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ABSTRACT
Service-based software systems could require to evolve during their
execution. To support this, we need to consider system evolving
since the design phase. Reflective Petri nets separate the system
from its evolution by describing it and how it can evolve. How-
ever, reflective Petri nets have some expressivity limits and render
overcomplicated the consistency checking necessary during service
evolution. In this paper, we extend the reflective Petri nets approach
to overcome such limits and show that on a case study.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Coding Tools and Techniques—
Petri Nets; D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—Extensibility

General Terms
Reflection, Software Evolution and Web Service

Keywords
Reflective Petri Nets, Service Composition, Adaptive SOA

1. INTRODUCTION
Since the introduction of the web service technology, building up

a software system has turned into composing those services which
implement application and business process in a distributed envi-
ronment [1,21]. Services exist on the Internet openly and indepen-
dently, and cooperate with each other through composition. Each
service exposes its interface to the other services but they could be
different and incompatible and also how the client want to use the
service can change from time to time. Moreover, a system com-
posed by services must be aware of changes in its environment and
adapt and evolve according to such changes and to functional or
nonfunctional requirements. Such kind of a system is called adap-
tive service-based software (ASBS) system [18]. In its lifecycle,
the system behavior evolves as soon as the changes to environment
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or customer requirements occur. How to analyze, design and val-
idate the system and its behavior during the evolution is currently
an open issue [12, 14].

As services are running in a dynamic and open environment,
they should be able to dynamically evolve. Since how the sys-
tem evolves during its execution is unpredictable, it is necessary to
consider the evolution since the earlier stages of service develop-
ment by considering it as part of service behavior. Mostly all for-
mal methods like process algebra [9] and Petri nets [7] only model
the system and its state without considering its evolution, when the
system evolves, we have to re-model it. This breaks the relation-
ship among the system before and after its evolution (no history
available), and triggers problems in adapting the operations when
evolving. To solve these problems, we can take into consideration
the design of redundant paths for core parts [20] but this compli-
cates the system and increases its running load. A more promising
approach is to separate the evolution from the system itself and
apply it when necessary. Reflection [10] technology is a mecha-
nism to realize such a separation, and it is defined as the activity
performed by an agent when doing computations about itself. Re-
flective Petri nets (RPN) [4, 5] is a Petri Nets based formalism that
closely follows the characteristics of a reflective framework. RPNs
can consider the requirement from system evolution at design-time
and model the system and how it can evolve. RPNs satisfy the mod-
eling needs of an ASBS system from the point of view of dynamic
evolution.

When RPN simulates the evolutionary process of an ASBS sys-
tem, we can check its consistency [13] by simulation models to
ensure its correct running for on-line evolution. In RPN, the first
layer is represented by a traditional place/transition Petri net (PN)
modeling the software system prone to be evolved. The controlling
construction of the software system is described by traditional PN
flexibly, so we could check its controlling consistency by validat-
ing weak termination, appropriate termination, and dead activities
of nets. Unfortunately RPN is too limited to easily deal with the
complexity of the message structure and influences its data stream
consistency. For example, the evolution of service composition
could imply the deletion of service operations then we should check
whether there are services that take the output of the removed oper-
ations as input but tokens cannot express the structure and content
of a message, so it is very hard to check its data stream consistency.
To tackle this issue we have to adopt a more expressive formalism
to model service interface.

Compared with traditional PN, colored PNs [8] seem the perfect
choice: more expressive than the place/transition PNs by adding
colors and still a PN-based formalism that will limit the changes
to the overall reflective PN model, and applied in modeling ser-
vice composition system widely [15, 16, 19]. In fact the neces-
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Figure 1: The architecture of the Colored reflective system.

sary changes should only affect how the reification is built and how
the meta-level interacts with the base-level. This paper takes col-
ored PNs as the base-level model, describes changed reification and
interactions between base and meta levels, and proposes colored
reflective Petri nets (CRPN) model. We use CRPN to model an
ASBS system by giving concrete examples, and check controlling
and data stream consistency for the system based on CRPN.

The rest of the paper is organized as follows. In Sect. 2 we in-
troduce the reflective Petri net model to get the reader acquainted
with the used terminology. In Sect. 3 we show our case study and
highlight the limits of the reflective Petri nets. In Sect. 4 we show
how the model is extended and apply the novel model to the case
study. In Sect. 5 we give the consistency checking method by ap-
plying the novel model and proof of proposed theorems. In Sect. 6
we compare some related works with ours. Finally in Sect. 7 we
draw our conclusions.

2. BACKGROUND
Reflective Petri-nets are structured into two logical layers. In

the first layer, called base-level, runs a PN which models the sys-
tem prone to be evolved, also called base-level PN; whereas in the
second layer, meta-level runs the evolutionary meta-program ac-
cording to the reflection mechanism. The reflective framework rei-
fies the base-level PN into the meta-level as marking of a subset
of places, called base-level reification. The basic operations on the
base-level reification are part of the evolutionary interface, and a
valid sequence of calls to them is called evolutionary strategy; sev-
eral strategies compose the meta-program.

The evolutionary strategies in the meta-level drive the evolution
of the base-level PN when certain events occur. Entities on the
meta-level perform computations on entities residing on the lower
level. The reflective framework, realized by a PN as well, is re-
sponsible for really carrying out the evolution of the base-level PN
at the meta-level. Meta-level computations in fact operate on a rep-
resentative of the lower-level, called reification. The base-level PN
reification is defined as a marking of the reflective framework, and
is automatically updated every time the base-level Petri net enters a
new state. The reification is used by the meta-program (in the spe-
cific by the evolutionary strategies) to observe (introspection) and
manipulate (intercession) the base-level PN.

Each change to the reification is reflected on the base-level PN at
the end of a meta-computation (shift-down action), i.e., the base-
level PN and its reification are causally connected, the reflective
framework being responsible for that. According to the reflective
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Figure 2: The workflow of the on-line shopping system.

paradigm, the base-level PN runs irrespective of the meta-program,
being not aware of the existence of a meta-level. The meta-program
is implicitly activated (shift-up action), and a suitable strategy is
then put into action, under two conditions: i) either when the base-
level PN model reaches a given configuration, or ii) when trig-
gered by an external/unpredictable event. The occurrence of such
an event is modeled by putting a token in a given place.

Intercession on the base-level PN is carried out in terms of a
minimal set of basic operations (the evolutionary interface), that
permits any kind of base-level evolution to be emulated, both at
structure (topology) and marking (current state) level: the meta-
programmer can add/remove places, transitions and arcs, and freely
move tokens all over the base-level PN places. The evolution-
ary strategy specifies arbitrarily complex transformation patterns
for the base-level Petri net. The evolutionary strategies can be de-
signed as Petri nets or by using an CSP-like formalism. Evolution-
ary strategies have a transactional semantics: either they succeed,
or leave the base-level PN unchanged.

3. CASE STUDY: ONLINE SHOPPING.
Let us consider an Online Shopping System composed of cus-

tomer management, goods management, order management and
shipping management. The main business workflow, realized by
composing these services, is shown in Fig. 2. Following this work-
flow, a customer searches goods on-line, and chooses one to add
into his shopping cart. Once goods have been chosen, he goes to
place the bid, pays for them, chooses how to get them and fills the
shipping address in. Once finished, the corresponding order will
be generated and sent to the on-line shopping site. The clerk at the
shop gets the ordered goods and arranges with a shipping company
to send the goods according to the customer requirements.

The described workflow is intentionally naïve and does not sup-
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port the shopper in checking if the goods available in the warehouse
are enough to cover the order (inventory management) and when
they could be shipped. To supports this feature, the system needs to
evolve by composing with an ad hoc web service. In our example,
to support the inventory management service, we have to adapt the
existing on-line shopping system, by introducing the service before
the shipping service in the main workflow.

The new service inventory management should check the quan-
tities of the goods available in the warehouse and if they are suffi-
cient to satisfy the client’s order, the workflow continues to ship-

ping; otherwise, it should freeze the order until enough goods are
available in the warehouse and only then should unfreeze the order
and deliver the goods.

Let us show how the RPNs can be used to model, check its con-
trol and data stream consistency, and then adapt the on-line shop-
ping system. In this way we could safely evolve the workflow and
only when we are sure to succeed updating the real system. As done
in [7], the on-line shopping system is mapped into a PN model as
follows:

1. The system workflow is represented as a P/T Petri Net.
2. Tokens model the messages exchanged among the services.
3. Transitions model the operations. An operation takes its in-

put messages and produce its output messages through places
called in-places and out-places respectively.

4. The connections between transitions, internal places and arcs
are used to deal with the control flow.

Fig. 3(a) shows the PN model for the workflow in Fig. 2, and
the PN in Fig 3(b) models the inventory management service. In-
place and out-place of operations are represented as ai j and ao j
respectively while the internal places are denoted as ap j.

According to the definition of RPN, we can use an evolution-
ary strategy to compose services together and solve possible inter-
face mismatches. The strategy, firstly, should add two operations
FreezeOrder and UnfreezeOrder to the on-line shopping service
then it will connect the services involved in the composition (in-
put and output interfaces of CheckInventory, output interface of
PayOrder, AnnounceFreeze, AnnounceUnfreeze and the input in-
terface of Shipping, FreezeOrder, UnfreezeOrder). It verifies the
compliance of the input interface of CheckInventory with the out-
put interface of PayOrder and the compliance of the output inter-
face of DecreaseInventory with the input interface of Shipping.
If we compose these two services together, their interaction can be
modeled as follows.

The on-line shopping service sends out the Order message; the
inventory service receives the message and checks the inventory
according to the goods id listed in the order:

– if the goods are available, it decreases the amount of the
goods in the warehouse and the flow passes to the on-line
shopping service that delivers the goods (shipping);

– otherwise it would send the AnnounceFreeze message but
no operation in the on-line shopping service can receive and
process it; consequently, the inventory service cannot receive
any feedback and the flow cannot run correctly.

When composing two web services together as shown in Fig. 3, we
have to check its control and data stream consistency for its correct
running after the composition. The connection between two ser-
vices satisfies control consistency when the resulting PN passes the
reachability test, i.e., no dead nodes and no deadlocks are present.
Instead, to check the data stream consistency we have to consider:

1. If the new service adds new operations (e.g., AnnounceFreeze)
are their output correctly consumed by the old service?

2. Are the data used in the old system integrated with the new
service? For example, could Order be marked as frozen?

3. Is there any interface mismatch between the connections of
the services prone to be composed?

To consider the above questions, we have to analyze the semantics
of the composite service, but traditional PNs offer a quite limited
expressive power to describe such interfaces and the data the ser-
vices share; in particular we cannot get detailed information about
the type and value of the shared data. A (quite cumbersome) ap-
proach could be to code all the possible values on the number of
tokens necessary to fire the corresponding transition. Although this
solution is feasible it would increase the number of places and as
a consequence the consistency checking will need more space and
will become more complex. A more reasonable approach would
consist in upgrading the formalism used to model the base-level
from P/T PNs to colored Petri nets [8].

4. COLORED REFLECTIVE PETRI-NETS.
As showed in the previous section, modeling a composite service

with a P/T PN introduces an undue complexity (a larger number of
places and transitions, a scarce readability and tractability of the
model, limited semantics checks, . . . ) to deal with, and, as a con-
sequence, this hinders also its evolution (to compose a system with
a new service implies to analyze and manipulate an excessively
large PN and to sacrifice some checks). A more abstract repre-
sentation of the exchanged messages will reduce the complexity of
the model and of the corresponding evolutionary strategy. Colored
Petri nets [8] extend Petri nets with the primitives for the definition
of the data types (color) and the manipulations of data values.

Figure 4 shows the evolutionary framework from [4,5] modified
to deal with base-level systems modeled by colored Petri nets. The
model performs a sort of concurrent-rewriting on the base-level,
which is reified as a marking of the evolutionary framework. The
places having prefix BLreif belong to the base-level reification,
whereas those having prefix EvInt belong to the evolutionary inter-
face. The basic color classes and initial marking need to be instanti-
ated to establish a casual link between the evolutionary framework,
the base- and the meta-level.

4.1 Color Definition.
Reification is an essential capability of all the reflective models.

When the base-level system enters into a new state, the base-level
reification is updated accordingly. The evolutionary meta-program
uses the base-level reification to observe and manipulate the base-
level system. Each change to the reification will be reflected on
the base-level system at the end of a meta-program iteration. The
meta-level maintains a set of data structures reifying the base-level
computation. In colored reflective Petri nets, the reification is rep-
resented by a colored marking on a group of special places repre-
senting the places, transitions, marking and colors of the colored
PN in the base-level.

Compared with PN, colored Petri nets have tokens with an alge-
braic structure. On one hand, this permits to simplify the base-level
PN when the passed information has a relevance; on the other hand
the reification of the marking in the meta-level must be adapted to
deal with such an algebraic structure. As a consequence the reflec-
tive operations must be adapted as well. In the next, we will show
how the reification and the operations on it (the evolutionary inter-
face) have been extended to support colored PN in the base-level.

Letting BL: (Σb, Pb, Tb, Fb, Cb, Gb, Eb, Hb, Πb, Mb
0) be the

base-level colored PN according to [8]. The basic color classes
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Figure 3: Services composition with a case of interface mismatch.

used in the reification are:

C1 : NODE = Place︸ ︷︷ ︸
Pb∪UnNamedP

∪ Trans︸ ︷︷ ︸
Tb∪UnNamedT

∪{Null},

C2 : ArcType = i/o ∪ h,

C3 : NodeColor = Cb(Place) ∪ Gb(Trans) ∪ Eb(Trans).

The class NODE is partitioned in three groups: Place, Trans and
Null. Place is Pb, i.e., the set of the base-level places, and Un-
NamedP that contains the places that might be added to the base-
level without being explicitly named. The structure of Trans is
analogously defined. The class ArcType defines two types of arcs,
input/output and inhibitor. The definition of these two classes does
not differ from the one in [4, 5]. Instead, the class NodeColor de-
fines the color set function of Place and UnNamedP and related
functions on color set. In the meta-level, the color domains for the
base-level colored PN reification are:

Cm(BLrei f |Nodes) : NODE∪NodeColor

Cm(BLrei f |Arcs) : NODE×NODE︸ ︷︷ ︸
ARC

×ArcType×NodeColor.

The color for the reified nodes defines the type and color the node
has in the base-level; the color for the reified arcs defines the type
of nodes it connects in the base-level and its expression function.

4.2 Base-level Reification
The base-level reification takes place at system start-up and it is

updated after the firing of each base-level transition. The base-level
reification is defined as follows.

DEFINITION 1. The reification rei f (BL) of a base-level Col-
ored PN BL is the marking:

Mm(BLrei f |Nodes) = ∑n∈Pb∪Tb
1 ·n+1

Mm(BLrei f |Prio) = ∑t∈Tb
(Πb(t)+1) · t

Mm(BLrei f |Marking) = ∑
p∈Pb

Mb
0(C(p)MS)+ ∑

t∈Tb

(Eb(t)+Gb(t))

Name Description
EvInt|newP Adding a (set of) place(s)

EvInt|delP Removing a (set of) place(s)

EvInt|newT Adding a (set of) transition(s)

EvInt|delT Removing a (set of) transition(s)

EvInt|newA Adding a (set of) arc(s)

EvInt|delA Removing a (set of) arc(s)

EvInt|newC Adding a (set of) colored token(s)

EvInt|delC Removing a (set of) colored token(s)

Table 1: Evolutionary interface of colored reflective PNs.

∀p ∈ Pb, t ∈ Tb :

M(BLrei f |Arcs)(< p, t, i/o,Cb(p)>) = Eb(t)

M(BLrei f |Arcs)(< t, p, i/o,Gb(t)>) =Cb(p), iffGb(t) = True

M(BLrei f |Arcs)(< p, t,h,ε >) = Hb(p, t)

M(BLrei f |Arcs)(< t, p,h,ε >) = 0

The places BLreif|Nodes, BLreif|Arcs and BLreif|Prio in defi-
nition 1 represent the base-level topology:

– the place BLreif|Nodes contains the base-level nodes and
their colors;

– the tokens in BLreif|Arcs encode the connection between
places and transitions in the base-level; e.g., the term <p3, t1,
i/o, Cb(p3)> denotes an input arc from place p3 to transition
t1, with the marking Cb(p3);

– the marking of BLreif|Prio encodes the transition priorities.
If an evolutionary strategy invokes a shift down operation, the change
operated on the markings will be reflected from the meta-level to
the base-level. The marking of place BLreif|Marking defines the
current state of the base-level, we use the color function of places,
the expression function of arcs and guard function on transitions to
denote it. The value of BLreif|Marking is initialized to the base-
level initial state.

4.3 Evolutionary Interface.
The behavior associated to the evolutionary framework is very

intuitive. Each operation defined by the evolutionary framework
is represented by a place in the evolutionary interface used by the
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Figure 4: A view of the (new) evolutionary framework

strategies to activate the operation. Such a place is labeled by the
EvInt prefix; when a token is pushed in one of these places a se-
quence of immediate transitions is triggered putting into action the
corresponding command and changing the base-level reification as
a result. There are eight basic actions summarized in Table 1. The
first six actions come unmodified from [4, 5]; the remaining two
operations are related to the colors. As an example, a token <p2>
with color C(p2) in place EvInt|newC corresponds to the command
«add the token <p2> of color C(p2) to the place».

The reflective framework carries out such actions in a consistent
and atomic way, and they may have side effects. Let us consider
for instance the addition of a new place, i.e., a token p1 is put in
the place EvInt|newP. The reflective framework, first, checks if the
transition addP complete with true, then its color is added (tran-
sition addC), at last all the surrounding arcs and their colors and
priorities are added (transition addA, addC and newPrio). If the
given command is consistent with the current base-level configura-
tion, it is carried out otherwise aborted and the model is restarted.
The restart is implemented by firing a special transitions (restarti)
and makes the whole meta-model go back to its state before last
action. Any changes to the base-level topology can cause a restart
operation, such as removing a non existing place/transition, add
an already existing place/transition, adding a disconnected arc, and
changes the color of nodes to a non existent color and so on.

4.4 Evolutionary Strategy.
When triggered by an external event, and/or when the base-level

reaches a given configuration, a suitable evolutionary strategy spec-
ifying a set of transformations on the base-level can be put in action.
To provide a convenient way to write a strategy, the framework pro-
vides a minimal CSP-like language. In this way, strategy designers
would be unaware of the details of PN formalism, and the strategy
could be automatically translated into a PN model.

5. CONSISTENCY CHECKING.
The extended reflective Petri net model supporting colored PNs

in the base level are used to model our case study (the on-line shop-
ping system) presented in Sect. 3. As explained two consistency as-

pects are of interest: the consistency of the control structure and the
consistency of the data stream. The check on the control structure
can be realized by analyzing weak termination, appropriate termi-
nation, and dead activities of nets, and by producing a symbolic
reachability graph. Unfortunately due to lack of space we will not
show this in details but we focus only on the validation of the data
stream.

5.1 Data Stream Consistency Checking.
The data stream consistency checking needs to take the internal

business rules, business process logic and constraints into consider-
ation. The problems in data stream consistency checking includes
four aspects.

– Redundant data: when a transition t produces a message d
that is not consumed by the successive transition;

– Data loss: when both both transition t and t ′ produce the
message d and t and t ′ are in different positions of the same
concurrent structure in the process;

– Missing data: when the transition t requires a message d but
none of the previous transitions produce such a message;

– Data mismatch: when two messages d and d′ are semanti-
cally but not structurally equivalent.

According to the reflective characteristics of CRPN, the evolution-
ary strategy is carried out on the system reification in the meta-
level, and then reflected on the base-level once the changes can be
considered safe. In our case, the rules verifying the data stream
consistency are:

– Rules for checking data redundancy:
∃t ∧ t•= aoi, in the process data are redundant if and only if

Cb(aoi) ∈ C3∧Cb(aoi)* ∪Cb(•t j)∧ t j ∈ post(t)

is true;
– Rules for checking data loss:

∃pi, p j ∈ C1∧•pi = •p j

∃pl , pm ∈ C1∧ pl•= pm•, pl ∈ post(pi), pm ∈ post(p j),

in the process there is a data loss if and only if

(d ∈Cb(tq)∧ tq ∈ post(pi)∧ tq ∈ pre(pl))∧
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(d ∈Cb(tr)∧ tr ∈ post(p j)∧ tr ∈ pre(pm))

is true;
– Rules for checking missing data:
∃t, in the process data are missing if and only if

(d ∈Cb(•t))∧ (d * (Cb(•n))∪Cb(n•))∧n ∈ pre(t))

is true.
In the case of a service composition system, the evolution may

concern addition, cancellation and updating of a service. Since
these operations may cause data stream inconsistency, we have to
define some rules to validate the evolution against inconsistencies.

Rules about adding a service:
1. if there is a data loss in the service we are composing, we

need to add some operations that produce the data necessary
to the new service;

2. if there is data redundancy in the service we are compos-
ing, we need to add some operations that consume redundant
data;

3. if there are missing data in the service we are composing, we
need to change how the newly added service is composed.

THEOREM 1. Let be Ω the model for an ASBS system written in
CRPN that satisfies the constraints about data stream consistency.
Let be ` an evolutionary strategies defined according to the given
rules about adding a service. If ` is running on Ω and produce Ω′

then Ω′ still satisfies the constraints about data stream consistency.

PROOF. If Ω′ still satisfies the constraint of data stream consis-
tency this means that there is data loss, missing data or redundant
data in Ω′. Let us proceed by way of contradiction and suppose that
there is a transition t ′ in Ω′, and t ′ does not satisfy the constraints
about data stream consistency.

– If the transition t ′ has a data loss issue, this means that t ′ re-
quires a message d but d is never produced by a pre-transitions
of t ′; this violates the first rule about adding a service which
requires that a new transition that produces d is added among
the pre-transitions of t ′;

– If the transition t ′ has a redundant data problem, this means
that t ′ produces a message d that is never consumed by a
post-transitions of t ′ but this violates the second rule about
adding a service, which requires to add a new transition among
the post-transitions of t ′ that consumes d;

– If transition t ′ has a missing data problem, this means that
the message d is produced by t ′ and another transition t ′′,
and t ′ and t ′′ are in different branches of the same concurrent
structure; but this violates the third rule about adding a ser-
vice which requires to adjust the positions of t ′ and t ′′ in the
process.

All the above cases are in contradiction with the hypothesis. There-
fore, if ` is running on Ω and produce Ω′, Ω′ still satisfies the con-
straint of data stream consistency. 〈 〉

Rules about deleting a service:
1. If deleting the transition t causes a data loss problem, we

need to delete all the transitions involved in the data loss;
2. If deleting the transition t causes a missing data problem, we

need to delete all the transitions involved in the problem.

THEOREM 2. Let be Ω the model for an ASBS system written in
CRPN that satisfies the constraints about data stream consistency.
Let be ` an evolutionary strategies defined according to the given
rules about deleting a service. If ` is running on Ω and produce Ω′

then Ω′ still satisfies the constraints about data stream consistency.

Name Description
Adapter|recM Receiving a message from the service

Adapter|storeM Storing a message

Adapter|transM Transforming a data message

Adapter|invokeS Invoking a service

Adapter|sendM Sending a reply message to the service

Table 2: Basic actions in adapter

The proof of Theorem 2 is similar to the one for Theorem 1, due
to lack of space the proof is omitted.

As the data mismatch problem makes the composition of two
services infeasible, interfaces of composed services must be made
compatible by building an adapter between them. To simplify the
adapter construction, Benatallah et al. [2] put forward a mismatch
pattern to capture and formalize the incompatibility. Patterns help
us in identifying the differences and develop adapters based on the
template of adaptation logic that resolves the captured mismatch.
Every adapter has five basic actions, Table 2 describes such ac-
tions. In case of different mismatch patterns, different transforma-
tion rules for Adapter|transM are defined.

The evolutionary strategy for service composition is composed
of the following steps:

1. check the compatibility of the interfaces; if they are compat-
ible the service can be directly composed;

2. find to which mismatch pattern it belongs if the interfaces are
incompatible and build up an adapter for the related pattern;

3. compose the two services through the just created adapter.
The mismatch patterns in [2] are characterized at the service proto-
col level from the structural perspective, so the adapter is also cre-
ated from the structural perspective by a number of transformation
definitions. Table 3 shows the six operators for different mismatch
patterns that can be used in definition of the adapter.

In our case study (Sect. 3), we check its consistency against the
four described problems and define the evolutionary strategy by the
following CSP program.

pattern={pay order, shipping};
isolate(pattern);
freezeorder = newTrans();
unfreezeorder = newTrans();
ap16 = newPlace();
ai15, ao15 = newPlace();
ai16, ao16 = newPlace();
t1, t2, t3, t4 = newTrans();
addArc({<ap14, freeorder, o>});
addArc({<freeorder, ap16, i>});
addArc({<ap16, unfreeorder, o>});
addArc({<unfreeorder, ap14, i>});
addArc({<ao13, recM, i>, <sendM, ai20, o>);
addArc({<ao21, recM, i>, <sendM, ai15, o>);
addArc({<ao23, recM, o>, <sendM, ai16, i>);
addArc({<ao24, recM, o>, <sendM, ai14, i>);
newColor(ai15) = freezeInfo;
newColor(ao15) = confirmFreeze;
newColor(ai16) = unfreezeInfo;
newColor(ao16) = confirmUnfreeze;
newColor(E(arc<unfreeorder, ap14, i>)) =

((pay is success)and(order is unfrozen);
flush(isolating_pattern);
delNode(isolating_pattern);

According to the mismatch pattern, the meta-program provides
a suitable adapter realized as a list of actions by using the operators
in Table 3, then the meta-program sets the local influence area of
the strategy, i.e., a portion of the base-level Petri net that should be
changed by the base-level program and need to be frozen during
the changes. After applying the evolutionary strategy, every two
incompatible services are composed through the adapter as shown
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Mismatch Pattern Operator Operator Description
Signature mismatch Equ The source message is translate into the message requested by the target interface.

Ordering mismatch Flow The source message is reordered to fit the target interface.

Extra message mismatch Hide The extra data in the source message are hidden to match the target interface.

Missing message mismatch Null The source message is padded with null data to match the target interface.

1→n message mismatch Scatter The source message is divided into several to match the target interface.

n→1 message mismatch Gather Several source messages are collapsed into a single message matching the target interface.

Table 3: Transformation Operators used in adapter

in Fig. 5. Adapter is also implemented as a service to compose in
the system.

6. RELATED WORKS
Recent development of service-oriented computing and grid com-

puting has led to the rapid adoption of service-oriented architec-
tures in distributed computing systems. Unique characteristics of
SOA, such as loosely coupling and late binding, provide the ca-
pabilities that enable the rapid composition of the needed services
from various service providers for distributed applications and the
runtime adaptation of service-oriented architectures [18]. The sys-
tem needs to be updated or extended with new characteristics dur-
ing the process of adaption, that is to say the system needs to be
self-evolving without stopping and by directly patching the soft-
ware. A good evolution is carried out through evolution of system
design information, and then through propagation of evolution to
implementation [6]. However, the evolution is supported by a few
of design/specification formalisms at present.

Mazzara et al. [11] puts forward a formalism for the modeling
and analysis of dynamic reconfiguration of dependable real-time
systems. It presents requirements that the formalism must meet,
and use these to evaluate well established formalisms and two pro-
cess algebras that they have been developing, namely, WebΠ∞

and
CCSdp. It shows a good example to represent a significant step
forward in modeling adaptive and dependable real-time systems.
However, the above modeling methods only focus on reconfigura-
tion with interference between application activities and reconfigu-
ration activities in dependable real-time systems. When we use this
method to model evolving systems, the software designer needs to
define both normal and erroneous cases in the reconfiguration man-
ager and cannot express the dynamic behavior for the evolution.

Wörzberger et al. [17] propose to simulate on a Static BPMS ap-
proach. The approach extends the static BPMS in order to support
dynamic changes of processes during execution. It represents the
dynamic modifications of workflows as Add, Remove and Itera-
tion, which can be realized by an additional dynamic layer based
on existing static BPMS. The approach uses the Web Services Busi-
ness Process Execution Language (WS-BPEL) constructs types at
run-time to modify the static BPMS. The main limitation of this ap-
proach is that it uses a small subset of all WS-BPEL construct types
and deal with problems arising from the concurrency and distribu-
tion of workflows.

Biermann et al. [3] puts forward Reconfigurable Object Nets
(RONs), which are the integration of transition firing and rule-
based net structure transformation of place/transition nets during
system simulation. RONs are high-level nets with two types of
tokens: object nets (place/transition nets) and net transformation
rules (a dedicated type of graph transformation rules). Firing of
high-level transitions may involve firing of object net transitions,
transporting object net tokens through the high-level net, and apply-
ing net transformation rules to object nets. Net transformations in-
clude net modifications such as merging or splitting of object nets,

and net refinement. This approach increases the expressiveness of
PNs and is especially suited to model mobile distributed processes.

7. CONCLUSIONS
As service oriented architectures are more and more applied, its

evolutionary aspects have been widely recognized as one of crucial
challenges. Reflective Petri nets are a formal method that could
simulate its evolving process to assure reliable running. But when
using reflective PNs to model service composition systems, the dy-
namic interaction behavior of the system could not be easily mod-
eled, the expressiveness of traditional place/transition PNs is too
limited to easily deal with the complexity of the message structure
necessary for service interaction. As a result, we propose to use
colored petri nets to model service composition system in base-
level and adjust the reflective Petri net approach to support it ac-
cordingly. Considering the interface mismatch problem in service
composition system, we define the meta-program generic schema
in Colored RPN. In order to give effective evidence, we show a
case study. The proposed approach solves the dynamic composi-
tion problem for the evolution of service oriented architectures.
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