IBM Domino, iPlanet, Fujisu iFlow, TeamCenter) are de-
signed to handle static business processes, in various de-
grees. The solution currently adopted by most WMS is
in fact that, once process changes occur, new workflow
templates are defined and workflow instances are initiated
accordingly from scratch. This over-simplified approach
forces tasks that were completed on the old instance to be
executed again, also when not necessary. If the workflow
is complex and/or involves a lot of external collaborators, a
substantial business cost will be incurred.

Dynamic workflow change management might be
brought in as a potential solution. Formal techniques and
analysis tools can support the development of adaptable
WMS capable to handle undesired results introduced by
workflow dynamism.

In the research field on dynamic workflow, the prevalent
opinion is that models that capture work practices should
be based on a formal theory and be as simple as possi-
ble [2]. The Milano system [1] aims to provide process
models (i.e., workflow templates) as ’resources for action’
rather than strict blueprints of work practices. May be the
most famous dynamic workflow formalization, the ADEPT-
flex system [16], is designed to support dynamic change at
runtime. A complete and minimal set of change operations
is defined that support users in modifying the structure of
a running workflow. The correctness properties defined by
ADEPTflex are used to determine whether a specific change
can be applied to a given workflow instance or not.

Most workflow modeling techniques are based on Petri
Nets (PN) [17], due to their description efficacy, formal na-
ture, and ability to support correctness verification through
consolidated techniques. Classical PNs have a fixed topol-

533

ogy, so they are well suited to model workflow matching a
static paradigm, i.e, processes that are finished or aborted
once they are initiated. Conversely, the design of dynamic
workflows is not well supported by classical PNs, dynamis-
m/evolution must be hard-wired in the PN model and by-
passed when not in use. That requires some expertise in
PN modeling, and might result in an incorrect or partial de-
scription of workflow behavior. Even worst, analysis would
be polluted by a great deal of details that concern evolution.

Separating evolution from the (current) system behavior
is worthwhile. This concept has been recently applied to a
PN-based context [5], using reflection [14] as mechanisms
that easily permits separation of concerns. A basic reflective
model layered in two causally connected levels (base-, and
meta-level) is used.

With respect to several ‘dynamic’ PN extensions recently
appeared (e.g. [4, 11] and, as concerns specifically applica-
tion to the workflow field, [3,8,9,13]) our model, called re-
flective Petri nets [5], does not define a new PN paradigm,
but relies upon classical PNs. That gives the possibility of
using available tools and consolidated analysis techniques
in a fully orthogonal fashion.

We propose and discuss the adoption of the reflective
PN-based model as a support to dynamic workflow design,
considering a localized open problem: how to determine
what tasks should be redone and which ones do not when
transferring a workflow instance from an old to a new tem-
plate. The problem is efficiently, but rather empirically, ad-
dressed in [15], where a template-based dynamic schema
is implemented, relying on the concept of bypassable task.
Conforming to the same concept, we propose an alterna-
tive, parametric solution, that allows evolutionary steps to
be soundly formalized and workflow properties to be veri-
fied during evolutionary strategy execution.

According to [1, 2], the idea is to keep the current (base)
workflow model as simple as possible. Our approach has
some resemblance also with [16], sharing the same com-
pleteness/minimality criteria, but considerably differs in
management of changes: it provides neither exception han-
dling nor undoing mechanism of temporary changes at in-
stance level, rather it relies upon a sort of on-the-fly check-
ing of properties, through the ’reification’ concept typical of
reflection.

The paper is structured as follows: in section 2 we out-
line the PN-based reflective model, introducing the adopted
terminology and the language used to specify the evolution-
ary strategy; in section 3 we introduce the dynamic work-
flow problem addressed in [15]; in section 4 we present a
solution based on the reflective PN model; finally in sec-
tion 5 we draw our conclusions and perspectives. We here-
after assume that the reader has some basic knowledge of
classical PNs (specifically, safe Place/Transition nets).

2. Reflective PNs

The reflective Petri net approach we have developed [5]
permits developers to model a (discrete-event) system and
separately all its possible evolutions, and to dynamically
adapt system’s model when evolution must occur.

The approach is based on a reflective architecture [6]
structured into two logical layers. The first layer, called
base-level, is represented by the PN modeling the system
prone to be evolved, also called base-level PN; whereas
the second layer, called meta-level is represented by the
meta-program, following the reflection parlance, a Colored
PN [12] composed by the evolutionary strategies that will
drive the evolution of the base-level PN when certain events
occur. Entities on the meta-level perform computations on
entities residing on the lower level.

The reflective framework, realized by a CPN as well, is
responsible for really carrying out the evolution of the base-
level PN at the meta-level. Meta-level computations in fact
operate on a representative of the lower-level, called reifi-
cation. The base-level PN reification is defined as a (col-
ored) marking of the reflective framework, and is automat-
ically updated every time the base level Petri net enters a
new state. The reification is used by the meta-program (in
the specific by the evolutionary strategies) to observe (intro-
spection) and manipulate (intercession) the base-level PN.
Each change to the reification is reflected on the base-level
PN at the end of a meta-computation (shift-down action),
i.e., the base-level PN and its reification are causally con-
nected, the reflective framework being responsible for that.

According to the reflective paradigm, the base-level PN
runs irrespective of the meta-program, being not aware of
the existence of a meta-level. The meta-program is implic-
itly activated (shift-up action), and a suitable strategy is then
put into action, under two conditions: i) either when the
base-level PN model reaches a given configuration, or ii)
when triggered by an external/unpredictable event. The oc-
currence of such one event is modeled by putting a token in
a reflective framework’s place.

Intercession on the base-level PN is carried out in terms
of a minimal set of basic operations (called the evolution-
ary interface), that permit any kind of base-level’s evolu-
tion to be emulated, both at structure (topology) and mark-
ing (current state) level: the meta-programmer can add/re-
move places, transitions and arcs, and freely move tokens
all over the base-level PN places. The evolutionary strat-
egy specifies arbitrarily complex transformation patterns for
the base-level Petri net. To simplify their design we have
provided the developer with a tiny, ad-hoc (meta-)language
that allows everyone to specify his own strategy in a simple
and formal way. We adopted a syntax inspired by Hoare’s
CSP [10], enriched with a few specific constructs and no-
tations for easy manipulation of nets. A strategy specified

534

in this way can be automatically translated into the corre-
sponding CPN, that will be in turn composed to the evolu-
tionary framework to obtain the whole meta-model.

Evolutionary strategies have a transactional semantics:
either they succeed, or leave the base-level PN unchanged.
We realistically assume that several strategies are pos-
sible at a given instant: the adopted policy is to non-
deterministically select one among the ones suitable to be
executed. A priority level can be also assigned to alterna-
tive strategies, to reduce non determinism.

The interaction between base-level and meta-level, and
between meta-level entities, has been formalized in [5]. Let
us only outline the essential aspects:

— the structure of the reflective framework is fixed, while
the evolutionary strategies are coupled to the base-
level PN, and change from time to time;

— the reflective framework and the meta-program are
separated components, sharing two disjoint sets of
boundary places: the base-level PN reification and the
evolutionary interface; the interaction between compo-
nents is realized through place superposition;

— the base-level PN reification is observed and manip-
ulated by the meta-program; whereas the evolution-
ary interface allows the evolutionary strategies to send
evolutionary commands to the reflective framework to
be put into action;

— the base-level reification color domains are similar to
formal parameters, that are bound from time to time
to a given base-level PN; reification’s initial marking
corresponds to the starting base-level configuration.

The whole reflective architecture is characterized by a
fixed part (the high-level PN representing the reflective
framework), and by a part varying from time to time (the
base-level PN and the high-level PN representing the evo-
lutionary strategy). The fixed part is used to put evolution
into practice for any kind of system, independently of its
structure and behavior. It is responsible for the reflective
behavior of the architecture, and hides the work of the evo-
lutionary sub-system to the base-level PN. This approach
permits a clean separation between the PN describing the
evolution and the model of the evolving system, that will be
updated only when necessary. So the base-level PN model
is not polluted by details related to evolution.

3. Transferring a Workflow Instance to a New
Template

A workflow management system supporting dynamic
workflow change can either directly modify the affected in-
stance, or restart it based on the new workflow template

while minimizing repetitive execution of affected nodes.
The first method is instance based while the second is tem-
plate based (schema evolution).

An interesting solution to facilitate efficient dynamic
workflow change is proposed in [15]. The approach ad-
dresses template-based dynamic workflow changes, accord-
ing to the consolidated industrial practice that each work-
flow instance is initiated from its template. The method
is implemented in SmarTeam, a leading PDM system with
built-in workflow capabilities. Workflows are formally
specified in [15] by Directed Network Graphs (DNG), that
may be easily translated into PNs.

The idea is to identify all nodes in the new workflow
instance that satisfy the following conditions i) they are un-
changed, ii) they have been finished in the old workflow
instance, and iii) they need not be executed again in the new
workflow instance, i.e., they can be bypassed. We hereafter
assume that nodes (transitions in PN parlance) subject to
change preserve name.

Two nodes are identical before and after change if they
represent identical tasks and preserve connections (incom-
ing and outgoing). The output of a node is affected by all
nodes from which there is a path to the node itself. There-
fore, to determine if a node whose associated task was fin-
ished in the old instance can be bypassed when the instance
is transferred to a new template, the following additional
condition is needed: all nodes from which there is a path
(i.e, that are causally connected) to the node itself, can be
bypassed. Obviously the start node can be always bypassed.
The approach relies upon a simple, clever algorithm for rec-
ognizing which nodes can be bypassed: starting from the
start node, it only tests the nodes close to a node that can be
bypassed. By exploiting the topology of the workflow in-
stance under change, unnecessary tests on non-bypassable
nodes are avoided.

The proposed approach has been implemented in Das-
sault SmarTeam PDM system1. SmarTeam has an individ-
ual workflow component, which includes a workflow man-
ager, a flowchart designer, and a message management tool.
There is no built-in mechanism to support dynamic work-
flow change. A set of API enables detaching and attaching
operations between processes and workflow templates. As
earlier indicated, a process has to be re-executed entirely
if its workflow template is changed. To realize dynamic
workflow change, the proposed approach is implemented as
a C++ program, running at the SmarTeam server side. The
program executes the following steps:

¶ obtain a flow process instance;

· obtain the old and new workflow templates of the flow
process;

1http://www.3ds.com/products-solutions/plm-solutions/

enovia-smarteam/overview/.

535

¸ attach the new workflow template to the flow process;

¹ identify and mark the nodes that can be bypassed in the
new workflow instance; and

º initiate the new workflow instance without re-
executing the marked nodes.

What appears unspecified (or at least, underspecified)
in [15] is how to safely operate steps ¹ and º: our impres-
sion is that some heuristics are implemented, rather than a
well defined methodology. No check is done about sound-
ness of changes carried out on workflow instances accord-
ing to the new template. The latter is assumed to be sound.

4. Reflective PN Alternative to [15]’s Approach

We propose an alternative, based on reflective PNs [5], to
the Qiu-Wong [15] approach that allows a sounder formal-
ization of evolutionary steps ¹ and º, and permits some
kind of on-the-fly verification of workflow changes during
evolutionary strategy execution. In case of a negative check,
changes are not reflected down to the base-level.

The aim is to show that reflective Petri nets can ade-
quately model adaptable dynamic workflows. We consider
the same case presented in [15] (Figure 1), with a small
variation. A company has several regional branches. To
enhance operation consistence, the company headquarter
(HQ) standardizes its business processes in all branches. A
process is developed to handle customer problems. The pro-
cess is defined as a workflow template in SmarTeam. When
the staff in a branch encounters a problem, a workflow in-
stance will be initiated from the template and executed un-
til its completion. The PN specification of the template is
given in Figure 1(a).

In the template, a problem goes through two stages:
problem solving and on-site realization. Problem solving
involves several steps that are included in the dashed box in
Figure 1(a)). When opening a case, the staff in the branch
reports the case to the HQ. When closing the case, the staff
archives the related documents in the HQ database. The HQ
manages all instances related to the problem handling pro-
cess. In response to a business need, the HQ may decide to
change the problem handling process in all branches and to
transfer all of old workflow instances to the new template,
depicted in Figure 1(b). The new template differs from the
original one basically in two points:

— “reporting” and “problem solving” are completely sep-
arated tasks; and

— it is assumed that “on site realization” can fail, in that
case the “problem solving” sequence restarts.

The evolutionary schema. When using reflective PN, the
evolutionary schema must be completely reviewed, while
preserving motivation and goals of [15] . The new work-
flow template is not passed as input to the staff of the com-
pany branches, rather it results from applying an evolution-
ary strategy to a workflow instance belonging to the current
template. The base-level PN specifying the current work-
flow instance is hereafter assumed to be a workflow net [18],
a subclass of 1-bounded Place/Transition Petri nets.

It should be fairly evident how simple the design of the
base workflow template is. No details related to the net dy-
namic evolution are hard-wired in the base-level net. Evo-
lution is delegated to the meta-program, translated to a Col-
ored Petri Net, that acts on the reification of base-level
workflow. The meta-program is activated when an evolu-
tionary signal is received from HQ, or some anomaly is
revealed by introspection (e.g., a deadlock). Introspection
is used especially to discriminate whether the evolutionary
commands can be safely applied to the current workflow
instance, or they must be delayed until its completion (this
arbitrary choice is adopted for simplicity).

Figure 1 depicts the following situation: a workflow in-
stance running according to the old (base) template (fig-
ure 1(a)) receives a message from HQ. The current mark-
ing represents a state where the “solution design” sub-task
of problem solving and the “report” task are pending, and
a number of tasks (e.g., “analysis” and “case opening”) are
finished. The meta-program in that case successfully op-
erates change on the old template instance, once verified
that all pending tasks have been enabled by sequences of
bypassable tasks only. Evolutionary commands are sent as
output commands by HQ. The modified instance, running
according to the new workflow template, is illustrated in
figure 1(b)).

From the above description, one might think that this
approach is instance-based rather than template-based. In
truth it covers both: if the same evolutionary commands
are broadcast to all workflow instances (that change accord-
ingly) we fall in the second category.

The evolutionary strategy, whose formalization is given
next, relies upon the definition of connection preserving
node, a little more flexible than the unchanged node no-
tion used in [15]. In some sense it is inspired by van der
Aalst’s general concept that dynamic workflow change must
preserve the inheritance relationship between old and new
workflow templates [19].

Let t and t0 denote a transition (task) before and after
change. Let OLD NODE be the set of nodes of the old
workflow. As usual �n; n� denote the pre/post sets of a P/T
node, respectively.

Definition 1 t is connection preserving if

8p 2 �t 9p0 2 �t0; �p = �p0 \OLD NODE ^

536

Problem
Solving

CaseRejected

P4

CaseOpening P14

end

ProblemStatement P5 Report Archiving

P3 Analysis P8

ProblemDiscovery P9 TestRejected CaseClosure

P2 SolutionDesign P7

start P10 OnSiteRealization

begin Testing P6

P11

ProductChange

P13

P12

VersionMerging

(a) The Petri net modeling the base workflow template

Problem
Solving

CaseRejected

P4

CaseOpening P14

end

ProblemStatement P5 Report Archiving

P3 Analysis P13 P8

ProblemDiscovery P9 TestRejected RealizationReject CaseClosure

P2 SolutionDesign P7

start P10 OnSiteRealization

begin Testing

P6

P11

ProductChange

P12

VersionMerging

(b) A possible workflow evolution

Figure 1. A basic template and its possible evolution.

8p 2 t� 9p0 2 t0�; p� = p0� \OLD NODE^

8p0 2 �t0 9p 2 �t; �p = �p0 \OLD NODE ^

8p0 2 t0� 9p 2 t�; p� = p0� \OLD NODE

Definition 1 is illustrated in figure 2 where the black box
denotes a new node. Change (b) ”preserves” the old input
connections of node t (output connections are unchanged):
i.e., whenever the occurrence of t is made possible by the
occurrence of some old tasks preceding it, that should hap-
pen also in the new situation. That is no more true in case
(c): the occurrence of the new node represents now a nec-
essary precondition for any occurrence of t.

Below is the algorithm identifying the non-bypassable
nodes:

— old transitions whose connections from/to any existing
nodes have changed cannot be bypassed;

— let ht; pi be an arc such that both p and t are newly
added nodes: then p� \ OLD NODE cannot be by-
passed;

— let hp; ti be an arc such that both p and t are newly
added nodes: then �p \ OLD NODE cannot be by-
passed;

— if n cannot be bypassed then all old nodes that n is
causally connected to in the new workflow cannot be
bypassed.

The meta-program corresponds to the CSP-like code in
listing 1, language built-ins and routine calls are in bold.

537

t

(a) initial situation

t’

(b) change connection preserving

t’

(c) change not preserving connections

Figure 2. Definition 1 illustrated.

The meta-program is activated at any transition of state
on the current workflow instance (shift-up), reacting to three
different types of events. In the case of deadlock, a signal is
sent to HQ, represented by a CSP process identifier. If the
current instance has finished, and a “new instance” message
is received, the workflow gets activated. Instead if there
is an incoming evolutionary message from HQ, the evolu-
tionary strategy starts running. Just after the evolutionary
signal, HQ communicates the workflow nodes/connections
to be removed and/or added. For sake of simplicity we as-
sume that change can only involve workflow topology. The
proposed schema might be adopted as a template for a class
of arbitrarily complex evolutionary patterns.

After operating the evolutionary commands on the cur-
rent workflow reification, the set of non-bypassable nodes
is computed on the newly changed reification. Follow-
ing, the strategy checks through reification introspection
whether the suggested workflow change might cause a
deadlock, or there might be any non-bypassable tasks
causally-connected to an old task currently pending. In ei-
ther case a restart procedure takes the workflow reification
back to the state before strategy’s activation. Otherwise,
change is implemented at the base-level through reflection
(shift-down). To avoid otherwise possible inconsistencies,
the base-level model is “frozen” during strategy’s execu-
tion. A more sophisticated solution would be that of freez-
ing strategy’s influence area on the BL only.

As concerns our reference Petri net class (1-bounded P/T
Petri nets), transition t1 is causally connected to t2, i.e. its
occurrence can favor t2’s occurrence, iff (t1� n �t1) \

�t2
6= ;. Relation’s transitive closure is considered. The rou-
tines ccTo and ccBy compute the set of nodes that routine’s
argument is causally connected to, and that are causally

connected to routine’s argument, respectively.
Listing 2 expands the routine that initializes the set of

non-bypassable nodes (notBypass), according to defini-
tion 1.

Let us explain how the strategy works considering again
Figure 1. Assume that, upon receiving change commands:

— NEW_PLACE={};

— DEL_NODE={};

— NEW_TRAN={RealizationRejected};

— DEL_ARC={hp13; ProductChangeig;

— NEW_ARC=fhp6; RealizationRejectedi;
hp13; Archivingi; hRealizationRejected; p5ig.

The non-bypassable tasks turn out to be: Report,
Archiving, ProductChange (definition 1) and
OnSiteRealization, CaseClosure (causal connec-
tion). In the new workflow instance tasks Report and
ProductChange are pending, i.e., they are enabled in the
current marking M : fp11; p14g of the net in figure 1(b).
All old finished tasks that are causally connected to one of
them can be bypassed, so the new workflow has not to be
restarted, thus saving a lot of work already done.

Assume as a counter example that the only pending task
is OnSiteRealization (current state M 0 : fp6g), mean-
ing that, among other, ProductChange, VersionMerging
and Report are finished in the old workflow instance: in
that case change is delayed to the instance completion.

If the suggested change were carried out without con-
sistency control a deadlock would be eventually entered
(marking fp8g in figure 1(b)) by the workflow instance run-
ning on the modified template.

538

*[

VAR p, t, n : NODE;

VAR NEW_PLACE, NEW_TRAN, OLD_NODE={},

NOT_BYPASS, DEL_NODE: SET(NODE);

VAR NEW_ARC, DEL_ARC: SET(ARC);

HQ ? evolution-msg() !
HQ ? NEW_PLACE; HQ ? NEW_TRAN; HQ ? NEW_ARC;

HQ ? DEL_ARC; HQ ? DEL_NODE;

// old workflow reification nodes
*(n in NODE) [

exists n ! OLD_NODE = OLD_NODE [n

]

// the change is carried out on workflow reification
newNode(NEW_PLACE [NEW_TRAN); newArc(NEW_ARC);

deleteArc(DEL_ARC); delNode(DEL_NODE);

// nodes initially set non-bypassable
NOT_BYPASS = notBypass()n{start};
// causally connected nodes are non-bypassable

NOT_BYPASS = ccTo(NOT_BYPASS) \ OLD_NODE;

// there might be a deadlock, or an old task might be
// currently enabled due to a finished non-bypassable one

not(exists t in Tran, enab(t)) or

(exists t in Tran \ OLD_NODE, enab(t) and

not(isempty(ccBy(t) \ NOT_BYPASS))) !
restart(); // no change actually performed

// otherwise, change is reflected down to the base-level
shiftDown()

�

#end=0 and not(exists t in Tran, enab(t)) !
HQ ! notify-deadlock()

�

#end=1; HQ ? newInstance-msg() !
flush(end); incMark(begin)

]

Listing 1. workflow evolutionary strategy

The mechanism just described ensures a dependable evo-
lution of workflow instances, while being enough flexible.
Our aim, however, is not to propose here a general solu-
tion to the problem addressed in [15]. Better, sounder and
more effective policies do probably exist. Rather, we aim at
showing how the approach merging consolidated reflection
concepts to classical PN formalisms can be suitably adopted
to cope with critical issues related to dynamic workflow
change. Besides deadlock freeness, it would be possible to
check on-the-fly other properties typical of workflow Petri
nets (the basic one is soundness, that is, liveness of tasks
plus proper termination), discarding suggested changes if
necessary.

Structural base-level analysis. The base-level PN may
be analyzed using different techniques. Structural tech-

[

VAR t, p : NODE; RESULT = {} : SET(NODE);

*(t in OLD_NODEnDEL_NODE \ Tran)

[

exists p in Place,

not(isempty({hp, ti; ht, pi} \
(DEL_ARC [NEW_ARC)))

! RESULT = RESULT [t

];

*(t in NEW_TRAN, p in NEW_PLACE)

[

ht, pi in NEW_ARC !
RESULT = RESULT [post(p) \ OLD_NODE;

�

hp, ti in NEW_ARC !
RESULT = RESULT [pre(p) \ OLD_NODE;

]

]

Listing 2. piece of code recognizing the tasks
that cannot be bypassed

niques, in particular, are elegant, sound, very efficient, but
in general are highly affected by model complexity. Keep-
ing evolutionary aspects separated from functional aspects
encourages the use of such techniques.

For example, by operating the structural algorithms of
GreatSPN tool [7], it is possible to discover that both Petri
nets in Figure 1 are covered by place-invariants. Thereby a
lot of interesting properties descend, in particular bounded-
ness and liveness, i.e., workflow soundness.

5. Conclusions and Future Work

Covering dynamic and evolutionary aspects of workflow
management systems has been widely recognized as a cru-
cial challenge. Consequently there is a high demand for for-
malisms/tools supporting dynamic workflow design. PNs
are a central formalism for modeling workflows, but tradi-
tionally they have a static topology. We have proposed and
discussed the adoption of a reflective PN-based approach
as possible model for workflows prone to be evolved. The
model of the current/base workflow behavior, and the model
of its evolution, are kept separated, granting therefore the
opportunity of analyzing the model without useless de-
tails. As application example, an algorithm is delivered to
soundly transfer workflow instances from an old to a new
template.

Ongoing research is in two different directions. We are

539

planning to extend the GreatSPN tool for supporting our
approach, both in the design and in the analysis phases. We
are consolidating the capability of on-the-fly verification of
workflow properties, ensuring dependable workflow evolu-
tion, sketched in this work.

References

[1] A. Agostini and G. De Michelis. Modeling the Document
Flow within a Cooperative Process as a Resource for Action.
Technical report, CTL-DSI, University of Milano, 1996.

[2] A. Agostini and G. De Michelis. A Light Workflow Man-
agement System Using Simple Process Models. Computer
Supported Cooperative Work (CSCW’00), 9(3-4):335–363,
Aug. 2000.

[3] E. Badouel and J. Oliver. Reconfigurable Nets, a Class
of High Level Petri Nets Supporting Dynamic Changes
within Workflow Systems. IRISA Research Report PI-1163,
IRISA, Jan. 1998.

[4] L. Cabac, M. Duvignau, D. Moldt, and H. Rölke. Modeling
Dynamic Architectures Using Nets-Within-Nets. In G. Cia-
rdo and P. Darondeau, editors, Proceedings of the 26th In-
ternational Conference on Applications and Theory of Petri
Nets (ICATPN 2005), LNCS 3536, pages 148–167, Miami,
FL, USA, June 2005. Springer.

[5] L. Capra and W. Cazzola. A Petri-Net Based Reflective
Framework. In F. Arbab and M. Sirjani, editors, Proceed-
ings of the IPM International Workshop on Foundations of
Software Engineering (FSEN’05), Electronic Notes in The-
oretical Computer Science 159, pages 41–59, Tehran, Iran,
on 1st-3rd of Oct. 2005. Elsevier.

[6] W. Cazzola. Evaluation of Object-Oriented Reflec-
tive Models. In Proceedings of ECOOP Workshop
on Reflective Object-Oriented Programming and Systems
(EWROOPS’98), in 12th European Conference on Object-
Oriented Programming (ECOOP’98), Brussels, Belgium, on
20th-24th July 1998. Extended Abstract also published on
ECOOP’98 Workshop Readers, S. Demeyer and J. Bosch ed-
itors, LNCS 1543, ISBN 3-540-65460-7 pages 386-387.

[7] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo.
GreatSPN 1.7: GRaphical Editor and Analyzer for Timed
and Stochastic Petri Nets. Performance Evaluation, 24(1-
2):47–68, Nov. 1995.

[8] C. Ellis and K. Keddara. ML-DEWS: Modeling Language
to Support Dynamic Evolution within Workflow Systems.
Computer Supported Cooperative Work, 9(3-4):293–333,
Aug. 2000.

[9] A. Hicheur, K. Barkaoui, and N. Boudiaf. Modeling Work-
flows with Recursive ECATNets. In Proceedings of the
Eighth International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNACS’06), pages
389–398, Timişoara, Romania, Sept. 2006. IEEE Computer
Society.

[10] C. A. R. Hoare. Communicating Sequential Processes. Pran-
tice Hall, 1985.

[11] K. Hoffmann, H. Ehrig, and T. Mossakowski. High-Level
Nets with Nets and Rules as Tokens. In G. Ciardo and
P. Darondeau, editors, Proceedings of the 26th Interna-
tional Conference on Applications and Theory of Petri Nets
(ICATPN 2005), LNCS 3536, pages 268–288, Miami, FL,
USA, June 2005. Springer.

[12] K. Jensen and G. Rozenberg, editors. High-Level Petri Nets:
Theory and Applications. Springer-Verlag, 1991.

[13] M. Llorens and J. Oliver. Marked-Controlled Reconfig-
urable Workflow Nets. In Prooceedings of the Eighth In-
ternational Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNACS’06), pages 407–
413, Timişoara, Romania, Sept. 2006. IEEE Computer So-
ciety.

[14] P. Maes. Concepts and Experiments in Computational Re-
flection. In N. K. Meyrowitz, editor, Proceedings of the 2nd

Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’87), volume 22 of Sig-
plan Notices, pages 147–156, Orlando, Florida, USA, Oct.
1987. ACM.

[15] Z.-M. Qiu and Y. S. Wong. Dynamic Workflow Change in
PDM Systems. Computers in Industry, 58(5):453–463, June
2007.

[16] M. Reichert and P. Dadam. ADEPTflex - Supporting Dy-
namic Changes in Workflow Management Systems without
Losing Control. Journal of Intelligent Information Systems,
10((I2)):93–129, 1998.

[17] K. Salimifard and M. B. Wright. Petri Net-Based Modeling
of Workflow Systems: An Overview. European Journal of
Operational Research, 134(3):664–676, Nov. 2001.

[18] W. M. P. van der Aalst. Structural Characterizations
of Sound Workflow Nets. Computing Science Reports
96/23, Eindhoven University of Technology, Eindhoven,
The Netherlands, 1996.

[19] W. M. P. van der Aalst and T. Basten. Inheritance of
Workflows: An Approach to Tackling Problems Related to
Change. Theoretical Computer Science, 270(1-2):125–203,
Jan. 2002.

[20] W. M. P. van der Aalst and S. Jablonski. Dealing with Work-
flow Change: Identification of Issues and Solutions. Inter-
national Journal of Computer Systems, Science, and Engi-
neering, 15(5):267–276, Sept. 2000.

540

