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Abstract. Often an ad hoc programming language integrating features from dif-
ferent programming languages and paradigms represents the best choice to ex-
press a concise and clean solution to a problem. But, developing a programming
language is not an easy task and this often discourages from developing your
problem-oriented or domain-specific language. To foster DSL development and to
favor clean and concise problem-oriented solutions we developed Neverlang.

The Neverlang framework provides a mechanism to build custom
programming languages up from features coming from different languages. The
composability and flexibility provided by Neverlang permit to develop a new
programming language by simply composing features from previously developed
languages and reusing the corresponding support code (parsers, code generators,
. . . ).

In this work, we explore the Neverlang framework and try out its benefits in
a case study that merges functional programming à la Python with coordination
for distributed programming as in Linda.

Keywords: Development Tools, Language Design and Implementation, DSL,
Composability, Modularity and Reusability.

1 Introduction

Nowadays, several and widely used programming languages support different program-
ming paradigms, such as Erlang [25], Python [19] and Scala [21]. Such a design choice
is an attempt to remedy to the lack of conciseness that is often manifest in a tradi-
tional general-purpose language. To have at disposal only a programming paradigm is
too rigid and forces to write code that awkwardly solve specific problems, e.g., try to
imagine how should be to write generic sorting algorithms without first-order functions,
function objects or templates.

Even if multi-paradigm programming languages put at disposal several program-
ming paradigms, the different programming models might not offer a concise way to
express the desired solutions and often their complexity could be excessive with respect
to the requirements. Moreover to let coexist different programming paradigms means
to compromise some of the functionality of one or the other paradigm and such a com-
promise could endanger the expected benefits. Last but not least you are still framed in
the language designer’s design and what you need could be still missing.
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Another approach to favor the conciseness of the written program is based on ex-
tending a programming language via an external library to fulfill the desired missing
features (e.g., the ODBC library). In general, this approach is tailored on the desired
feature and so cleaner but the adopted syntax and the integration of the introduced fea-
ture with the rest of the programming language are far from optimal and sometimes
its usage could result cumbersome. Moreover, the API provide a more complex inter-
face if compared with the same feature supported by the language [17] (e.g., compare
iterating on a collection in Java with or without the foreach construct) and in statically
typed languages its integration cannot be as seamless as desired (e.g., some casts could
be necessary). To clear up these issues look at the advantages of LINQ (a DSL for DB
connectivity) over ODBC based approaches [16].

Other minor issues that should foster the provision of ad hoc programming languages
are related to efficiency and extensibility. A general-purpose programming language
usually provides several programming features but some of them might be unnecessary
or redundant (e.g., Python’s map/filter/reduce and list comprehensions) and contribute
to make the language over complicate to learn and use. Mainstream programming lan-
guages have a poor support for extensibility [3, 7] and those that are designed to be
extensible (e.g., Lisp, Scala) did not gain a wide acceptance [2] or are really inefficient
(e.g., parser combinators in Scala1 ).

The ideal solution to get conciseness, efficiency and extensibility would be to de-
velop a domain specific programming language by combining only those features really
necessary to solve the target problem, reusing the definition and implementation from
other programming languages. This would allow different paradigms to be freely mixed
in a fine grained manner and to speed up the design and implementation of a new ad hoc
programming language. To this respect we have developed the Neverlang [5,6] frame-
work that permits to design new languages in terms of features of other programming
languages and to fast generate an interpreter/compiler for such language by reusing
pieces of the compilers/interpreters implementing such features.

The rest of the paper has the following organization. Sect. 2 introduces the Never-
lang framework whereas some details on the implementation are in Sect. 4. Sect. 3
explores the potential of Neverlang by showing a case study focused on the creation
of a concurrent/functional programming language; in particular it shows how to mix
two language definitions to create a new language and how to change the behavior of
an existing language. Sect. 5 provides a critical analysis of some related works pointing
out the differences and the innovations introduced by the Neverlang framework. Last
but not least, in Sect. 6 we draw our conclusions.

2 The Neverlang Framework

The Neverlang [5, 6] framework is inspired by HyperJ’s [23] multi-dimensional sep-
aration of concerns and basically reflects the fact that programming languages have a
modular definition and each language feature can be easily added to or removed from

1 http://scala-programming-language.1934581.n4.nabble.com/

Performance-of-Scala-s-parser-combinators-td3165648.html

http://scala-programming-language.1934581.n4.nabble.com/Performance-of-Scala-s-parser-combinators-td3165648.html
http://scala-programming-language.1934581.n4.nabble.com/Performance-of-Scala-s-parser-combinators-td3165648.html
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the language. Ideally, the design of a programming language should consist of select-
ing a set of features (building blocks) from existing languages and composing them
together. The whole structure of the compiler/interpreter is the result of composing the
code necessary to compile/interpret each single feature. The Neverlang framework
realizes this vision and provides a language for writing the building blocks and a mech-
anism for composing the blocks together and generating the compiler/interpreter of the
resulting language.

2.1 Neverlang at a Glance

In the next we describe the basic elements and concepts introduced by Neverlang and
the composition model behind the approach.

Basic Framework Concepts. In our approach we exploit the vision that a program-
ming language is defined in terms of its features (e.g., types, statements, relationships,
and so on) and such features can be formally described in isolation (as productions of
a grammar) and composed to form the language structure (syntax). Traditional compil-
ing techniques [1] perform some transformation on such description that brings forth to
the interpretable/compiled code. A complete compiler/interpreter built up with Never-
lang is the result of a compositional process involving several basic units describing
the language features and their support code.
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Fig. 1. Sectional DSL

These basic units are called modules. Each
module encapsulates a specific feature, such as
the syntactical aspect of a loop, and thus it is
bound to a precise role, the syntax definition in
our example. The role category determines where
a module will be attached to. Roles can be inter-
preted as dimensions and are bound to the phase
of the compilation and interpretation process.
syntax, type-checking and evaluation are ex-
amples of key roles but they are not the only and
fixed set of roles: the user can define new roles (in
the language definition) associated with specific
compilation phases and he can define the whole
compilation process in terms of the defined and
included compilation phases giving their relative order, i.e., specifying what phase pre-
cedes what (through the keyword roles).

Finally, modules regarding the same language structure but with different roles are
grouped together in slices. The final language is simply the result of the slice compo-
sition. To some extent, we can say that slices are orthogonal to roles: the former are
a collection of modules that compose the same feature, the latter are a collection of
modules regarding the same compilation/interpretation phase. In this scenario design-
ing a domain specific language consists of defining a set of slices and composing them
together. In Fig. 1 is depicted the general multi-dimensional structure of a language de-
veloped by using Neverlang, the colored jigsaw pieces are modules, those in the same
row contribute to describe the same feature and are part of the same slice whereas their
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color specifies which role they play. Neither the number of modules composing each
slice must be always the same nor a module for each role must be present in a slice.

To plug a slice in, we need a mechanism to precisely select the insertion point in-
side the compiler/interpreter. The process for selecting these insertion points, or join
points in aspect-oriented parlance, is grammar driven: they correspond to the nonter-
minal symbols of the grammar; a grammar that dynamically grows as new slices are
plugged in. In our case the code to be introduced at the join points, advice in aspect-
oriented jargon, participates to define/implement the compiler/interpreter of the new
language and consists of the grammar productions (in the syntactic module) with the
related semantic action routines (in the other modules). The Neverlang approach to
compiler/interpreter building is symmetric [13]. The DSL is a sort of patchwork of only
those features selected to be part of the language and its implementation is not achieved
by modifying an existing compiler/interpreter but built up from the implementation of
the single feature provided by the corresponding slices; that is, the compiler/interpreter
is the result of the slice composition. The composition specification defines the gram-
mar join points and its advice. A complete compiler/interpreter reifies its grammar join
points, so that it can be subsequently extended with new productions. A pleasant effect
of symmetric composition is that many slices can be easily reusable by different DSLs.

To support the various compilation/interpretation phases, the developer may need
some ancillary structures or services that concerns the whole compilation process af-
fecting all the other modules crosswise. Simple examples are the symbol table and the
code to deal with the memory management. A slightly different form of slice called en-
demic supports this kind of behavior. The fields and methods defined in an endemic slice
are accessible by all modules in the Neverlang program independently of the compil-
ing/interpreting phase. Adding/replacing an endemic slice permits to easily redefine the
whole behavior of the compiler/interpreter (more on this in Sect. 3.4).

Modules and Slices Definition. Listing 1 shows the Neverlang implementation for
the if-else conditional construct. Three roles (syntax, type-checking and evaluation)
are involved; each role is defined in a separate module (that could be written in separate
files as well) and combined together in the if slice.

Syntactically, the if-else construct can be defined by two productions: the first de-
fines the complete case with both branches and the second defines the case without the
else branch (see [1]). Such productions are defined in a module with the role syn-

tax. Each production is composed by terminals (surrounded by ’) and nonterminals
(e.g., StatementL). These productions are bound to the nonterminal Statement, other
productions bound to such nonterminal can be defined in the syntax module of other
slices. Obviously nonterminals used in the right side of the productions and unbound in
the module (such as StatementL and Expr) must become bound in the slice composition
phase where other slices with productions bound to them come into play; otherwise the
grammar will be incomplete and the compiler/interpreter could not be generated.

All the other kind of modules (in our example those with role type-checking and
evaluation) add semantic actions to the grammar rules defined in the module with syn-

tax role (see syntax-directed translation in [1]). Each of these modules associates to the
nonterminals the semantic actions necessary to carry out the corresponding
compilation/interpretation phase — e.g., the semantic actions in the module with role
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module if_syntax {
role(syntax) {
Statement � ’if’ ’(’ Expr ’)’ ’{’ StatementL ’}’ ’else’ ’{’ StatementL ’}’
Statement � ’if’ ’(’ Expr ’)’ ’{’ StatementL ’}’

}
}

module if_typechecking {
role(type-checking) {
0 { if (!$1.type.equals("Boolean")) System.err.println("ERROR: «expr» must be a boolean"); }
4 { if (!$5.type.equals("Boolean")) System.err.println("ERROR: «expr» must be a boolean"); }

}
}

module if_eval {
role(evaluation) {
0 { if (new Boolean($1.eval)) $2.eval else $3.eval; }
4 { if (new Boolean($5.eval)) $6.eval; }

}
}

slice if {
module if_syntax with role syntax
module if_eval with role evaluation
module if_typechecking with role type-checking

}
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Listing 1. Simple if-else module and slice

type-checking are used during the type checking phase. The nonterminals are identi-
fied through their position in the productions numbering with 0 the top leftmost non-
terminal and incrementing by one left-to-right and up-to-down all nonterminals inde-
pendently from any repetition and for the whole set of productions defined in the slice.
In our example, the module with role evaluation defines two semantic actions. The
first enriches the head of the first production (position 0) and simply tests the evaluation
of the boolean expression associated to the nonterminal in position 1 (Expr) and, ac-
cordingly to that, respectively evaluates the nonterminal in position 2 or 3 through their
eval attribute (such associations are made explicit by arrows in the listing). The second
action behaves similarly but refers to the case without the else branch and it is associ-
ated to the head of the second production (position 4). Semantic actions are anchored
to a nonterminal; if it is the head of the production, the action evaluation is carried out
after the evaluation of the semantic actions in the right part of the production and in its
derivation (postfix evaluation); otherwise it is done before (prefix evaluation).

The semantic actions are basically pieces of Java code that access attributes com-
puted during the current (or previous) compilation/interpretation phases. What the at-
tributes are and how they are transmitted from a module to another derives directly
from how the syntax-directed translation mechanism [1] works. Attributes are accessed
through the nonterminal (by its position prefixed by $) they refer to, e.g., $1.eval is
the eval attribute of the Expr nonterminal in the first production of our example. To
make clear how the slice composition takes place, we can make a parallel with aspect-
oriented parlance and consider a nonterminal as a sort of join point where productions
and semantic actions are woven during the generation of the compiler/interpreter for the
language. Finally, the keyword slice permits to select the modules that will compose
our slice and to specify which role such modules play in the slice. Note that a role can
be played by only one module in each slice.
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# the master process defines the tasks for the slaves and collects the results.
process main { # distribute the jobs to the slaves and collect the results
rLenA = args[0] # A’s and B’s dimensions are passed as args
cLenA = args[1] rLenB = args[2] cLenB = args[3]

# A and B are randomly generated.
A = [[random(10) for y in range(cLenA)] for x in range(rLenA)]
B = [[random(10) for y in range(cLenB)] for x in range(rLenB)]

# calculates BT in a list, then converts it back to a matrix
B = [B[y][x] for x in range(cLenB) for y in range(rLenB)]
B = [[B[x] for x in range(y*rLenB, rLenB+y*rLenB)] for y in range(cLenB)]

# drops the tuples <Ai, BT
i >, x and y help in retrieving the results.

[out("data", A[x], B[y], x, y)
for x in range(rLenA)
for y in range(cLenB)

]
out("tuples", cLenA*rLenB)
cnt=rLenA*cLenB

# create an empty matrix for the result
C = [[0*y for y in range(cLenB)] for x in range(rLenA)]

tot=0 # collecting the results
[C[x][y] = tot for i in range(cnt) if in("result", ?x, ?y, ?tot)]
print(C)

}

# client (slave) calculates and drops in the tuple space the multiplications
process client {
tot = 0 len = 0
do { # search for non calculated couple of rows
in("tuples", ?len)
if (len != 0) {
out("tuples", len-1)
in("data", ?A, ?B, ?x, ?y)
[tot = tot + z for z in

[A[i]*B[j] for i in range(len(A)) for j in range(len(B)) ]
out("result", x, y, tot)

}
} while(len == 0)

}

Listing 2. Cooperative matrix calculation in the Linda+Python language

3 Neverlang at Work

In the next we present a case study that shows how Neverlang eases to mix up features
from different programming languages to form a new one.

3.1 Case Study: Linda+Python

Nowadays multi-core computers are on the rise and the opportunity to program them
as a parallel computer and possibly to communicate through their shared memory is
coming into the limelight. Some decades ago, Gelernter et al. [4,11] introduced Linda, a
parallel programming model based on shared memory, called the tuple space, to support
inter-process communication. The tuple space approach could become topical again in
the context of multi-core programming.

Linda is a coordination language with a very limited set of concepts (only six prim-
itives: in, inp, rd, rdp, out and eval) that needs to be embedded in a Turing com-
plete programming language to be useful and usable. Normally, Linda is integrated into
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another programming language either by modifying the existing compiler for the host
language or by using an external library (as in JavaSpaces [10]). As we explained in
the introduction both approaches have drawbacks: modifying a compiler is a time-
consuming and error-prone task whereas an external API could badly fit in the original
programming language and its use could be complicated and cumbersome. Neverlang
can be used to overcome these issues by simply supporting the compiler/interpreter gen-
eration for a domain specific programming language. In particular, the coordination lan-
guage Linda is merged to the functional characteristics of Python (in particular Python’s
list comprehensions) [18] to form the so-called Linda+Python programming language.
This is realized by writing down the necessary slices that permit to support (portion of)
the two languages by merging them together to define the new language. Of course,
we maximize the benefits when the languages to mix up are already implemented in
Neverlang and their slices can be reused.

The result of the process is a framework (compiler and interpreter) that permits to
compile and to interpret programs written in the Linda+Python idiom. As an exam-
ple, listing 2 implements a distributed and shared memory-based version of the matrix
multiplication algorithm in Linda+Python: keywords from the Linda language are blue-
colored whereas the red-colored are Python keywords. The program follows the mas-
ter/slaves paradigm; two kind of processes are involved: main and client. The former
(master) stores row and column couples in the tuple space and waits for the result. The
latter (slave) looks in the tuple space for such kind of couples, multiplies each couple
element by element and puts back in the tuple space a tuple with the sum of such prod-
ucts. Note that more than one client process can be launched without any conflict to
speed up the process.

3.2 Linda+Python Building Blocks

In the long term, i.e., when the Neverlang framework will support enough program-
ming languages, developing the support for the Linda+Python programming language
will simply consist of reusing the slices from Python and those from Linda regarding
the features of interest and writing some glue code to merge up the whole system. Since
we are still far from such a situation we have developed the necessary slices as well.

Linda. The Linda implementation in Neverlang should, at least, provide a slice for
each Linda primitive, a slice to support tuples and anti-tuples and the support for the
tuple space. The slices to implement the primitives and the tuples and anti-tuples do not
introduce particularly relevant concepts. The implementation of the tuple space is more
interesting since it does not introduce any piece of new syntax but it is just a sort of
data structure used by the other primitives; it is the perfect example of feature endemic
to the rest of the programming language and it is implemented in the endemic slice
TupleSpace (Listing 3). In this case, the type-checking phase does not only support
the classic type checking but also the tuple matching to extract tuples from the tuple
space. As for the tuple space management, the TupleSpace relies on an external Java
package (cf. the TupleSpaceThread class in Listing 4). The endemic slice is used by
the other slices through the syntax.
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slice TupleSpace {
decl {
import TupleSpace.TupleEntry; import TupleSpace.TupleSpaceThread;
TupleSpaceThread ts = TupleSpaceThread.getInstance(); // tuple space

Hashtable<String,String> getMatches(ArrayList<String> val,ArrayList<String> types,boolean del) {
TupleEntry res, te = new TupleEntry(types, val); // anti-tuple
if(!del) res = ts.getMatches(te); // read operation
else res = ts.getMatchesAndRemove(te); // in operation

...
}

void addEntry(ArrayList<String> values, ArrayList<String> types) {
ts.addEntry(new TupleEntry(types, values););

}
}
module TupleSpace with role endemic

}

Listing 3. The endemic slice to support the tuple space

public class TupleSpaceThread implements TupleSpaceInterface {
private static TupleSpace ts;
public static TupleSpace getInstance() {
if (ts == null) ts = new TupleSpace();
return ts;

}
public void addEntry(TupleEntry te) { ... }
public TupleEntry getMatch(TupleEntry te) { ... }
public TupleEntry getMatchesAndRemove(TupleEntry te) { ... }

}

Listing 4. The external TupleSpaceThread library

«slice name».«operation name»(«arguments»).

The endemic slices are always available and do not need to be imported.

Python. In the case of Python, we are just interested in its list datatype and in the
comprehension mechanism. Python lists are heterogeneous and dynamically typed. Dy-
namic typing forces to postpone the list type evaluation to the evaluation phase and in
the case of Linda+Python example to have a mixed type checking: static for the Linda
part and dynamic otherwise. The Neverlang framework permits to suspend and to
resume a phase on part of the AST; this feature enables the system to postpone the type
checking at the evaluation phase.

Due to space limitations, we cannot report the whole slice dealing with the list
comprehension feature but we are interested in showing how the suspend/resume mech-
anism works. Listing 5 shows how to support dynamic checking in a for-each-like con-
struct that iterates on a heterogeneous list and executes an expression on every element.
During the type-checking phase, the expression associated to the SimpleExpression

nonterminal cannot be type checked because it is (presumably) bound to the identifier
(described by the Identifier nonterminal) whose type is not available before the eval-
uation and potentially it can change at each loop since Python’s lists are not bound to a
single type. The type-checking phase for the SimpleExpression nonterminal must be
suspended by using the special function $suspend. During the evaluation phase, the
type and value of the elements of the list are stored in a variable table that can be used
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module ForEach {
role(syntax) {
ForEach � SimpleExpression ’for’ Identifier ’in’ List

}
role(type-checking) {
1 { $suspend; }

...
}
role(evaluation) {
0 {
String listValue = $3.eval;
String[] values = VarTable.getValues(listValue);
String[] types = VarTable.getTypes(listValue);
for(int i=0; i<values.length; i++) {

VarTable.putValue($2.eval, values[i]);
VarTable.putType($2.eval, types[i]);
$1.resume("type-checking");
$1.eval;

}
}

}
}

Listing 5. Postponed type checking in the implementation of the comprehensions

module Inc {
role(syntax) { SimpleExpression � Identifier ’++’ }
role(type-checking) {
0 { // type checking resumes here
if !(VarTable.getType($1.eval).equals("int")) Logger.printError("Invalid type!");
else $0.type = "int"

}
}
role(evaluation) {
0 { VarTable.putValue($1.eval, VarTable.getValue($1.eval)+1); }

}
}

Listing 6. Module Inc to implement the increment operation

by the type checker when resumed (call to the $resume special function). Given that
the SimpleExpression nonterminal expands into the increment operation (defined by
the Inc module, Listing 6), the type checking process resumes in the semantic action
associated to the head in such module, i.e., the place where the phase is resumed de-
pends on the program we are compiling. In the type-checking and evaluation phases
the values stored in the variable table before the $resume is used; the variable table is
implemented by the VarTable endemic slice as a hash table.

3.3 Building Linda+Python Up

Once the necessary slices have been developed (or selected if already existing), we
have to define (through the language statement) how such slices are composed together
to form the new Linda+Python programming language; such definition will drive the
Neverlang framework in the building of a compiler/interpreter for the new language.

Being the compilation phases syntax-driven, most of the issues the developer has
still to face are the syntactical conflicts that could rise by composing modules with role
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language Linda+Python {
slices Main BoolOp Sum Process Mul Out Read InP ReadP Eval Length Id ListsOp WildCardExpr Boolean

Int Assign ListsAccess Range In CompVarTable Tuple Args Expr Rand Var VarTable Comprehension
DoWhile If OpTable MulTable ListAssign TupleSpace IntOp Lists Print BooleanOpTable SumTable
ListsTable CompFor

roles syntax < type-checking < evaluation
}

Listing 7. Linda+Python Definition

syntax defined by different development teams. A quite common example of this prob-
lem occurs when you compose statements such as if and do-while, whose produc-
tions have different left-hand nonterminals rather than a common one as Statement;
such problem requires some glue code to redefine or to make uniform the productions.
Neverlang avoids further conflicts in the other phases since the semantic actions are
associated to the nonterminal position and this is related to a specific production inde-
pendently of the slice composition.

Listing 7 shows the language composition in our case study; such a piece of code just
lists which slices should be composed and in which order the compiling phases occur
(expressed through the keyword roles).

3.4 Flushing Flexibility Out

The tuple space implementation and the distribution provided in Listing 3 are quite
naïve; Linda’s processes are implemented as threads and the tuple space resides in the
data area common to all threads. Of course, this is just a proof of concept but it permits
to show another peculiarity of the Neverlang approach: how easy it is to evolve a
programming language (more on DSL maintenance in Neverlang can be read in [5]).
Switching from the current thread-based implementation to a more distributed RMI-
based one is just a matter of substituting the TupleSpace slice with another slice sup-
porting the desired implementation while retaining the interface.

Listing 8 shows the endemic slice TupleSpaceRMI that will replace the thread-based
implementation of the tuple space. The instance of TupleSpace does not reside in the
common data area anymore but it is accessed through RMI as a remote object. Other
minor changes are not showed due to sake of space but the access methods are synchro-
nized and the Tuple are serialized to be stored into or retrieved from the tuple space.

This kind of change is particularly easy since it just affects the run-time environment
of a running program and not its syntax and semantics and (with some care for consis-
tency) it could be done at run-time as well. Of course any kind of language evolution
can be easily taken in consideration but often this affects the source code as well due to
changes to the language syntax. Note that similar flexibility can be achieved also with
library based solutions but with a less clean syntax; moreover it is hard to change or
extend features whose implementation is less self-contained and library based. In [5]
are shown more elaborated kind of evolutions.

The complete case study can be downloaded from the Neverlang web page:

http://cazzola.dico.unimi.it/neverlang.html

http://cazzola.dico.unimi.it/neverlang.html
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slice TupleSpaceRMI { // TupleSpaceRMI differs from TupleSpace in
... // the way the tuple space is retrieved

decl {
TupleSpace ts = connect();

TupleSpace connect() {
try {
return (TupleSpaceInterface)LocateRegistry.getRegistry(Args.hostname).lookup("TupleSpace");

} catch (Exception e) { ... }
...

}

public class TupleSpaceRMI implements TupleSpaceInterface {
...

public static void main(String args[]) {
try {
TupleSpace ts = TupleSpace.getInstance();
TupleSpaceInterface stub = (TupleSpaceInterface)UnicastRemoteObject.exportObject(ts, 0);
LocateRegistry.getRegistry().rebind("TupleSpace", stub);

} catch (Exception e) { e.printStackTrace(); }
}

}
}

module TupleSpaceRMI with role endemic
}

Listing 8. RMI-based tuple space implementation

4 Neverlang Close-up

Basically, the idea behind the Neverlang framework is to compose the slices listed in
the slices section of the language statement and to exploit the syntax-directed trans-
lation [1] approach on the context-free grammar that results from the syntax module
composition which is then decorated with the semantic actions specified in the remain-
ing modules.

The resulting compiler/interpreter is mainly composed of two parts: i) a front-end
that parses the source files written in the new language and generates the classes that will
compose the abstract syntax tree (AST) and the AST itself and ii) a type-driven back-
end that attaches (through aspect-oriented programming) the semantic actions specified
by the developer to the classes composing the AST and traverses the AST to carry out
all the compilation/interpretation phases.

Front-End Generation. To render the language definition extensible and sectional we
adopted the parsing expression grammars (PEGs) [9] and the Rats! [12] an extensible
parser generator that works on these kind of grammars. PEGs look similar to context
free grammars but they are not ambiguous: if a string parses, it has exactly one valid
parse tree and it is always possible to write a recursive-descent parser running in linear
time (the pakrat parser [12]).

The compiler generation procedure starts by collecting all grammar productions con-
tained in the modules with role syntax and by translating them in Rats! modules that
define the parser for the new language. The tool builds a class (a sort of empty skeleton
to be filled later by the back-end) for each nonterminal of the generated grammar; such
classes will be used to instantiate the nodes of the AST accordingly to the grammar of
the defined language.
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The most natural way of representing an AST is to model the language constructs
as a class hierarchy with general abstract classes like Statement and Expression, and
specialized concrete classes like Assignment and AddExpression. In our case, all non-
terminals are modeled as abstract classes and the productions permit to specialize them
in concrete subclasses. All nonterminals have a common superclass, called AbsNode,
containing the fields and methods common to all nonterminals; this is refined in con-
crete classes representing the nonterminals and containing their own inherited and syn-
thesized attributes [1].

Semantic Back-End Generation. The semantic actions associated to a nonterminal are
appropriately injected into the AST node representing such nonterminal. Once all the
semantic actions related to every compilation/interpretation phase are injected, the com-
pilation/interpretation process can start. Each phase is associated to a specific visit()

method and will be carried out during the AST traversal by calling such method on each
node.

The evaluation carried out at each node is both type-driven (i.e., associated to the
corresponding nonterminal) and context-driven (i.e., related to the semantic action as-
sociated to the position of the nonterminal in a given production; a nonterminal can
occur in several positions and in each position can be decorated by a different semantic
action). Therefore, the code of the method invoked during the visit will change on a per
node basis (Polyglot [20] has similar necessities solved by delegation). AspectJ [15]
represents the perfect tool to realize the required context-driven adaptation of the AST
nodes. The code of the semantic actions associated to each nonterminal is automatically
woven into the method invoked during the tree traversal accordingly to the type of the
node, to the node position in the AST (and consequently the position the corresponding
nonterminal has in the applied production) and to the compilation/interpretation phase
(that is, the role we are effectively playing). By using this approach, semantic roles are
implemented without modifying the classes of the AST nodes and the whole role can
be easily plugged and unplugged. This context-adapting visit() method implements
a sort of aspect-oriented modular visitor pattern [22] that permits to avoid the well-
known expression problem [27]; with respect to Oliveira’s [22] proposal, this has also
the benefit of reducing the necessary casts.

In detail, a pool of aspects is created for each role (or compilation/interpretation
phase if you prefer). Such aspects wrap up the pieces of code that should be attached
to the method called during the AST traversal. Each collection of aspects contains also
a special element called driver aspect that drives the entire compilation/interpretation
phase and the switch from a phase to the following; the mechanism is quite simple:
the generated compiler/interpreter has a hook in its main program (a dummy method
invoked just after the tree construction, that permits to put in evidence a join point).
This hook is used by the driver aspect as an anchor where to hook up the AST visit()

method for a given compilation/interpretation phase (woven before the method call)
and the code to switch to the next phase (woven after the method call). At each phase,
the AST traversal depends on a flag attached to each node: if the flag is unmarked the
node and its children are skipped during the visit; normally all the nodes are marked
for the visit. The $suspend primitive unchecks the corresponding node for the current
phase and a special aspect is created to be used when resuming; the $resume primitive
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represents a join point where such aspect is woven to permit the belated visit of the
AST. Methods and fields defined in endemic slices are wrapped in static classes and
imported by all the generated aspects and classes. These fields are initialized before
the AST traversal starts and the implemented services are available during the whole
compilation procedure.

To establish an order among the compilation/interpretation phases as expressed by
the roles keyword, we exploit the advice precedence feature of AspectJ that permits to
specify in which order to apply the advices matching the same join point. In particular,
in the main procedure we set the order in which the driver aspects are woven into the
dummy methods.

5 Related Work

Several works share Neverlang’s goals. JastAdd, xText and Polyglot are the most
pertaining.

JastAdd. The JastAdd [8, 14] system enables open modular specifications of exten-
sible compiler tools and languages. JastAdd is an extension to Java that supports a
specification formalism called rewritable circular reference attributed grammars.

JastAdd and Neverlang share a very similar object-oriented implementation of
the AST [8]. Moreover, they both adopt aspect-oriented programming to extend the
language behavior by injecting methods and fields in the AST nodes. On the other
side, in Neverlang the AST nodes and their connections come after the grammar
productions whereas in JastAdd they can be user-defined granting a major flexibility
but the generated code can bloat.

JastAdd adopts reference attributed grammars, i.e., a semantic action in q can refer
to an attribute of an unrelated nonterminal r. PEGs, adopted by Neverlang, do no
support this feature but it can be simulated by saving r in an external data structure
(through an endemic slice) during the AST visit (as we do to deal with the attributes).

In JastAdd each declared behavior rewrites the AST tree nodes giving the opportu-
nity to add or delay a phase of compilation; behaviors are similar to Neverlang roles.
Even if Neverlang’s modularity (roles) is not limited to compiler phases but straddles
the whole compilation/interpretation process via the endemic slices.

Polyglot. Polyglot [20] is an extensible compiler framework that supports the creation
of compilers for Java-like languages. Polyglot relies on an extensible parser genera-
tor that permits to express the language syntactical extensions as changes to the Java
grammar.

Polyglot extensibility is supported by delegation. Each compilation phase is sup-
ported by a delegate object present in each AST node type; the delegate object is appro-
priately replaced in each extension.

Neverlang and Polyglot share similar goals, i.e., supporting the development of
syntactical and semantical extensions to a programming language but Polyglot is lim-
ited to Java. Besides, Polyglot extensions are just source-to-source translations from
the extended language to pure Java. Modularity and reusability are issues that Polyglot
does not face.
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xText. xText is an Eclipse plug-in that provides a framework for the development of
domain-specific languages. It is tightly integrated with the Eclipse modeling frame-
work [26] to provide a language-specific IDE.

Like JastAdd the user is free to define the relation between grammar productions
and AST nodes but each parser rule will create a new node in the AST. The language
meta-model describes the structure of its AST.
xText generator leverages the modeling workflow engine from Eclipse modeling frame-
work technology and the code is generated from the meta-model created by the parser;
the meta-model is similar to the Neverlang semantic back-end.

The framework gives the opportunity to reuse existing grammars and existing meta-
models to implement the back-end for different languages. However the framework
seems oriented to infer a model from a text and to translate it to an other model (model-
driven development) rather than to create real compilers. A similar approach (model-
driven) is also provided by Frag [28].

To recap, the main difference, that evinces from this comparison, is that Never-
lang focuses on modularity and reusability of the compiler units; in Neverlang the
developer can easily extend and mix existing languages to define new languages with
working compilers/interpreters. Moreover, by compiling Neverlang programs we get
real compilers/interpreters for programming languages completely independent of the
language used to implement the compiler (Java in our case) and not (source-to-source,
model-to-model, . . . ) translators that limit the implemented programming language to
syntactic extensions of the host language.

6 Conclusions

In this paper we have introduced Neverlang: a framework to describe new program-
ming languages as the composition of programming features from existing program-
ming languages and to generate the compiler/interpreter for the new language by reusing
previous implementations. Moreover we have shown how Neverlang can be used to
mix up programming features from Python (list comprehensions) and Linda (coordina-
tion) to form a multi-paradigm programming language and showed how its implemen-
tation can be easily changed from a thread-based tuple space to a RMI-based one.

Currently an incremental parser (similar to the PetitParser [24]) is under develop-
ment, the idea is to drop the PEG-based parser in favor of a more flexible parser that
will permit to avoid of regenerating the whole parser when a slice is added or removed
from the language. This would permit to change the behavior of a running system, for
example, in the Linda+Python case study we could change the tuple space implemen-
tation from one version to another on-the-fly. Also the implementation of some well
known languages like Java and Python is under development as well as the improve-
ment of the composition mechanism to support a finer decomposition for the feature
implementation and to ease the mix up of different interpretation/compilation philoso-
phies (e.g., monadic and traditional interpretation).

Acknowledgments. The author wishes to thanks Ivan Speziale and Davide Poletti that
worked on the Neverlang implementation; without their help Neverlang would be
a nice empty box.
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