Towards a Model-Driven Join Point Model

Walter Cazzola
Dipartimento di Informatica e Comunicazione,
Universita degli Studi di Milano
cazzola@dico.unimi.it

ABSTRACT

Aspect—Oriented Programming (AOP) is increasingly being
adopted by developers to better modularize object—oriented
design by introducing crosscutting concerns. However, due
to tight coupling of existing approaches with the implement-
ing code and to the poor expressiveness of the pointcut lan-
guages a number of problems became evident. We believe
that such problems could be solved shifting the focus of soft-
ware development from a programming language specific
implementation to application design. This work presents
a possible solution based on modeling aspects at a higher
level of abstraction which are, in turn, transformed to spe-
cific targets.

1. INTRODUCTION

AOP [1], is a relatively new paradigm introduced to better
deal with the problem of crosscutting concerns, i.e. concepts
which are orthogonal to the object definition dimension. In
the object—oriented paradigm, the implementation of these
concerns affects several classes jeopardizing the functional
modularization. Unfortunately, by using it massively makes
some issues come to light, as re—usability, scalability and
maintainability [2]. These problems are mainly due to the
tight coupling of such approaches and the implementation
language of the application. Therefore, we believe that a
solution could be found by adopting techniques based on
Model-Driven Architecture (MDA) world, to leverage the
abstraction for a language independent solution.

This paper proposes an approach to coordinate pointcuts,
advices and join points by means of appropriate models. In
particular, models are used to specify the weaving among
pointcuts and advices from both structural and behavioral
perspectives, pursuing the following AOP enhancements: 1)
a better pointcut definition by using a “semantical” descrip-
tion; 1) an advice weaving improvement enabling more com-
plex merge operations; 74) a higher possibility of concerns
specification re—use.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’06 April 23-27, 2006, Dijon, France

Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

1306

Antonio Cicchetti, Alfonso Pierantonio
Dipartimento di Informatica,
Universita degli Studi di LAquila
{cicchetti,alfonso}@di.univaq.it

2. RAISING ABSTRACTION

Shifting the focus of software development from a program-
ming language specific implementation to application de-
sign, using appropriate representations by means of models
is likely the major characteristic of MDA [3]. Accordingly
to such vision, modeling techniques can be used to select in
a more semantics—based fashion join points and weave code
into those points (i.e., a Join Point Model). Pointcuts can
be seen as queries to the code, used to weave advices into the
original code at the selected join points. A pointcut deals
with patterns that could be found in the computational flow
of the program, these patterns identify a set of join points.
Every time a certain pattern is recognized, the related join
point is picked up to apply the correspondent advice. In
the proposed approach, models are defined for pointcuts,
join points, and advices, respectively; how those different
features interact with the initial application, both from the
structural (i.e. packages, classes) and the behavioral point
of view (i.e. the computational flow), must be provided.
Concerning the structural view, we have the application
and the advice models, that we call introduction model. More-
over, we need to specify how the previous models will be
merged in a single model; in fact, it is often necessary to
refactor the application model (base) with the new intro-
duced elements (extension), and not just compose them straight
away. Hence, we describe this operation in a detailed way
by using the structural weaving model; this model relates
base and extension by introducing more abstract mappings
among the elements. In particular, we need to express three
distinct cases:) an extension element is inserted as stand
alone in the base model; i1) an extension element is linked
to some base elements; 777) an extension element is used
to modify some base elements. In the first case, we use
as base element a class with a specific stereotype, namely
mapplicationm, which is used to identify the whole base model,
and as extension what we would like to insert from the intro-
duction model; these elements will be linked with a bidirec-
tional association. In the second case, base and extension
will be linked by the desired kind of association (general-
ization, composition and so on). Finally, the elements will
be linked by a bidirectional association, decorated with two
tagged values, namely type and scope which are used as a re-
finement. The former can be insert or merge, meaning that
the extension will overwrite the base or it will update that
respectively. The latter tag is used to narrow the manipula-
tion to the set of base: attributes, methods, or both. If the
just mentioned tagged values are not specified, we assume
by default type=insert and as scope the class as a whole.

Once described the structural cooperation, we specify the
behavioral one considering pointcuts as patterns describing
computational flows and using activity diagrams for mod-
eling them. Every action name describes the semantic of a
certain operation, hence a computational flow is represented
by a sequence of actions. Between those actions we identify
the join point we want to capture by using the stereotype
mjoinpointm. We can either add new operations or substi-
tute a set of them. Finally, when describing computational
flows, it could be useful (or necessary) to specify a sort of
wildcard, manyflowm, meaning that we are not interested in
matching a particular computational flow, rather any flow
of the base can match that part of the pointcut. In this case
the advice model is described by computational flows and it
can contain context information passed during the weaving
phase by means of an object. As in the structural case, we
need to describe the weaving in a third model, namely be-
havioral weaving model; in this model we specify the links
between the join points selected by the pointcuts and the
advices by means of directed associations from a pointcut to
an advice. This link can be refined by using a tagged value,
parameter, which contains a list of arguments to be passed
to the advice.

To better explain the approach, we show the classical
logging example realized by using our model-oriented ap-
proach. Hence, we consider an ATM application to extend
with the logging non—functional concern. In Fig. 1.a there is
the introduction model that contains the logger class, i.e. the
class that will be added to the application model while the
structural weaving model (Fig. 1.b) contains the links appli-
cation elements to introduction model ones. In the figure we

Introduction_ odel
Logger Structural_Weaving Model
-id:long

-location: String
-fd:long

<< application = -
EmptyQuery 7 Introduction_Model:Logger

{type=inzertt

+readlogivaid
HuriteLog{loghsg: Stringyvoid

a) Introduction Model | b) Structural Weaving Model

Figure 1: The Logger structural models

can see that the Logger class has to be inserted as a stand-—
alone class (we have used the stereotype mapplicationm). To
weave new behaviors to the application, we specify the op-
eration flows to be modified (pointcuts) and the new flows
to be added (advices). In Fig. 2.a, we can see the flow of a
general login operation; so we read a userid, a password and
then we check the correctness of the introduced data. The
log behavior is added to the two join points identified by the
mjoinpointm stereotype on the links exiting from the opera-
tion outcome diamond. The use of the manyflowm stereotype
permits to exclusively select, in case of success, and then
log those computations that include withdrawal operations
(InsertAmount). As depicted in Fig. 2.b the advice receives
context information (represented in this case by the Opera-
tionDetails object), and describes the new operations. Fi-
nally, in Fig. 2.c there is the description of the necessary
links; thus, we relate the LoginVerificationOutcome point-
cut to the OperationOutcomelLogging advice. Any join point
can be captured by several different pointcuts but there is

1307

Lzer

Getlsemame

WerifyLogin

[success] ‘ [failure]

<< joinpoint > Sduinpnint o

UserOperations

Exception
< anyflow ==

InsertAmount

a) Pointcut Model (LoginVerificationOutcome)

Logger

._>| Crpe rationDret ails |>>(Ope nLogFiIe}e(RecordOutcomeHCIoseLogFile)

b) Advice Model (OperationOutcomeLogging)

CLoginVeﬁf\cat\oanmcu(HOpemmnOwcomeLogging}
I

{parameters=i}

c¢) Behavioral Weaving Model

Figure 2: The Logger behavioral models.

no direct association with the advices and we need just a
weaving rule to connect them.

3. CONCLUSIONS AND FUTURE WORK

We believe that the key points of this proposal are: 1) a
more semantics—related pointcuts definition. In fact, when
we describe operational flows, we are identifying the precise
meaning of what we would like to weave with advices, and
not the name of the method that performs it; 1) complex
weaving definitions, such as making a join point dependent
on the operations that follows it, included other join points;
117) independence from name conventions.

However, transforming the model toward a specific target
could be not so simple and obvious; in fact, if on one hand
the level of abstraction enables complex definitions, on the
other hand it makes the transformations difficult to specify.

4. REFERENCES

[1] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-Oriented
Programming. In 11" European Conference on Object
Oriented Programming (ECOOP’97), Lecture Notes in
Computer Science 1241, pages 220-242, Helsinki,
Finland, June 1997. Springer-Verlag.

Christian Koppen and Maximilian Storzer. PCDiff:
Attacking the Fragile Pointcut Problem. In Proceedings
of the European Interactive Workshop on Aspects in
Software (EIWAS’04), Berlin, Germany, September
2004.

Bram Selic. The Pragmatics of Model-Driven
Development. IEEE Software, 20(5):19-25, September
2003.

	1 Introduction
	2 Raising abstraction
	3 Conclusions and Future Work
	4 References

