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Abstract—No system escapes from the need of evolving either
to fix bugs, to be reconfigured or to add new features. To evolve
becomes particularly problematic when the system to evolve can
not be stopped.

Traditionally the evolution of a continuously running system
is tackled on by calculating all the possible evolutions in advance
and hardwiring them in the application itself. This approach
gives origin to the code pollution phenomenon where the code of
the application is polluted by code that could never be applied.
The approach has the following defects: i) code bloating, ii) it
is impossible to forecast any possible change and iii) the code
becomes hard to read and maintain.

Computational reflection by definition allows an application
to introspect and intercede on its own structure and behavior
endowing, therefore, a reflective application with (potentially) the
ability of self-evolving. Furthermore, to deal with the evolution
as a nonfunctional concerns, i.e., that can be separated from the
current implementation of the application, can limit the code
pollution phenomenon.

To bring the design information (model and/or architecture)
at run-time provides the application with a basic knowledge
about itself to reflect on when a change is necessary and on how
to deploy it. The availability of such a knowledge at run-time
frees the designer from forecasting and coding all the possible
evolutions in favor of a sort of evolutionary engine that, to some
extent, can evaluate which countermove to apply.

In this contribution, the author will explore the role of
reflection and of the design information in the development of
self-evolving applications. Moreover, the author will sketch a
basic reflective architecture to support dynamic self-evolution
and he will analyze the adherence of the existing frameworks to
such an architecture.

Index Terms—reflection, software evolution, self-adaptation

I. INTRODUCTION

All software systems are subject to evolution, they evolve
over time as new requirements emerge, or adaption and exten-
sions are necessary. Studies pointed out that up to 80% [35] of
the system lifetime will be spent on maintenance and evolution
activities. A program that is useful in a real-world environment
necessarily must change or become progressively less useful
in that environment [33]. The continuously running systems
do not escape this law.

We could state that a well-planned evolution should pass
through the evolution of system’s design information and then
through the propagation of such changes to the implementa-
tion. This approach should be the most natural and intuitive to
use (because it adopts the same mechanisms adopted during
the development phase) and it should produce the best results
(because each evolutionary step is planned and documented

before its application) and the general quality of the code will
not decline (as stated by the 7™ law of software evolution [34]).

Unfortunately, this approach takes more time than to directly
modify the code itself and, in principle, needs to be planned
off-line. Even though its benefits, it is in contrast with the
urgency often required by the change (e.g., to fix a bug in
a critical system or to enhance an application with rough
competitors) and badly fits with the unstoppable characteristic
of the continuously running systems (design information is not
available at run-time).

Normally, the evolution of critical, distributed and/or con-
tinuously running systems is emulated by directly enriching
the original design information (and consequently code) with
aspects concerning possible evolutions. This approach has
several drawbacks:

« all possible evolutions are not always foreseeable a priori;

o system’s design information and code are polluted by
details related to the evolutionary design;

« the evolution is not really modeled; it is specified as a
part of the behavior of the whole system, rather than as
an extension that could be used in different contexts;

o code and model pollution hinders application mainte-
nance and reduces possibility of reuse.

Clearly, this cannot be the ultimate solution to the problem
of promptly evolving a system without interruptions in the
service provision. Rather, the promptness of action could be
granted if the system itself should be able to plan and carry
out its own evolution.

Software evolution is an aspect orthogonal to (current) sys-
tem behavior that crosscuts both application code and design;
hence it should be subject to separation of concerns [29].
Separating evolution from the rest of a system is worthwhile,
because evolution is made independent of the evolving sys-
tem and the abovementioned problems are overcame. Design
information will not be polluted by non pertinent details and
will exclusively represent current system functionality without
patches. This leads to simpler and cleaner implementation that
can be analyzed without discriminating between what is and
what could be the application’s structure and behavior.

Reflection [36] is one of the mechanisms that easily permits
to separate crosscutting concerns and to get self-aware appli-
cations. Reflective systems have the capability to reason about
and act on their own behavior and structure so that could be
able to decide how to evolve and apply the necessary steps
and face their own evolution.
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In the rest of the paper we will explore how reflection
can cope with design information to develop a self adaptable
system that can operate without human interference. In Sect. II
we give an overview of the reflective architecture of a self-
evolving system; in Sect. IIl we will explore the role of
design information in the generic reflective architecture and
the impact that different kinds of design information have on
the approach to self-evolution; whereas in Sect. IV we explore
how to design self-evolving systems. Finally in Sect. V we will
have some discussions on the topic and draw our conclusions.

II. EVOLUTION AND REFLECTION

Reflection is defined as the activity, both introspection and
intercession, performed by an agent when doing computations
about itself [36]. A reflective system is layered in two or more
levels (base-, meta-, meta-meta-level and so on) constituting
a reflective tower; each layer is unaware of the above one(s).
Base-level entities perform computations on the application
domain entities whereas entities on the meta-levels perform
computations on the entities residing on the lower levels. Com-
putational flow passes from a lower level (e.g., the base-level)
to the above level (e.g., the meta-level) by intercepting some
events and specific computations (shift-up action) and backs
when meta-computation has finished (shift-down action). All
meta-computations are carried out on a representative of lower-
level(s), called reification, that is kept causally connected to
the original level (see details in [10]).

A. Evolution as a Crosscutting Concern.

Since the beginning, we are used to think the reflection as
the perfect mechanism to separate nonfunctional and cross-
cutting concerns — i.e., concerns that do not contribute to
the application’s main functionality and whose implementation
is tangled with such an implementation — from the rest of
the application [29]. This is particularly true when we are
speaking about separating a clearly defined feature whose
implementation can be easily identified as in the case of
logging and authentication but the truthfulness of such a
statement is arguable when these characteristics are not present
at design-time or are difficult to grasp as when the feature
implementation is scattered in distributed components whose
code could be inaccessible or when it should be part of a
continuously running system.

Often software evolution implies to reengineering the design
and the code of software systems. In any case, when applying
such modifications to existing software, the change often
cannot be localized but involves several components; this leads
to tangled and/or scattered code. Traditionally the evolution
of a continuously running system is tackled on by calculating
all the possible evolutions in advance and hardwiring them in
the application itself. This approach gives origin to the code
pollution phenomenon where the code of the application is
polluted by code that could never be applied. Moreover, the
approach has the following defects: i) code bloating, ii) it is
impossible to forecast any possible change and iii) the code
becomes hard to read and maintain.

It should be fairly evident that the capability to evolve
and any particular evolution — especially in the case of
the evolution of continuously running systems — are clearly
nonfunctional and crosscutting concerns [13], [39], [41]. The
code necessary to evolve an application cannot contribute to
the application’s basic functionality until the urgency for the
evolution comes up. Moreover the evolution of a continuously
running system hardly can be prepared in advance but need to
be decided according to the (sudden and unexpected) risen
necessity and the decision must be immediate due to the
urgency often required by the adaptation, e.g., to reconfigure
a urban traffic control system to face a traffic jam [14], [48].
Due to the previous considerations it is still more natural to
think about the evolution as something to add when necessary
and to be kept separate from the core of the application.

B. Reflecting on the Design Information

To automate the evolutionary process the application must
be able to work out how to evolve from its current state. To
this respect, it needs to reflectively introspect into its state
and structure and know how to decide which is the correct
strategy to solve the risen issue; this means to select one
among several prearranged strategies and adapt it to fit the
problem or (more difficult) define a new strategy to fix it.
Reflection helps to introspect and to apply the strategy but
computational reflection is grounded on the application’s code
so it provides a local view of the application limited to the
code and, as previously stated, a correct evolutionary strategy
can be decided only if the whole architecture and behavior of
the application is known and taken in consideration: evolution
impact not only affect the part of the application responsible
of the issue but several other not necessarily correlated parts
(ripple effect [4], [5]), e.g., you cannot close a road for
maintenance without considering the traffic flow through such
a road and without changing the direction of the incident roads
to avoid further disruptions.

Design information, when consistent with the implemen-
tation, provides an accurate snapshot of the application’s
structure and behavior. Moreover, the application’s design
information abstracts from the code — i.e., a very local and
concrete view — giving a global view of the whole system —
i.e., it gives a glimpse at the application that immediately
shows which part of the application could be affected by a
change into another application’s part and which part is in
charge of which feature without looking at the code details.
As stated in [15], [16], this summarizes the overall knowledge
about the application in a handy form that is suited to plan
the evolution.

Design information as a base of knowledge for planning the
evolution is not a panacea for automating the evolutionary
process but it can be considered as a step towards a self-
evolving software system. It is necessary to extend the reflec-
tion to deal with the design information as application domain,
similarly to [18], [19] (software architecture) and [13] (UML
models) and to causally connect the design information to
the code to avoid the design/implementation gap [17], [49].



In this way, reflective introspection and intercession apply to
the application’s design information and the relationship of
causally connection will realize the evolution when necessary;
the shift-down operation will take care of coordinating the
changes and to avoid inconsistencies.

C. A Generic Reflective Architecture for SW Evolution

Summarizing the previous considerations, a system that can
self-evolve (reconfiguring, extending and maintaining) should
have a reflective structure. The self-evolving application runs
in the base-level whereas the, so called, evolutionary engine
runs in the meta-level.

The reflective architecture is completed by a pool of reflec-
tors. These components take care of realizing the reflective
behavior of the whole framework realizing the shift-up and
-down operations and keeping the causal connection between
the application in the base-level and its representative in the
meta-level (the reification). These components also deal with
the particular application domain keeping a binding among the
code and the design information.

The evolutionary engine is in charge of evolving the applica-
tion running in the base-level when happens a specified event.
The engine works on a representative of the application (called
reification and built by the reflectors) and the engine has two
kinds of cooperating components: planners and actuators. The
multiplicity of the evolutionary engine’s components depends
on the granularity of the evolutionary actions: each aspect of
the system could be handled by a different component.

An external event triggers the planners which use the
reification and an evolutionary base of knowledge to plan the
strategy to face the risen situation. The evolutionary base of
knowledge contains strategies, i.e., predetermined solutions to
situations that could happens; the base of knowledge can be
fixed, augmentable with the strategies derived by the planner
and/or dynamically enrichable by an human operator. The
actuators cooperate with the planners to render effective the
planned evolution: they apply the strategy decided by the
planner to the reification validating the consistency of the
result before asking the reflectors for reflecting the changes
on the base-level.

Fig. 1 depicts the described reflective architecture. A prelim-
inary version of such architecture has been introduced in [11]
through a pattern family describing its behavior.

III. REFLECTIVE ARCHITECTURE FOR
SELF-RECONFIGURATION AND -ADAPTATION

The logic architecture introduced in the previous section
adopts reflection and design information to provide the ap-
plication (running in the base-level) with the capability of
planning and actuating its own evolution.

The introduced architecture is generic and can be used to
deal with evolution in general. By the way there are several
kinds of evolution [38] each with specific requirements so to
correctly face their variability the abstraction provided by the
design information must have different granularities case by
case.
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Figure 1. Architecture for a Self-Evolving Application

For example, reconfiguration takes place at component
level, the system’s architecture changes (added/removed or
differently connected components) to face the requested re-
configuration. To plan its own reconfiguration, the application
must reason and act in-the-large' i.e., on how the components
interact rather than on how they work.

A. Self-Reconfiguration: Reflecting on the Architecture

Several definitions for software architecture are available?
but the one that better fits our needs is:

Software Architectures deals with the design and
implementation of the high-level structure of the
software. It is the result of assembling a certain
number of architectural elements in some well-
chosen forms to satisfy the major functionality and
performance requirements such as scalability and
availability. Software architecture deals with abstrac-
tion, with decomposition and composition, with style
and aesthetics [32].

Software architectures provides a global view of how ap-
plication’s components fit together neglecting to detail what
every component does, that is, they describe the application
in-the-large rather than in-the-small [25].

The software architecture’s higher abstraction explicits a
link to components and connectors as a whole rather than
to their implementation; this helps to plan the application’s
reconfiguration [37], [40] but hinders a deeper adaptation
involving changes to the code.

In the years a plethora of approaches that support self-
reconfiguration through software architecture’s manipulation

L After [25] we use the term in-the-large in contrast to in-the-small to put
in evidence the necessary abstraction level.

2Gives a look at http://www.sei.cmu.edu/architecture/published_definitions.
html to get a grasp.
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have been explored, e.g., architectural reflection [19], [20],
[46], Rainbow [27], and K-Components Architecture [26].

Architectural Reflection [19], [20] exploits the application’s
software architecture as the application domain for reflective
activities; all the reflective concepts have been moved from
the code to the architectural domain. The software archi-
tecture is reified®, decomposed into topology and strategy
and manipulated, respectively, by two meta-level components,
called ropologist and strategist. These meta-level components
plan and force the application’s reconfiguration through the
manipulation of the (reified) software architecture a specific
actuator is used to reflect the change on the system. Comparing
this architecture with the general one introduced in Sect. II-C
it should be evident the similarity: topologist and strategist are
two planners, each of them cooperates with their own actuator,
and both planning and validation pass through the design
information (that is, the software architecture) and through
the reification, the application can be reconfigured.

The Rainbow framework [27] adopts an architecture-based
approach, it provides reusable infrastructure together with
mechanisms for specializing that infrastructure to the needs
of specific systems. The Rainbow framework includes an
application’s architectural model in its run-time system. In
particular, developers of self-reconfiguring capabilities use a
system’s software architectural model to monitor and reason
about the system (to some extent a reflective system whose
application domain is the application’s software architecture).
The Rainbow’s control loop for self-reconfiguration passes
through the following steps: i) a model manager handles
and provides access to the application’s architectural model;
ii) a constraint evaluator checks the model periodically and
triggers adaptation if a constraint violation occurs; then iii)
an adaptation engine determines the course of action and
carries out the necessary adaptation; finally iv) an adaptation
executor triggers the effectors to reflect the changes on the ap-
plication. The similarities with the proposed infrastructure are
still evident: the model manager together with the adaptation
executor and the effectors play the role of reflectors whereas
the adaptation engine and the constraint evaluator play the role
of the evolutionary engine.

The K-Components Framework [26] reifies the applica-
tion’s software architecture as a configuration graph (i.e., a
graph whose nodes and edges are respectively components
and connectors) and the reconfiguration is yielded through
reconfiguration protocol used to rewrite the configuration
graph; both the evolution planning and validation are made
on the reification by a configuration manager which also
reflect the changes on the application. In the K-Components
framework planners, actuators and reflectors collapse in a
single meta-entity, the configuration manager, that manage
the configuration graph evolution but the evolutionary control
loop is still the same: reification, event-checking, planning,
validation and reflection.

3This process permits to render the software architecture explicit and
observable and the system controllable through its architecture [20].

Other self-reconfiguring approaches that reflectively ex-
ploits software architecture in their control loop and confirm
the general architecture proposed in Sect. II-C are: Arch-
Studio [43], TranSAT [1], PRISMA [22] and Dellarocas et
al. [24].

B. Self-Adaptation: Reflecting on the Model

Reconfiguration works at component level by adding, re-
moving or substituting components and/or rearranging their
connections; so the planning of the reconfiguration can pass
through the high-level representation provided by the software
architecture. In general evolution also includes the possibility
of fixing bugs and extending/adapting already implemented
code; to this respect it is impossible to plan this kind of
evolutions on the application’s software architecture since you
have to deal with how the component works and how it
is implemented. In this case, the design information should
represent the application in-the-small as the UML models [6]
do.

Self-Adaptation implies to adapt how the components work
not just how they interact with other components (problem that
can easily be faced through the manipulation of configuration
files) that means to alter their implementation. This poses
some new challenges: i) how to modify the code during the
execution (several tools, as Java Hot Spot and Javeleon [28],
help with this issue) ii) how to associate the design information
to the running code (normally models and code are statically
coupled and the generation of the new code is model-driven).
These additional challenges rendered less appealing to perform
dynamic self-adaptation and few attempts can be found in the
literature; most of them exploit the model driven engineer-
ing [31] methodology where models have a proactive role and
are used to generate the application itself, e.g., WEAVR [23]
and the Adaptive Object Model Architecture [50]; in the next
we will neglect to analyze these approaches since they have
a different perspective: the application is generate from the
design information rather than simply used as a source of
information to drive the adaptation of existing code.

RAMSES (Reflective and Adaptive Middleware for Soft-
ware Evolution of Systems) [12], [13] is a reflective framework
that provides an application with the capability of dynamically
self-adapting. The framework has two logic levels: the appli-
cation prone to be adapted runs in the base-level whereas in
the meta-level a couple of meta-objects (the evolutionary and
consistency checker meta-objects) take care of planning and
validating the application’s evolution. The work of both such
meta-objects is supported by dedicated engines that applies
validation and evolutionary rules (ruby scripts) to the applica-
tion’s reification when triggered by the meta-objects. The base-
level models’ are reified in the meta-level as XMI [42] schema
and the changes are reflected back on the application through
techniques of code instrumentation [44], [45]. Even without
going deep in the architecture’s description it is evident the
similarity with the general approach examined in Sect II-C the
only difference is the complexity of the reflector that needs to
fill the gap between code and model.



Chisel [30] is an open framework for dynamic adaptation
of services using reflection in a policy-driven, context-aware
manner. The system is based on decomposing the particular
aspects of a service object that do not provide its core function-
ality into multiple possible behaviors. As the execution envi-
ronment, user context and application context change, the ser-
vice object will be adapted to use a different behaviors, driven
by a human-readable declarative adaptation policy script. The
Chisel framework has a meta-level adaptation manager that
coordinates the whole adaptation process by monitoring the
application’s execution environment, by planning the adapta-
tion driven by a set of adaptation policies and by extracting
(reifying) the meta-types from the running application and
reflecting the adaptation. In the Chisel framework the meta-
level adaptation manager plays the role of adaptation engine
(including planners, actuators and reflectors), the adaptation
policies are the evolutionary strategies and the meta-types
plays the role of design information.

Genie [2], [3] is a reflective framework to support dynamic
adaptation of a software system through its design information.
Even if it adopts software architecture to represent the appli-
cation in the meta-level it also enables a quite limited self-
adaptation through the self-generation of models describing
the application’s state transitions that can be used to change the
application’s behavior. Genie framework monitors the applica-
tion’s context, reifies the application’s software architecture, a
specific component plans the adaptation strategy as a delta
from the current design and the design that should be and
finally passes the generated reconfiguration script to a specific
component (named configurator) that changes the application.
The script generator plays the role of planner whereas the con-
figurator is the actuator/reflector of the architecture presented
in Sect. II-C.

IV. MODELING A SELF-EVOLVING SYSTEM

An application able to evolve itself or at least this capability
cannot be modeled with traditional design techniques, such as
Petri nets, UML, and so on. To some extent this is reasonable:
how can I model something that I cannot imagine? Why should
I model something doomed to change or that could be never
applied?

Unfortunately, this issue nullifies all the benefits we got
from designing the application: the adapted application cannot
be tested; the quality of service cannot be granted and, last
but not least the capability of self-evolving is not documented
and cannot be considered during the evolution, i.e., the set of
evolutionary strategies cannot be affected by the application’s
adaptation and are inclined to rapidly become obsolete and
therefore useless for planning the successive evolution (we re-
fer to this problem as the fragility problem of the evolutionary
strategies).

A few attempts to model the self-evolvable capability have
been done and the reflective Petri nets [7]-[9] seems to be the
most promising. A reflective Petri net is a high-level Petri net
extension that permits to model a self-evolving application.
The application’s current model defines the base-level model
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(a classic place/transition Petri net) whereas the evolutionary
strategies applicable to the application define the meta-level
model (each strategy is modeled by a Petri net). The base-
level model is reified as a marking in the meta-level and a
set of primitive operations (such as add a place or remove a
transition) can be used to evolve the reification. The semantics
of the reflective Petri nets will take care of keeping the base-
level model and its reification consistent over the time.

V. CONCLUSIONS

Nowadays, with the increasing diffusion of the Internet,
more and more applications need to run continuously and
provide their services without interruptions, e.g., air and
urban traffic control systems, nuclear plant control systems,
electronic shops and so on. To stop such a kind of systems
could be mission critical but also a disservice to the customers
and a potential loss of money.

Of course continuously running applications can not be bug
free or equipped with all the desired features over the long
period, so they need to evolve exactly as the other applica-
tion but with the constraint that they have to evolve during
their execution, without disservice and possibly promptly and
autonomously.

Such considerations drive forth to the need of self-evolving
systems, that is, systems that can reasons about themselves
and, in case, decide how to change their own behavior and
structure.

In the last few years a plethora of frameworks supporting
self-evolution have been developed [2], [12], [18], [22], [24],
[26], [27], [30]. Even if apparently all these frameworks differ,
they have several in common: they all exploit reflection and
have a decisional engine that, to some extent, deal with the
self-evolution.

The contribution of this paper is to sort out this plethora
of proposals and to extrude a common architecture for the



self-evolving approaches. From a deeper analysis of some of
the existing frameworks we pointed out that they all share a
common control loop (event monitoring, reification, evolution
planning and validation and finally adaptation) that can be
logically summarized by Fig. 1. The frameworks differ on the
realization and on what is used as a knowledge base to plan
the evolution. Salehie and Tahvildari [47] in their overview
confirm our conclusions giving a similar but less detailed
abstraction for the self-adaptive architecture.

A second consideration we have pointed out regards the
granularity used for the application’s reification (that is, the
kind of design information used) directly affects the kind of
self-evolution that the self-evolving application can carries
out. For example, software architecture well fits the self-
reconfiguration but is inadequate for self-adaptation.

In the future we would like to widen our analysis including
aspect-oriented approaches as well. Moreover we want to
compare our approach to self-evolution based on reflection and
design information with those approaches that directly evolve
the code through deltas application such as [21].
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