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ABSTRACT
The design of dynamic workflows needs adequate model-
ing/specification formalisms and tools to soundly handle
possible changes during workflow operation. A common
approach is to pollute workflow design with details that
do not regard the current behavior, but rather evolution.
That hampers analysis, reuse and maintenance in general.
We propose and discuss the adoption of a recent Petri net-
based reflective model as a support to dynamic workflow
design. Keeping separated functional aspects from evolu-
tion, results in a dynamic workflow model merging flexibil-
ity and ability of formally verifying basic workflow prop-
erties. A structural on-the-fly characterization of sound
dynamic workflows is adopted based on Petri net’s free-
choiceness preservation. An application is presented to
a localized open problem: how to determine what tasks
should be redone and which ones do not when transferring
a workflow instance from an old to a new template.
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1 Introduction

Change occurs frequently in business processes due to two
primary reasons [22]: i) at design time the workflow spec-
ification is incomplete due to lack of knowledge, ii) errors
or exceptional situations can occur during the workflow ex-
ecution; these are usually tackled on by deviating from the
static schema, and may cause breakdowns, reduced quality
of services, and inconsistencies.

Most of existing workflow management solutions
(e.g., IBM Domino, iPlanet, Fujisu iFlow, TeamCenter)
are designed to handle static business processes, in vari-
ous degrees. The solution currently adopted by most WMS
is in fact that, once process changes occur, new workflow
templates are defined and workflow instances are initiated
accordingly from scratch. This over-simplified approach
forces tasks that were completed on the old instance to be
executed again, also when not necessary. If the workflow
is complex and/or involves a lot of external collaborators, a
substantial business cost will be incurred.

Dynamic workflow change management might be
brought in as a potential solution. Formal techniques and

analysis tools can support the development of adaptable
WMS capable to handle undesired results introduced by
workflow dynamism.

In the research field on dynamic workflow, the preva-
lent opinion is that models that capture work practices
should be based on a formal theory and be as simple as
possible [2]. The Milano system [1] aims to provide pro-
cess models (i.e., workflow templates) as ’resources for ac-
tion’ rather than strict blueprints of work practices. May
be the most famous dynamic workflow formalization, the
ADEPTflex system [17], is designed to support dynamic
change at runtime. A complete and minimal set of change
operations is defined. The correctness properties defined
by ADEPTflex are used to determine whether a specific
change can be applied to a given workflow instance or not.

Most of workflow modeling techniques are based on
Petri Nets (PN) [19], due to PN’s description efficacy, for-
mal nature, and the availability of consolidated PN-based
analysis techniques. Classical PNs have a fixed topology,
so they are well suited to model workflow matching a static
paradigm. Conversely, the design of dynamic workflows is
not well supported by classical PNs, dynamism/evolution
must be hard-wired in the PN model and bypassed when
not in use. That requires some expertise in PN modeling,
and might result in an incorrect or partial description of
workflow behavior. What is even worst, analysis would be
polluted by a great deal of details concerning evolution.

Separating evolution from the (current) system behav-
ior is worthwhile. This concept has been recently applied
to a PN-based context [5], using reflection [15] as mecha-
nisms that easily permits separation of concerns. A basic
reflective model layered in two causally connected levels
(base-, and meta-level) is used.

With respect to several ’dynamic’ PN extensions re-
cently appeared (e.g. [4, 12], as concerns specifically the
workflow field [3, 9, 10, 14]) reflective Petri nets [5] do not
define a new PN paradigm, but rely upon classical PNs.
That gives the possibility of using available tools and con-
solidated analysis techniques in a fully orthogonal fashion.

We propose and discuss the adoption of reflective PN
as a support to dynamic workflow design, considering a lo-
calized open problem: how to determine what tasks should
be redone and which ones do not when transferring a work-
flow instance from an old to a new template. The prob-



lem is efficiently, but rather empirically, addressed in [16],
where a template-based schema is implemented, relying on
the concept of bypassable task. Conforming to the same
concept, we propose an alternative, parametric solution,
that allows evolutionary steps to be soundly formalized
and basic workflow properties to be verified. In particular,
a structural on-the-fly characterization of sound dynamic
workflows is adopted.

According to [1,2], the current (base) workflow model
is kept as simple as possible. Our approach has some
resemblance also with [17], sharing the same complete-
ness/minimality criteria, but considerably differs in man-
agement of changes: it neither provides exception handling
nor undoing mechanism of temporary changes, rather it re-
lies upon a sort of on-the-fly check of properties.

The paper is structured as follows: in section 2 we
introduce a few basic notions related to usage of PNs for
workflow modeling; in section 3 we outline the PN-based
reflective model, introducing the adopted terminology and
the language used to specify the evolutionary strategy; in
section 4 we recall the (template-based) approach to dy-
namic workflow change defined in [16], then we present
and discuss an alternative based on reflective PN that ex-
ploits PN structural analysis to ensure a sound evolution of
processes; finally in section 5 we draw our conclusions and
perspectives.

2 PN and WF: background

This section introduces terminology and notations of the
base-level Petri net class we shall use in the sequel. Basic
concepts and properties related to the use of PN in work-
flow modeling are also given. We refer to [18,20] for more
elaborate introductions.

Definition 1 (Petri net) A Petri net is a triple (P ;T ;F ):

- P is a finite set of places,

- T is a finite set of transitions (P \ T = ;;),

- F � (P �T )[ (T �P ) is a set of arcs (flow relation)

Symbols �n; n� denote the pre/post sets of a node n 2
P[T , respectively. The extensions �A;A�,A � P[T will
be also used. The neighbor set of n, �n[n�, is denoted n�.
Note that in the context of workflow procedures it makes no
sense to have weighted arcs, because places correspond to
conditions. A marking (state) M is a distribution of tokens
over places, i.e., M 2 Bag(P ).

Transitions change the state of the net according to
the following firing rule:
- A transition t is said to be enabled in M iff each place
p 2 �t contains at least one token.
- An enabled transition t may fire. If t fires, then it con-
sumes one token from each p 2 �t and produces one token
for each p 2 t�.

Given a Petri net (P ;T ;F ) and a state M1, we have
the following notations:

M1

�
! Mn: the firing sequence � = t1t2t3 : : : tn�1 leads

from M1 to Mn via M2; : : : ;Mn�1

Mn is reachable from M1 iff there exists �, M1

�
!Mn.

(PN ;M) denotes a Petri net with an initial state M . Given
(PN ;M), M 0 is said reachable iff it is reachable from M .

Let us define a few standard properties for Petri nets.
First, we define properties related to the dynamics of a Petri
net, then we give some structural properties.
(Live). (PN ;M) is live iff, for every reachable state M 0

and every transition t there exists M 00 reachable from M 0

which enables t.
(Bounded, safe). (PN ;M) is bounded iff for each place p
there exists n 2 N such that for every reachable state the
number of tokens in p is less than n. A bounded net is safe
iff for each place n � 1. A marking M of a safe net is an
element of the power-set on P .
(Path). A path C from a node n1 to a node nk of a PN
is a sequence n1; n2; : : : ; nk such that (ni; ni+1) 2 F for
1 � i � k � 1.
(Free-choice). A Petri net is free-choice iff, for every pair
of transitions t1 and t2, �t1 \ �t2 6= ; ) �t1 = �t2.
(Causal connection - CC). transition t1 is causally con-
nected to t2 iff (t1� n �t1) \

�t2 6= ;.
CC� denotes the unreflexive transitive closure of CC.

2.1 WF-nets and Free-Choiceness

A Petri net can be used to specify the control flow of a
WF. Tasks are modeled by transitions and causal dependen-
cies by places and arcs. A place corresponds to a task pre-
and/or post-condition. A Petri net which models a work-
flow is called WF-net.

Definition 2 (WF-net). A Petri net PN = (P ;T ;F ) is a
WF-net iff:

¶ There is one source place i such that �i = ;.

· There is one sink place o such that o� = ;.

¸ Every node x 2 P [ T is on a path from i to o.

A WF-net has exactly one input place (i) and one out-
put place (o), because any case handled by the procedure
represented by the WF-net is created when it enters the
WMS and is deleted once it is completely handled by the
WMS, i.e., the WF-net specifies the life-cycle of a case.
The third requirement in definition 2 avoids dangling tasks
and/or conditions, i.e., tasks and conditions which do not
contribute to the processing of cases.

If we add to a WF-net PN a transition t� such that
�t� = o and t�� = i, then the resulting Petri net PN (called
the short-circuited net of PN ) is strongly connected.

The requirements stated in definition 2 only relate to
the structure of the Petri net. However, there is another
requirement that should be satisfied:

Definition 3 (soundness) A procedure modeled by a WF-
net PN = (P ;T ;F ) is sound iff:
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¶ For every state M reachable from state fig, there ex-
ists �, M �

! fog

· fog is the only state reachable from fig with at least
one token in place o.

¸ There are no dead transitions in (PN ;fig): 8t 2 T ,
there exists M reachable from fig, M t

!M 0

In other words, for any case the procedure will terminate
eventually (in the context of workflow management we rea-
sonably assume a strong notion of fairness) and the moment
the procedure terminates there is a token in place o and all
the other places are empty. That is sometimes referred to
as proper termination. Moreover, it should be possible to
execute an arbitrary task by following the appropriate route
though the WF-net.

The soundness property relates to the dynamics of a
WF-net, and may be considered as a basic requirement for
a workflow. Standard Petri-net-based analysis techniques
can be used to verify soundness. A WF-net PN in fact
is sound if and only if the short-circuited net (PN ; fig) is
live and bounded [20]. Despite that useful characteriza-
tion of the quality of a workflow process, for arbitrary WF-
nets it may be intractable to decide soundness: liveness and
boundedness are decidable, but also EXPSPACE-hard.

Therefore structural characterizations of sound WF-
nets were investigated [20]. Free-Choice (FC) Petri nets
seem to be a good compromise between expressive power
and ’analyzability’, and are the largest class of Petri nets
for which strong theoretical results and efficient analysis
techniques exist [8]. In particular, as shown in [20], sound-
ness of a FC WF-net (as well as many other problems) can
be decided in polynomial time. Moreover, a sound FC WF-
net (PN ; fig) is guaranteed to be safe, according to the
interpretation of WF-net places as conditions.

Another good reason for restricting WF-nets to FC
Petri nets is that the routing of a case should be independent
of the order in which tasks are executed. If non-FC Petri
nets are allowed, then the choice between conflicting tasks
may be influenced by the order in which the preceding tasks
are executed. In literature the term confusion is often used
to refer to a situation where the FC property is violated by
a badly mixture of parallelism and choice.

The FC property is a desirable property for workflow
procedure. If a workflow can be modeled as a FC WF-net,
one should do so. Most of existing WMSs only allow for
FC workflows. In our application of reflective PN model
we will admit as base-level Petri nets only FC WF-nets.

Although FC WF-nets are a satisfactory character-
ization of workflow well-structuredness, there are non-
FC WF-nets which correspond to sensible workflows. S-
coverability [20] is a (structural) generalization of the FC
property: a sound FC WF-net is S-coverable. Unfortu-
nately, in general, it is not possible to verify soundness of
an arbitrary S-coverable WF-net in polynomial time, this
problem being in fact PSPACEcomplete.

3 Reflective PNs

The reflective Petri net approach [5] permits developers to
model a (discrete-event) system and separately all its pos-
sible evolutions, and to dynamically adapt system’s model
when evolution must occur.

The approach is based on a reflective architecture [6]
structured into two logical layers. The first layer, called
base-level, is represented by the PN modeling the system
prone to be evolved, also called base-level PN; whereas
the second layer, called meta-level is represented by the
meta-program, following the reflection parlance, a Colored
PN [13] composed by the evolutionary strategies that will
drive the evolution of the base-level PN when certain events
occur. Entities on the meta-level perform computations on
entities residing on the lower level.

The reflective framework, realized by a CPN as well,
is responsible for really carrying out the evolution of the
base-level PN at the meta-level. Meta-level computations
in fact operate on a representative of the lower-level, called
reification. The base-level PN reification is defined as a
marking of the reflective framework, and is updated every
time the base level Petri net enters a new state. The reifi-
cation is used by the meta-program to observe (introspec-
tion) and manipulate (intercession) the base-level PN. Each
change to the reification is reflected on the base-level PN at
the end of a meta-computation (shift-down action), i.e., the
base-level PN and its reification are causally connected, the
reflective framework being responsible for that.

According to the reflective paradigm, the base-level
PN runs irrespective of the meta-program, being not aware
of the existence of a meta-level. The meta-program is im-
plicitly activated (shift-up action), and a suitable strategy is
then put into action, under two conditions: i) either when
the base-level PN model reaches a given configuration, or
ii) when triggered by an external/unpredictable event.

Intercession on the base-level PN is carried out in
terms of a minimal set of basic operations (called the evolu-
tionary interface), that permit any kind of base-level’s evo-
lution, both at structure (topology) and marking (current
state) level: the meta-programmer can add/remove places,
transitions and arcs, and freely move tokens all over the
base-level PN places. The evolutionary strategy specifies
arbitrarily complex transformation patterns for the base-
level Petri net. To simplify their design we have provided
the developer with a tiny, ad-hoc (meta-)language that al-
lows everyone to specify his own strategy in a simple and
formal way. The syntax is inspired by Hoare’s CSP [11],
enriched with a few specific constructs and notations for
easy manipulation of nets. A strategy specified in this way
can be automatically translated into a corresponding CPN,
that will be in turn composed to the evolutionary frame-
work to obtain the whole meta-model.

Evolutionary strategies have a transactional seman-
tics: either they succeed, or leave the base-level PN un-
changed. Several strategies could be candidate for execu-
tion at a given instant: the simplest policy (here adopted)
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selects one non-deterministically.
The interaction between base-level and meta-level,

and between meta-level entities, has been formalized in [5].
Let us only outline the essential aspects:

— the structure of the reflective framework is fixed, while
the evolutionary strategies are coupled to the base-
level PN, and change from time to time;

— the reflective framework and the meta-program are
separated components, sharing two disjoint sets of
boundary places: the base-level PN reification and the
evolutionary interface; the interaction between com-
ponents is realized through place superposition;

— the base-level PN reification is observed and manip-
ulated by the meta-program; whereas the evolution-
ary interface allows the evolutionary strategies to send
evolutionary commands to the reflective framework
(that operate them);

— the base-level reification color domains are similar to
formal parameters, they are bound from time to time
to a given base-level PN; reification’s initial marking
corresponds to the initial base-level configuration.

The whole reflective architecture is characterized by
a fixed part (the reflective framework), and by a part vary-
ing from time to time (the base-level PN and the evolution-
ary strategy). The fixed part is used to put evolution into
practice for any kind of system. It is responsible for the
reflective behavior of the architecture, hiding the work of
the evolutionary sub-system to the base-level PN. This ap-
proach permits a clean separation between the PN describ-
ing the evolution and the model of the evolving system,
that is updated only when necessary. So the base-level PN
model is not polluted by details related to evolution.

4 Template-Based Workflow Evolution

An interesting solution to facilitate efficient dynamic work-
flow change is proposed in [16]. The approach addresses
template-based dynamic workflow change, according to
a consolidated industrial practice, and is implemented in
SmarTeam, a leading PDM system. The idea is to iden-
tify all nodes in the new workflow instance that satisfy the
following conditions i) they are unchanged, ii) they have
finished in the old workflow instance, and iii) they need not
be executed again, i.e., they are bypassable.

Two nodes (transitions in PN parlance) are identical,
before and after change, iff they represent the same tasks
and preserve input/output connections. It is hereafter as-
sumed that two nodes represent the same tasks iff they are
name preserving. The output of a node is affected by all
nodes from which there is a path to the node itself. There-
fore, to determine if a node/task that was completed in the
old instance is bypassable when the instance is transferred
to a new template, an additional condition is needed: all
nodes from which there is a path to the node itself, must be

bypassable. This solution has been implemented in Das-
sault’s SmarTeam PDM system.

4.1 A Reflective PN Approach

Our alternative to [16]’s approach based on reflective PNs
allows a sounder formalization of evolutionary steps, and
permits some kind of on-the-fly validation of workflow
change by means of a simple structural analysis performed
on the WF-net reification. In particular, free-choiceness
preservation is checked. Changes are not reflected to the
base-level WF-net in case of a negative check. The aim is
to show that reflective Petri nets can be helpful in designing
dependable dynamic workflows.

We consider the same case presented in [16] (Fig-
ure 1). A company has several regional branches. To
enhance operation consistence, the company headquarter
(HQ) standardizes its business processes in all branches.
A workflow template is defined to handle customer prob-
lems. When the staff in a branch encounters a problem, a
workflow instance is initiated from the template and exe-
cuted until completion. The PN specification of the tem-
plate is given in Figure 1(a). In the template, a problem
goes through two stages: problem solving and on-site real-
ization. Problem solving involves several steps, included in
the dashed box in Figure 1(a)). When opening a case, the
staff in the branch reports the case to the HQ. When clos-
ing the case, the staff archives the related documents. The
HQ manages all instances related to the problem handling
process. In response to business needs, the HQ may decide
to change the problem handling process and to transfer old
workflow instances to the new template (Figure 1(b)), that
differs from the original one basically in two points: a) “re-
porting” and “problem solving” are completely separated
tasks; b) “on site realization” task can fail, in that case the
“problem solving” sequence restarts.

When using reflective PN, the evolutionary schema
has to be completely reviewed. The new workflow template
is not passed as input to the staff of the company branches,
but it results from applying an evolutionary strategy to a
workflow instance belonging to the current template. The
initial base-level PN is assumed to be a free-choice WF-net.

No details related to the workflow dynamics are hard-
wired in the base-level net. Evolution is delegated to the
meta-program, that acts on the WF-net reification. The
meta-program is activated when an evolutionary signal is
received from HQ, or some anomaly (e.g., a deadlock) is
revealed by introspection. Introspection is also used to
discriminate whether the evolutionary commands can be
safely applied to the current workflow instance, or they
have to be temporarily discarded.

Figure 1 depicts the following situation: a workflow
instance running on the old (base) template (figure 1(a))
receives a message from HQ. The current marking repre-
sents a state where the “solution design” sub-task of prob-
lem solving and the “report” task are pending, and a num-
ber of tasks (e.g., “analysis” and “case opening”) have fin-
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ProblemStatement P5 Report Archiving
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ProblemDiscovery P9 TestRejected CaseClosure

P2 SolutionDesign P7
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(a) The Petri net modeling the base workflow template

Problem
Solving

CaseRejected

P4

CaseOpening P14

end

ProblemStatement P5 Report Archiving

P3 Analysis P13 P8

ProblemDiscovery P9 TestRejected RealizationReject CaseClosure

P2 SolutionDesign P7

start P10 OnSiteRealization

begin Testing

P6

P11

ProductChange

P12

VersionMerging

(b) A possible workflow evolution

Figure 1. A basic template and its possible evolution.

ished. The meta-program in that case successfully oper-
ates change on the old template instance, once verified that
all pending tasks have been enabled by sequences of by-
passable tasks only. Evolutionary commands are sent as
output commands by HQ. The workflow instance running
on the modified template is illustrated in figure 1(b)). One
might think that this approach is instance-based, rather than
template-based. In truth it covers both schema: if the evo-
lutionary commands are broadcasted to all workflow in-
stances we fall in the second category.

The evolutionary strategy relies upon the definition
of adjacency preserving node, more general than the un-
changed node notion used in [16]. It is inspired by van der
Aalst’s general concept that a dynamic workflow change
must preserve the inheritance relationship between old and
new workflow templates [21].

Let us first introduce some notations. Symbols x,x

will be used to denote the same node before and after
change, respectively: x belongs to a WF-net PN , x be-
longs to the net PN 0 resulting from change. NEW P ,
DEL P , NEW T , DEL T , and NEW A, DEL A, de-
note the base level places/transitions/arcs to be added and
removed, respectively; DEL N = DEL P [ DEL T ,
NEW N = NEW P [ NEW T . The workflow reifi-
cation nodes/arcs before change are denoted by OLD N ,
OLD A. Finally, NO ADJ , NO BY PS denote the set
of nodes not preserving adjacency and non-bypassable, re-
spectively (NO ADJ � NO BY PS).

Definition 4 (adjacency preserving transition)
LetAt =

�(t�)[ (t�)� (the set of transitions adjacent to t).
t is adjacency preserving iff A

t
\OLD N = At and there

exist a bijection ' : t� ! t
� such that 8x 2 At8y 2 t�,

y 2 �x iff '(y) 2 �x and y 2 x� iff '(y) 2 x�

In practice a task t is adjacency preserving iff all its causal-
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t

(a) initial situation

t’

(b) change adjacency preserving

t’

(c) change not preserving adja-
cency

Figure 2. Definition 4 illustrated.

ity/conflict relationships to adjacent tasks are maintained
by change. A case where Definition 4 holds, and another
where it does not, are illustrated in figure 2, where the black
box denotes a new task. Checking definition 4 is computa-
tionally expensive. However, if some reasonable assump-
tions of change well-definiteness are made (e.g., if useless
changes such as ”deleting a given place p, then adding p0

inheriting p’s connections”, or ”adding an arc < p; t >,
then deleting p or t”, are forbidden), check’s complexity
is greatly reduced. Lemma 1 states a set of rules for iden-
tifying a superset of nodes not preserving adjacency, that
may be easily translated to an efficient meta-program sub-
routine. In most practical cases this superset coincides to
the exact set.

Lemma 1 Consider set Na, built as follows
p 2 DEL P ) �p [ p� � Na

t 2 DEL T ) �(�t) [ (t�)� � Na

< p; t >2 DEL A_ < t; p >2 DEL A) �p[p� � Na

< p; t >2 NEW A ^ t 2 OLD N ) ftg [A � Na,
where A = �p [ p� if p 2 OLD N , else A = ;.
Then NO ADJ � Na

The evolutionary meta-program corresponds to the
CSP-like code in listing 1. The meta-program is activated
at any transition of state on the current workflow instance
(shift-up), reacting to three different types of events. In the
case of deadlock, a signal is sent to HQ, represented by a
CSP process identifier. If the current instance has finished,
and a “new instance” message is received, the workflow is
activated. Instead if there is an incoming evolutionary mes-
sage from HQ, the evolutionary strategy starts running.

Just after an evolutionary signal, HQ communicates
the workflow nodes/connections to be removed/added.
For the sake of simplicity we assume that change can
only involve workflow topology. The (super)set of non-
bypassable nodes is then computed.

After operating the evolutionary commands on
the current workflow reification, definition 2 and free-
choiceness are checked out on the newly changed reifi-

cation. Following, the strategy checks by reification in-
trospection whether the suggested workflow change might
cause a deadlock, or there might be any non-bypassable
tasks causally-connected to an old task which is currently
pending. In either case, a restart procedure takes the work-
flow reification back to the state before strategy’s activa-
tion. Otherwise, change is reflected to the base-level (shift-
down). To avoid otherwise possible inconsistencies, the
base-level is “frozen” during strategy’s execution [5]. The
proposed schema might be adopted as a template for a class
of arbitrarily complex evolutionary patterns.

Language built-ins and routine calls are in bold. The
NODE type represents a (logically unbounded) recipient
of base-level nodes, and is partitioned into PLACE and
TRAN subtypes . A particular version of CSP repeti-
tive command is used: letting set E be finite, *(e in E)[
�command� ] makes command to be executed iteratively
for each e 2 E. Note the overloading of operator ’*’,
which is used also to denote the set intersection. The ex-

ists quantifier is used to check whether a net element is
currently reified.

The built-in routine ReifNodes computes the nodes
belonging to the current base-level reification. The routine
notAdjPres initializes the set of non-bypassable nodes, ac-
cording to lemma 1. The routines ccTo and ccBy compute
the set of nodes that routine’s argument is causally con-
nected to, and that are causally connected to routine’s argu-
ment, respectively. Listing 2 expands the routine checking
preservation of base evel free-choiceness (checkFc).

Let us explain how the strategy works considering
again Figure 1. After receiving evolutionary commands:
-NEW_PLACE={};DEL_NODE={}
-NEW_TRAN={RealizationRejected};
-DEL_ARC={hp13; ProductChangeig;
-NEW_ARC=fhp6; RealizationRejectedi;

hp13; Archivingi; hRealizationRejected; p5ig.

The non-bypassable tasks come to be: Report,
Archiving, ProductChange, OnSiteRealization,
CaseClosure. In the new workflow instance tasks
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� [
VAR p , t , n : NODE;
VAR NEW P, NEW T, OLD N=fg ,

DEL N , NO BYPS : SET (NODE) ;
VAR NEW A, DEL A : SET (ARC ) ;

HQ ? change�msg ( ) ! [
/ / r e c e i v i n g e v o l u t i o n a r y commands
HQ ? NEW P ; HQ ? NEW T; HQ ? NEW A;
HQ ? DEL A ; HQ ? DEL N ;

/ / comput ing work f low r e i f i c a t i o n
OLD N = Rei f i edNodes ( ) ;

/ / comput ing n o n b y p a s s a b l e t a s k s
NO BYPS = ccTo ( notAdjPres ( ) ) ;

/ / chang ing r e i f i c a t i o n
newNode (NEW P+NEW T ) ; newArc (NEW A ) ;
d e l e t e A r c ( DEL A ) ; delNode ( DEL N ) ;
/ / c h e c k i n g we l l�f o r m e d n e s s
checkWfNet ( ) ; checkFc ( ) ;
/� i f t h e r e migh t be a dead lock ,

or a n o n b y p a s s a b l e t a s k CC t o a
pend ing one . . . � /

! e x i s t s t in Tran , enab ( t ) or
( e x i s t s t in Tran � OLD N , enab ( t )

and ! isEmpty ( ccBy ( t )� NO BYPS ) )
! [ r e s t a r t ( ) ] / / no change

shiftDown ( ) ] / / change r e f l e c t e d
�

# end =0 and
! e x i s t s t in Tran , enab ( t ) !

[ HQ ! n o t i f y�d e a d l o c k ( ) ]
�

# end =1; HQ ? newIns t ance�msg ( ) !
[ f l u s h ( end ) ; incMark ( b e g i n ) ]

]

Listing 1. workflow evolutionary strategy

Report and ProductChange are pending (enabled) in the
current marking M : fp11; p14g of the net in figure 1(b).
All old completed tasks that are causally connected to one
of them can be bypassed, so the new workflow has not to
be restarted from scratch, saving a lot of work.

As a counter example assume that the only pend-
ing task is OnSiteRealization (the current state of the
net in figure 1(a) would be M 0 : fp6g), meaning that,
among other, tasks ProductChange, VersionMerging

and Report have finished in the old workflow instance:
change in that case is delayed till the instance completion.

If the suggested change were carried out (reflected)
without any consistency control, a deadlock would be even-
tually entered (state fp8g) after the process continues on
the modified template.

The mechanism just described ensures a dependable

[ VAR t , p , t 1 : NODE;
VAR CHECKED=fg : SET (NODE) ;

�(<p , t> in NEW A + DEL A )
[ e x i s t s ( p ) and e x i s t s ( t ) ! [
� ( t 1 in pos t ( p ) n CHECKED) [

t 1 <> t and pre ( t ) <> pre ( t 1 )
! [ r e s t a r t ( ) ]

CHECKED = CHECKED + pos t ( p ) ] ]
] ]

Listing 2. piece of code checking free-choiceness

evolution of workflow instances, while being enough flex-
ible. Our aim was not to propose a general solution to the
problem addressed in [16]. Better, sounder and more effec-
tive policies do probably exist. Rather, we aimed at show-
ing how an approach merging consolidated reflection con-
cepts to classical PN techniques can be suitably adopted to
cope with the critical issues of dynamic workflow change.
In particular, basic properties of workflows can be checked
on-the-fly, discarding suggested changes when necessary.

The base-level PN, which is guaranteed to be a free-
choice WF-net during its evolution, may be analyzed using
different, sound polynomial techniques. Structural tech-
niques, in particular, are elegant and very efficient, but
in general they are highly affected by model complexity.
Keeping evolutionary aspects separated from functional as-
pects encourages their usage.

By operating the structural algorithms of GreatSPN
tool [7], it is possible to discover that both models in Fig-
ure 1 are covered by place-invariants. Thereby a lot of
interesting properties descend: in particular boundedness
and liveness, i.e., workflow soundness.

4.2 A counter example

Assume that evolution takes place when the only pend-
ing task is OnSiteRealization (current state of the net
in figure 1(a) M 0 : fp6g), that means, among other, tasks
ProductChange, VersionMerging and Report have fin-
ished: change in that case is temporarily discarded by the
evolutionary strategy, after verifying that some nonbypass-
able tasks are causally connected to the pending one.

If the suggested change were carried out (reflected)
without any consistency control, a deadlock would be even-
tually entered (state fp8g) after the process continues run-
ning on the modified template. The problem is that M 0 is
not a reachable marking of (PN 0; fbeging), but reachabil-
ity is NP-complete in live and safe free-choice Petri nets,
so it would make no sense to check reachability at meta-
program level.
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5 Conclusion

Covering the intrinsic dynamism of modern processes has
been widely recognized as a challenge by designers of
workflow management systems. PN are a central model
of workflows, but traditionally they have a fixed structure.
We have proposed and discussed the adoption of reflec-
tive PN as a formal model for designing sound, template-
based dynamic workflows. A clean separation between the
current behavior and the evolution of a workflow, and the
use of efficient PN structural techniques, make it possible
to check basic workflow properties while evolution is in
progress. As an application, an algorithm is delivered to
soundly transferring workflow instances from an old to a
new template. Ongoing research is in two directions: i)
integrating the approach into the GreatSPN package, ii)
using a high-level PN class also for the base-level of the
reflective model, to incorporate both resources and data in
the process description.
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