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Università degli Studi di Genova

Via Dodecaneso 35, 16146, Genova. Italy
fanconajcazzolajraffog@disi.unige.it

2 Elsag-Bailey Research Dept.
Via G. Puccini 2, 16154, Genova. Italy

corvi@elsag.it

Abstract. An efficient method for cross-correlating images, in querying opera-
tions over an image database is presented. The method relies on a multiresolution
compression method, based on a variant of the wavelet packets best-basis algo-
rithm of Coifman and Wickerhauser. It is shown that a searched image can be
correlated with the compressed images of the database in a fraction of the time
required by using the traditional cross-correlation function computed on the orig-
inal bitmap image.

1 Introduction

Image database query is going to play a major role due to the growing impor-
tance of multimedia databases [1,2]. In principle, one would like to retrieve im-
ages based on the pictorial comparison. This is however considered a hard task
due to the large amount of the information enclosed in images; and for com-
putational purposes, current image search engines makes use of simple features
that are easily extracted from images: texture and color distribution, geometrical
features such as shape, lines and corners distributions and/or meta-information
associated with the images [3, 4].

From a theoretical point of view, a retrieval task can be considered as es-
tablishing an ordering in the set of images in the database, the topmost images
in the ordering being the result of the query. The ordering criterion depends on
the searched image (the model) and how two images should be compared (the
similarity measure) [5, 6].

To cope with the large amount of information, researchers have used a mul-
tistage approach, in which a partial ordering is refined in successive steps only
at the topmost positions, which are the most relevant. This approach allows to
screen out, at each step, images that do not qualify as query result. The first
steps should be the fastest and simplest as they analyze many images. These are



usually based on meta-information or simple features. Later steps can be more
elaborate and more accurately discriminating.

In this work, we propose an algorithm that relies on the Best-Basis mul-
tiresolution analysis and provides an accurate image pictorial comparison, that
can be integrated in a image query engine [7–11]. The comparison feature is
based on the cross-correlation between the image model and the images in the
database, and works directly on the compressed data not requiring the recon-
struction of the images. The cross-correlation is a general measure of the pic-
torial similarity of images and has been used for pattern matching problems in
which the two images differ by a translation since the cross-correlation can be
efficiently computed using the properties of the Fourier transform for all pos-
sible (relative) translations of the images [12]. It is still applicable when the
images under comparison are related by more complex transformation, rota-
tions, dilations, skews, but the computational cost becomes quickly unaccept-
able [13, 14]. The multiresoution analysis of images provides a faster method
for a pictorial image comparison based on the cross-correlation [15] and a mul-
tiresolution approach to image querying offers many advantages over other tech-
niques. First of all, wavelet decompositions give very good image approxima-
tions with just a few coefficients; these coefficients provide information that is
independent of the original image resolution. Thus, the use of wavelets, specif-
ically wavelet packets, allows the resolution of the query and the target to be
effectively decoupled. Moreover, wavelet decompositions are fast and easy to
compute, requiring linear time in the size of the image and very little code.
Moreover, the running time and storage of the multiresolution method are in-
dependent of the resolution of the database images. In addition the informa-
tion required by the query algorithm can be extracted from a wavelet packet
compressed version of the image directly, allowing the creation of a convenient
database of compressed images.

This pictorial comparison can be carried out directly on the compressed
data. This is particularly important due to the necessity of storing the images in
the database in compressed form.

Wavelet compressions are alternative schemes to the more conventional JPG,
that are now getting attention thanks to their potential [16, 17] and the Best-Ba-
sis algorithm can be effectively used to implement a wavelet image compres-
sion [18–20].

We assume that the image in the database are stored compressed with a Best-
Basis algorithm, with a common wavelet packet analysis. The model image used
in the query-search is analyzed with the same wavelet packet algorithm. To com-
pare it with each image in the database, only the coefficients most relevant to the
image in the database, are considered. This amounts to decomposing the model



image using the same basis used for the specific database image. The measure
of the comparison is the cross-correlation of the two compressed images, i.e.,
of the images reconstructed using only the most relevant coefficients. By using
the orthonormality of the best basis, this cross-correlation is evaluated directly
from the coefficients.

Some details of the Best-Basis algorithm and of a possible compression
scheme are described in section 2. In section 3 we discuss our algorithm of
query search. We have tested the algorithm on a database of about 150 logo
images; numerical results are reported in section 4.

2 Best-Basis

The Coifman and Wickerhauser’s Best-Basis algorithm was originally devel-
oped for signal compression [7]. First, the method expands the signal (x) into
a quad-tree structured library of orthonormal bases, for example a redundant
set of wavelet packets. Each node of the tree represents a subspace with differ-
ent time-frequency localization characteristics. The computational complexity
of this decomposition is O(n logn ).

The best basis is defined as the set of orthogonal nodes in the tree that min-
imizes a particular cost function M . An appropriate cost function should mea-
sure a signal’s concentration of information in a given basis; a natural choice for
this is the Shannon’s entropy function.

Given a sequence x = fx jg, one can define the Shannon-Weaver entropy of
x by

H =�∑
j

p j log p j

where p j =
��x j

��2 =kxk2 and we define p log p = 0 if p = 0. Unfortunately, the
minimum cost is not rapidly computable, and, in general, the computational
complexity for searching the minimum is not even low. However, when the cost
function is additive, it is possible to reduce the computational complexity by
employing a divide & conquer strategy [21]. The searching algorithm starts by
marking all the bottom nodes; their total information cost is an initial value
which we will try to reduce. Whenever a parent node is of lower information
cost than the children, it is marked; but if the children have lower information
cost, the parent is assigned the lower total information cost of the children.

In this inductive step any node is examined no more than twice, one as a
child and one as a parent.

The algorithm terminates when the root is reached. The root node will return
the minimum information cost of any basis subset below itself. This search has
a complexity of O(n logn ). Finally, after all the nodes have been examined, we



take the topmost marked nodes, which constitutes the best basis. This is equiv-
alent to a depth-first search and requires no more operations than the number of
nodes in the tree, O(2n ).

A classical fact about entropy is that expH (x) is proportional to the number
of coefficients needed to represent the signal to a fixed mean square error.

Unfortunately H is not an additive function, but if we consider

H (x) = kxk�2
λ(x)+ logkxk2 ;

where λ(x) = �∑

��x j
��2 log

��x j
��2, we may observe that minimizing H (x) is

equivalent to minimizing λ(x). Moreover, λ(x) is an additive cost function, then
it is possible to applicate the divide and conquer algorithm. The computational
complexity of the wavelet packet transform is O( n logn ) and the search for a
global minimum for the function cost converges in O( n logn ) operations, for
n-sample signal.

The outcome of the decomposition of image consists of the best basis coef-
ficients and their positions in the nodes in the b-tree. A compression scheme is
envisionable by keeping the largest coefficients, motivated by the fact that the
entropy of the decomposition is minimized by the choice of the best basis [21].

3 Same Basis

Now we are going to show our pattern matching algorithm, called Same Basis,
used for accelerating database image query. It involves both on-line and off-line
processing.

During off-line processing we gather images that will constitute our database.
First of all we compute the average intensity of each image and normalize each
of them so that the average intensity of the whole pixels is zero. This operation
makes matching insensitive to the variations of background intensity.

After choosing a pair of quadrature mirror filters [22] and a proper cost
function [21], we decompose all the images with the Best-Basis algorithm, se-
lecting for each of them its own best orthonormal basis. Then we compress these
bases deleting all the coefficients whose absolute value is below a threshold; this
threshold may be different for one or other image because what is really needed
is that the number of saved coefficients is the same for each image. Practically
we are going to use only a subset of the basis to evaluate the similarity of im-
ages. This technique correspond to an orthogonal projection of the signal in a
subspace of lower dimensions.

Now, the output of each decomposition includes the basis, (described by the
ordinal numbers of the nodes of the tree, marked by the Best-Basis algorithm,



in which there are some coefficients not deleted during compression), the basis
coefficients and the positions in their own node of the tree.

During on-line processing we obtain the pattern to be searched in the databa-
se, and normalize it as we did before for other images. We decompose the pat-
tern with the same wavelet packet library (tree) used for database models; then
we select the nodes of the tree and the coefficients corresponding to the ba-
sis selected for the first image in the database: practically we choose the same
orthonormal basis to represent the model and the pattern. Cross-correlation be-
tween the two sets of coefficients of the same basis is performed to evaluate the
similarity degree of the two images. Pattern decomposition is performed once
only, while selection and similarity evaluation are then repeated for each im-
age of the database; the one having the higher result is the most similar to the
pattern.

This strategy is suggested by the intuitive consideration that if test image is
not much different from the model, then, using the same base to represent both
of them, the respective coefficients are not so different.

This fact makes us think that little perturbations correspond to little varia-
tions in the coefficients only; even if the best basis of the signal is different from
that of the model, the latter can represent well enough the signal to analyze.

In order to compare two n� n images, it would be enough to evaluate the
cross-correlation on the images and this operations would take O( n2 ) oper-
ations; in our algorithm, by using orthonormality of the basis of model and
pattern, the cross-correlation can be evaluated directly on the coefficients:

CC(T; I) =
∑i; j ci; jdi; jq

∑i; j c2
i; j

q
∑i; j d2

i; j

in which ci; j and di; j are the two sets of coefficients computed on the same basis.
If a compression was performed the number of coefficients is smaller than

the number of pixels of the original image. So cross-correlation requires only
O( kn2 ) operations, where k < 1 is the compression rate of coefficients. More-
over, input/output time decreases, too because images stored in the database
occupies less space than the original ones do.

4 Experimental results

We have conducted experiments to verify the accuracy and computational ef-
ficiency of the proposed algorithm, by an COMPAQ ALPHA Station 4000/4.
In these experiments we created 3 databases: the first consists of 126 images,
whose size is 128�128 pixels, representing gray scale logos; the others contain



126 gray scale images each gotten scanning the back of a £ 50000 banknote; the
size of images is 64�64 pixels and 256�256 pixels, respectively.
In Fig. 1 a 128�128 reference image and the computed reconstruction is shown.

(a) Image n.69 (b) Reconstruction

Fig. 1. Example of database images and its reconstruction.

The compactly supported orthonormal wavelets used in our study have been
chosen from [23]. The selection of filter coefficients depends both on the re-
quired accuracy and on the time constraints. Generally, larger is the order of
filters than more accurate is the signal analysis and synthesis, but decomposi-
tion time may increase too much. So we chose second order of Daubechies’
filters, whose length is twice their order and whose compression capability we
found being good.

To decide how many coefficients should be saved, we repeatedly compressed
and reconstructed some images, each time changing the compression threshold.
Then, compression ratio was evaluated by a proper quality measure and com-
paring energy of deleted and saved coefficients. A commonly used measure is
the PSNR (Peak Signal to Noise Ratio), by which the square of the differences
of the corresponding pixels in the two images is evaluated. Given an image I
and a compressed one E, whose sizes are n�n, the formula is:

PSNR = 20 � log10

2
4 maxi; j I(i; j)
� 1

n2 SQD(i; j)
� 1

2

3
5



Size Space Coefficients Nodes Position

64 4364 678 1052 1052
128 16446 1906 609 1906
256 65804 6824 3196 6824

Table 1. Occupied space by decomposed images

where

SQD(i; j) =
n�1

∑
i=0

n�1

∑
j=0

(I(i; j)�E(i; j))2

The PSNR value decreases when the differences between I and E grows.
Saving only 10% of coefficients of images whose energy ranges within

20000 and 29000, we obtained that 21:66 < PSNR < 35:89 and the ratio be-
tween the energy of deleted and saved coefficients is within 1=40 and 1=11. Our
first step is to decompose and to compress the reference images sets selecting
only 10% largest coefficients; images are so stored in three files, as described in
section 3. The basis coefficients in the first file should be stored with a precision
of 32 bit, but this would require too much space; so we truncated them after
the third decimal number; we normalized them as integers (by multiplying them
for 1000) and appended another integer for each coefficient, to store the sign.
The second file contains an integer in [0; : : : ;∑k

i=0 2i] where k = log2 n and n is
the linear size of images; the position of a coefficient is stored as an integer in
[0; : : : ;n2]; so the number of bits stored in the last two files is not the same for
each image: if the integer is over 256, 16 bits are necessary, instead of 8.

In Table 1 the medium value of space occupied by the original image and
by the three files, each of them considered as a binary file, is shown. As you can
see from the table, storing an image compressed with Best-Basis method make
us use half, or even a quarter, of the original space.

The evaluation of cross-correlation between two compressed images pro-
duces numerical results as good as those between two not compressed images.
In fact in Table 2 we show that the range of mean and mean square differences
between the respective values obtained in a query with compressed and not com-
pressed images is small and boundaries values are quite little. As for the query
time we can observe that as much larger the images grows, so much higher the
time difference between our method and the classical one becomes. In Tables 3
and 4 we show the results of some queries in the three databases we described
before; for each cell there are two values: the minimum and the maximum we
found in our experiments. In particular, in the case of wavelet packet query, time
of Input/Output, time of the decomposition of the test image, time of Same Ba-
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Fig. 2. Experimental results of 32 queries in a database of 126 images 128�
128.

sis selection and Cross evaluation are shown; while in Cross-correlation query
only Input/Output and evaluation time are shown.

In order to give a statistical description of similarity between patterns in
the 3 databases we show in Fig. 2 two histograms; the first (a) regards cross-
correlation values obtained during 32 queries in a database of 126 images of
128�128 size; while (b) refers to the same 32 queries performed with wavelet
packet decomposition joint with cross-correlation. The diagrams obtained are
similar: this means that even with compressed images cross-correlation results
are still good.

Size Mean (min-max) Mean Square (min-max)

64 0.0120 - 0.0372 0.0201 - 0.0381
128 0.0165 - 0.0261 0.0188 - 0.0268
256 0.0235 - 0.0291 0.0243 - 0.0302

Table 2. Differences between Cross correlation evaluated on entire or com-
pressed data



Size I/O Decomp.on Same ba Cross corr.

64 10 - 11 0.27 - 0.29 1.57 - 1.73 0.02 - 0.04
128 22 - 24 1.16 - 1.22 6.02 - 6.59 0.12 - 0.14
256 123 5.43 - 5.57 26.0 - 27.3 0.50 - 0.55

Table 3. Maximum and minimum time value for Wavelet Packet queries

5 Conclusions

We have presented a method for searching in an image database, based upon
wavelet packets and cross-correlation as a similarity measure between patterns.
We have used specifically feature sets based on the QMF wavelet packets de-
composition because of the discrimination performance and the benefits the rep-
resentation offers in a database application.

The algorithm we have described is fast, requires only a small amount of
data to be stored for each target image and is remarkably effective. We have
found that our method performs a query more quickly than cross-correlation
only might do. Moreover, numerical values of matchings, obtained by our method,
are quite similar to those given by cross-correlation query; being this latter a
good similarity measure, this fact means that our method has a very good de-
gree of accuracy in finding the correct match.

References

[1] Flickner, M., Sawhney, H.S., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee,
D., Petkovic, D., Steele, D., Yanker, P.: Query by Image and Video Content: The QBIC
System. IEEE Computer 28(9) (September 1995) 23–32

[2] Bach, J.R., Fuller, C., Gupta, A., Hampapur, A., Horowitz, B., Humphrey, R., Jain, R.,
Shu, C.F.: Virage Image Search Engine: An Open Framework for Image Management.
In Sethi, I.K., Jain, R.C., eds.: Storage and Retrieval for Image and Video Databases IV.
Volume 2670 of SPIE Conference on Wavelet Applications., SPIE Press (March 1996)
76–87

[3] Jain, A.K., Vailaya, A.: Image Retrieval Using Color and Shape. Pattern Recognition 29
(August 1996) 1233–1244

Image test Input/Output Cross correl.

64 19.89 - 20.88 0.295 - 0.358
128 79.707 - 81.48 1.361 - 1.436
256 315.86 - 317.87 6.662 - 6.855

Table 4. Maximum and minimum value of Cross correlation queries



[4] Manjunath, B., Ma, W.: Texture Features for Browsing and Retrieval of Image Data. IEEE
Transactions on Pattern Analysis and Machine Intelligence 18(8) (August 1996) 837–842

[5] Santini, S., Jain, R.: Similarity Queries in Image Databases. In: Proceedings of CVPR’96,
IEEE International Conference on Computer Vision and Pattern Recognition, San Fran-
cisco, CA, USA (June 1996)

[6] Santini, S., Jain, R.: Similarity Matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence 21(9) (September 1999) 871–883

[7] Coifman, R.R., Wickerhauser, M.V.: Best-adapted Wave Packet Bases. Technical Report,
Yale University (November 1990)

[8] Chen, S.S., Donoho, D.: Basis Pursuit. Technical Report, Department of Statistics, Stan-
ford University (November 1994)

[9] Chen, S.S., Donoho, D., Saunders, M.: Atomic Decomposition by Basis Pursuit. Technical
Report, Department of Statistics, Stanford University (1995)

[10] Coifman, R.R., Wickerhauser, M.V.: Entropy Based Algorithms for Best Basis Selection.
IEEE Transactions on Information Theory 32 (March 1992) 712–718

[11] Lu, J., Algazi, V.R., Estes, Jr., R.R.: Comparison of Wavelet Image Coders Using Picture
Quality Scale (PQS). In Szu, H.H., ed.: Wavelet Applications II. Volume 2491. (1995)
1119–1130

[12] Wood, J.: Invariant Pattern Recognition: a Review. Pattern Recognition 29(1) (January
1996) 1–17

[13] Chen, Q.S., Defrise, M., Deconinck, F.: Symmetric Phase-Only Matched Filtering of
Fourier-Mellin Transforms for Image Registration and Recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence 16(12) (December 1994) 1156–1168

[14] Reddy, B.S., Chatterji, B.: An FFT-Based Technique For Translation, Rotation, And Scale-
Invariant Image Registration. IEEE Transactions on Image Processing 5 (1996) 1266–1271

[15] Albanesi, M.G., Lombardi, L.: Wavelets for Multiresolution Shape Recognition. In
Del Bimbo, A., ed.: Proceedings of ICIAP’97. LNCS 1311, Florence, Italy (September
1997) 276–283

[16] Nelson, L.J.: Wavelet Based Image Compression: Commercializing the Capabilities. Ad-
vanced Imaging (January 1996)

[17] Hilton, M.L., Jawerth, B.D., Sengupta, A.: Compressing Still and Moving Images with
Wavelets. Multimedia Systems 2(5) (1994) 218–227

[18] Coifman, R.R., Meyer, Y., Quake, S.R., Wickerhauser, M.V.: Signal Processing and Com-
pression with Wavelet Packets. In Byrnes, J.S., Byrnes, J.L., Hargreaves, K.A., Berry, K.,
eds.: Wavelets and Their Applications. Volume 442 of NATO ASI Series C: Mathematical
and Physical Sciences. Kluwer Academic Publishers (1994) 363–379

[19] Wickerhauser, M.V.: Picture Compression by Best-Basis Sub-Band Coding. Preprint, Yale
University (1990)

[20] Taswell, C.: Image Compression by Parameterized-Model Coding of Wavelet Packet Near-
Best Bases. In Szu, H., ed.: SPIE Conference on Wavelet Applications. Volume 2491.,
SPIE Press (April 1995) 153–161

[21] Wickerhauser, M.V.: Lectures on Wavelet Packet Algorithms. (November 1991)
[22] Meyer, Y., Ryan, R.D.: Wavelets: Algorithms and Applications. SIAM (May 1993)
[23] Daubechies, I. CBMS-NSF Series in Applied Mathematics. In: Ten Lectures on Wavelets.

SIAM (1992)


	1 Introduction
	2 Best-Basis
	3 Same Basis
	4 Experimental results
	5 Conclusions

