
DRAFT
Towards a Model-Driven Join Point Model

(Extended Version)

Walter Cazzola
Dipartimento di Informatica e Comunicazione,

Università degli Studi di Milano
cazzola@dico.unimi.it

Antonio Cicchetti, Alfonso Pierantonio
Dipartimento di Informatica,

Università degli Studi di L’Aquila
{cicchetti,alfonso}@di.univaq.it

ABSTRACT
Aspect–Oriented Programming (AOP) is increasingly being adopted
by developers to better modularize object–oriented design by intro-
ducing crosscutting concerns. However, due to tight coupling of
existing approaches with the implementing code and to the poor
expressiveness of the pointcut languages a number of problems be-
came evident. Model–Driven Architecture (MDA) is an emerging
technology that aims at shifting the focus of software development
from a programming language specific implementation to applica-
tion design, using appropriate representations by means of models
which could be transformed toward several development platforms.
Therefore, this work presents a possible solution based on model-
ing aspects at a higher level of abstraction which are, in turn, trans-
formed to specific targets.

1. INTRODUCTION
Aspect–Oriented Programming (AOP) [9], is a relatively new para-
digm introduced to better deal with the problem of crosscutting
concerns, i.e. concepts which are orthogonal to the object defi-
nition dimension. In the Object–Oriented (OO) paradigm, the im-
plementation of these concerns affects several classes jeopardizing
the functional modularization. Nowadays, the number of tools sup-
porting AOP is rapidly increasing and consequently the number of
developers that use it is also increasing; by the way, using it mas-
sively, some problems come to light. The aspect–oriented code
is not well re–usable while the resulting code tends to be difficult
to scale and maintain [10, 13]. This problem is mainly due to the
tight coupling of current aspect–oriented approaches and the imple-
mentation language of the application. Therefore, we believe that
a solution could be found by adopting techniques based on MDA
world, in order to leverage the abstraction for a language indepen-
dent solution.

This paper proposes an approach to coordinate pointcuts, advices
and join points by means of appropriate models. In particular, mod-
els are used to specify the weaving among pointcuts and advices
from both structural and behavioral perspectives. Hence, the speci-
fication of the modalities pointcuts and advices are weaved together
(in the sense of AOP) is given by automated transformations over

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

the weaving models. In other words, the work pursues the follow-
ing AOP enhancements:

– a better pointcut definition by using a “semantical” descrip-
tion;

– an advice weaving improvement enabling more complex merge
operations;

– a higher possibility of concerns specification re–use.

The paper is organized as follows: the Section 2 is an overview
of current AOP approaches in which we highlight common solu-
tions and related issues; the Section 3 introduces some MDE con-
cept, and explain how to successfully use it in the AOP field; the
Section 4 speaks about related works on model weaving and AOP;
finally the Section 5 draws some conclusions and ideas for future
works.

2. AOP: POTENTIALITIES AND LIMITS
AOP is both a designing and programming technique that takes an-
other step towards increasing the kinds of design concerns that can
be cleanly captured within source code. Its main goal consists of
providing systematic methods for the identification, modulariza-
tion, representation and composition of crosscutting concerns such
as security, mobility and real-time constraints. The captured as-
pects (both functional and nonfunctional) are separated into well-
defined modules that can be successively composed in the original
or in a new application.

The basic mechanisms for separating the crosscutting concerns
in aspects and for weaving them together again are: join points, a
means of identifying join points (pointcut), and a means of seman-
tic affect at join points (advice). Join points represent well-defined
points in the execution of a program, such as method calls, object
field accesses and so on. Pointcut is a construct whose evaluation
picks out a set of join points based on given criteria. Pointcuts also
serve to define which advice has to be applied at a specific join
point. An advice defines additional code to be executed at the join
points and some rules about its applicability (e.g., before, after, and
so on). Finally, an aspect represents a crosscutting concern and is
composed of pointcuts definition and advices to be weaved at the
corresponding join points. The framework that renders possible
the proper execution of the assembled program is called join point
model (JPM).

AspectJ [8] has been the pioneer of the aspect-oriented lan-
guages and it is still one of the most relevant frameworks support-
ing the AOP methodology.

The join point model and in particular its mechanism to iden-
tify the join points (the pointcut definition language) has a critical
role in the applicability of the aspect-oriented methodology. As

stated by Kiczales in his keynote at AOSD 2003 [7], the point-
cuts definition language has the most relevant role in the success
of the aspect-oriented technology but most of them (either static
or dynamic) rely on a mechanism too tailored on the syntax of the
program to manipulate. Similar approaches suffer of several flaws
but mainly they hinder the join points matching in a more semantic
way. Let us see the problem in details1.

Dependency from the Syntax. The AspectJ pointcut language
offers a set of primitive pointcut designators, such as call, get
and set specifying a method call and the access to an attribute.
These primitive pointcut designators can be combined using logical
operations (||, &&, !) forming more complex pointcuts. All the
pointcut designators expect, as an argument, a string reassembling
(a part of) the prototype of a method or of a field declaration.

Therefore, we have just two ways for describing the join points:
i) by listing or ii) by using a combination of wildcards and naming
conventions. For example, to identify the methods in a specific
package that change in some extent the status of the system we
have to use the following pointcut (or a very similar one):

call(public * com.xerox.printers..*.set*(..))

Thus, we have to update also the pointcut when we add a new meth-
ods to the package that do not respect the naming conventions used
by the pointcut or that is not explicitly listed in the pointcut. A
problem that affects also the classic object-oriented development
but what happens when we carry out a deeper code refactoring?
Something like changing the naming convention, or changing the
package name? Simply the aspects that use such a pointcut will
not be applied anymore. Since the pointcut is tightly coupled to the
syntax of the base code, a refactoring of the base code implies a
refactoring also of the aspects applied on it. This problem is known
as the problem of the fragile pointcuts [10].

Unrecognized Join Points. Neglecting the pointcuts’ fragility as-
pect, they are still not usable in all possible contests. There are
some computational patterns (also very simple) that cannot be cap-
tured by a pointcut. The sequence of two or more calls is the most
simple example of this problem. In some extent, we can bypass
the problem of matching the join point that precedes a sequence by
extruding a new dummy method from the sequence and expressing
the pointcut in term of this dummy method. Notwithstanding this
work around, the problem still remains when the sequence is em-
bedded in the unrolling of a loop. Moreover, not always this kind
of refactoring can be applied or gives the expected results.

In general, it is difficult to use complex patterns to recognize
the join points but the difficulties increase when the pattern we are
looking for is based on the properties of the computational flow and
does not rely on the syntax of the base code itself. Something like
capturing all the join points from where starts a specific computa-
tional trace expressed abstracting from the specific code up to use
a more abstract description language (such as the natural language)
to express them. Decoupling the pointcuts from the base code rep-
resentation is essential to modularize a general and then reusable
concern and to free the aspect modularization from the syntactic
limits of the programming languages.

Dynamic Join Points Selection or Restriction. Dynamic join
points identification is neglected by most of the available join point
models. Sometimes we have the necessity of describing a set of
1Note that, in the rest of the paper we will present examples written
in AspectJ but similar consideration and examples can be done
also adopting a different AOP language.

join points in terms of other join points, e.g., all the join points that
can be reached from a given join points in two hops. To determine
this kind of join points the framework needs a deepen knowledge of
the program’s dynamic execution. The cflow2 pointcut declarator,
that allows to select all the reachable join points from the currently
matched join point, is one of the few exceptions. Notwithstanding
that cflow cannot be used as a brick to build more complex sets of
join points, e.g., by intersection, union or complement with another
set of join points. A similar selection mechanism would be the ba-
sic tool to select the join points on a more semantic way looking
after the properties more than after the program syntax.

In spite of the potentialities of the aspect-oriented methodology,
its applicability is limited from the poorness of the proposed mech-
anisms to the join points identification. As stated by Gregor Kicza-
les [7] a lot of work has still to be done to render the mechanism
more expressive and therefore usable in all contests. In his talk,
Kiczales suggested to define a more precise pointcut declarator,
named pcflow, based on the prediction of the computational flow
but we think that to widen the mechanism applicability we need an
approach more trustworthy and not based on heuristics.

3. RAISING ABSTRACTION
Shifting the focus of software development from a programming
language specific implementation to application design, using ap-
propriate representations by means of models is likely the major
characteristic of MDA [12]. The main artifacts of this emerging
technology are the models, which can be manipulated by means
of automated transformations in order to define, for instance, map-
pings towards different target platforms | just to mention one of the
most common application of model–to–model transformations [14].

Different concerns of a software system are often modeled by
means of distinct models which are kept consistent and connected
by linking the corresponding concepts among the models itself.
Weaving models [6] can be given in order to specify such corre-
spondences and to define weaving operations which merge seman-
tically similar concepts from different ones3.

Accordingly to such vision, modeling techniques can be used
to select in a more semantics–based fashion join points and weave
code into those points (i.e., a JPM). Pointcuts can be seen as queries
to the code, used to weave advices into the original code at the se-
lected join points. This work aims at lifting the reasoning from
the code to the model level. A pointcut provides with patterns that
could be found in the computational flow of the program, these
patterns identify a set of join points. Every time a certain pattern
is recognized, the related join point is picked up in order to apply
the correspondent advice. In the proposed approach, models are
defined for pointcuts, join points, and advices, respectively. Thus,
the overall development process consists in starting from an appli-
cation model, which describes the business logic, and enriching it
by weaving it with the models describing several crosscutting con-
cerns, such as data persistence, security, user auditing and so on.
At this stage, how those different features interact with the initial
application, both from the structural and the behavioral point of
view, must be provided. Concerning the structural view, we have
the application and the advice models, that we call introduction
model. Moreover, we need to specify how the previous models will
be merged in a single model; in fact, it is often necessary to refac-

2Of course, the same consideration also applies to the cflowbelow
pointcut declarator.
3Because of the ambiguity between MDA weaving concept and
AOP one, we will use model weaving for the former and simply
weaving for the latter when not clear from the context.

tor the application model (base) with the new introduced elements
(extension), and not just compose them straight away. Hence, we
describe this operation in a detailed way by using the structural
weaving model; this model relates base and extension by introduc-
ing more abstract mappings among the elements. In particular, we
need to express three distinct cases:

– an extension element is inserted as stand alone in the base
model;

– an extension element is linked to some base elements;

– an extension element is used to modify some base elements.

In the first case, we use as base element a class with a specific
stereotype, namely «application», which is used to identify the
whole base model, and as extension what we would like to insert
from the introduction model; these elements will be linked with a
bidirectional association. In the second case, base and extension
will be linked by the desired kind of association (generalization,
composition and so on). Finally, the elements will be linked by a
bidirectional association, decorated with two tagged values, namely
type and scope which are used as a refinement. The former can be
insert or merge, meaning that the extension will overwrite the base
or it will update that respectively. The latter tag is used to narrow
the manipulation to the set of base: attributes, methods, or both.
If the just mentioned tagged values are not specified, we assume by
default type=insert and as scope the class as a whole.

Once described the structural cooperation, we need to specify
the behavioral one. As said above, we consider pointcuts as pat-
terns describing computational flows; thus, we use activity dia-
grams [11] for modeling them. Every action name describes the
semantic of a certain operation; therefore, a computational flow is
represented by a sequence of actions. Between those actions we
have to identify the join point we want to capture by using the
stereotype «joinpoint». In this way, every time the flow is rec-
ognized the advice can be weaved to the desired point; we can ei-
ther add new operations or substitute a set of them. In the case
of substitutions we also need to mark the starting and the ending
points of such modification; to this purpose, it is possible to use
the stereotypes «startjoinpoint» and «endjoinpoint» respec-
tively, and the advice will replace the surrounded block of actions.
It is also possible to reuse the block inside the advice by using
the stereotype «proceed». Finally, when describing computational
flows, it could be useful (or necessary) to specify a sort of wildcard,
«anyflow», meaning that we are not interested in matching a partic-
ular computational flow, rather any flow of the base can match that
part of the pointcut. In this case, the advice model is very similar to
the pointcut one; it is described by computational flows and it can
contain context information passed during the weaving phase by
means of an object. As in the structural case, we need to describe
the weaving in a third model, namely behavioral weaving model;
in this model we specify the links between the join points selected
by the pointcuts and the advices by means of directed associations
from a pointcut to an advice. This link can be refined by using a
tagged value, parameter, which contains a list of arguments to be
passed to the advice.

To better explain the approach, we show the classical logging
example realized by using our model–oriented approach. Hence,
we consider an ATM application to extend with the logging non–
functional concern. For sake of clarity and space, we show a simpli-
fied ATM application model (Fig. 1); in that figure you can see the
representation of three kind of User, namely Administrator (of the
ATM system), Developer (of the ATM application) and Customer,
which can perform the operations proper of her/his role. Then, we

Figure 1: The ATM model

would like to log to a file some operations: for example, when a
User tries to login, when a Developer commits some updates to
the system, and when a Customer makes a withdraw attempt. This
logfile will be used by an administrator for management and secu-
rity reasons. As in the classical AOP realizations, we have to define
pointcuts, advices and join points. In Fig. 2.a there is the introduc-
tion model that contains the logger class, i.e. the class that will be
added to the application model while the structural weaving model
(Fig. 2.b) contains the links application elements to introduction
model ones. In the figure we can see that the Logger class has

a) Introduction Model b) Structural Weaving Model

Figure 2: The Logger structural models

to be inserted as a stand–alone class (we have used the stereotype
«application»). Once we have defined the refactoring, we need
to weave new behaviors to the application; we will have to specify
the operation flows to be modified (pointcuts) and the new flows to
be added (advices). In Fig. 3.a, we can see the flow of a general
login operation; so we read a userid, a password and then we check
the correctness of the introduced data. The log behavior is added to
the two join points identified by the «joinpoint» stereotype on the
links exiting from the operation outcome diamond. The use of the
«anyflow» stereotype permits to exclusively select, in case of suc-
cess, and then log those computations that include withdrawal oper-
ations (InsertAmount). As depicted in Fig. 3.b the advice receives
context information (represented in this case by the OperationDe-

tails object), and describes the new operations. Finally, in Fig. 3.c
there is the description of the necessary links; thus, we relate the
LoginVerificationOutcome pointcut to the OperationOutcomeL-

ogging advice. Any join point can be captured by several different
pointcuts but there is no direct association with the advices and we
need just a weaving rule to connect them.

In the second example, we want to change users’ authorization

a) Pointcut Model

b) Advice Model

c) Behavioral Weaving Model

Figure 3: The Logger behavioral models.

procedure enabling the biometric recognition4 non–functional con-
cern. In the structural definition we add a new attribute and two new
methods to the User class by a merge operation (see Fig. 4.b). In
fact, we want to update the source and not to overwrite it. Moreover,

a) Introduction Model b) Structural Weaving Model

Figure 4: The new login procedure structural models

we specify that we want to merge attributes and methods. In the
behavioral models, we substitute the old login procedure with the
new one. So, we model the login operation flow and we mark the
limits of the substitution by means of the «startjoinpoint» and
«endjoinpoint» stereotypes (see Fig. 5.a); in the advice model we
describe the new flow of operations, hence the biological scanning
and the verification with user data (see Fig. 5.b), that will substi-
tute the flow captured by «startjoinpoint» and «endjoinpoint».

4This is the authorization procedure based on the recognition of the
fingerprint or iris scanning.

In this case, the advice completely replaces the captured flow so
the «proceed» stereotype is not used in the advice. In this exam-

a) Pointcut Model b) Advice Model

c) Behavioral Weaving Model

Figure 5: The new login procedure behavioral models.

ple, when we weave the advice (BioDataVerification) into the
join point coming from the (StandardLoginProcedurePointcut)
pointcut, we have also to pass the actual instance of userName to
the advice; in fact, this is necessary to compare read biological data
with the one corresponding to the user in the database (see Fig. 5.c).

Starting from the previous models, we realize both the structural
and the behavioral weavings. In the former case, the transformation
of the application model is performed accordingly to what specified
in the structural weaving model, while in the latter the bindings
with the “real” names of methods involved are realized, obtaining
a more detailed model in which is represented the sequence of op-
erations (by means of a sequence diagram). Then, by using a trans-
formation supported with all the models we will be able to generate
the target code.

Compared with current approaches, we can observe some ad-
vantages; first of all, we have a more semantics–related pointcuts
definition. In fact, when we describe operational flows, we are
identifying the precise meaning of what we would like to weave
with advices, and not the name of the method that performs it. This
makes the definition more understandable, less dependent on the
implementation and easier to maintain. Besides, we are able to
define complex weaving; as mentioned in Section 2, there are par-
ticular cases where it is difficult to define pointcuts. By using this
approach, thanks to the higher level of abstraction we are able to
model all those cases; we can describe cycles in pointcuts, we can
make a join point dependent on the operations that follows it, in-
cluded other join points. Moreover, we are free from name con-
ventions. Another improvement is the precise specification of the
refactoring due to an aspect, which makes it possible to easily mod-
ify and maintain also this portion of the model (and hence of the
whole application). Finally, we have a complete independence of
the implementing programming language. This makes pointcuts
and advices applicableÂ both to code written by using different
programming languages, and to specifications different from the
one used to define them.

There are also some drawbacks. Mainly, transforming the model
toward a specific target could be not so simple and obvious; in fact,
if on one hand the level of abstraction enables complex definitions,
on the other hand it makes the transformations difficult to specify.

Besides, we could choose to transform the whole application in
a “flat” code, where aspects are no more observable. In such a
way, from one hand we make easier transformations definition, but
from the other hand we have to perform a complete code generation
every time we make changes to the model. Another choice could
be to generate AspectJ like code to apply to the real code, with the
risk to have the same problems mentioned in Section 2.

4. RELATED WORK
Several papers focused on problems related with current AOP ap-
proaches. Most of the approaches address only specific aspects
which derive from the problems described in the first part of this
paper. In particular, in [2] the authors propose a solution to improve
pointcuts and advices definitions for supporting software evolu-
tion by means of statecharts tackling mainly the problem of soft-
ware refactoring. In [10] a solution for the maintenance of the as-
pect code by mining differences between several versions. A bet-
ter pointcut definition and maintenance, which has been also the
main objective of this paper, is proposed in [13] where they pro-
pose inductively generated pointcuts; the main difference lies in
the nature of their proposal which remains intrinsecally based on
syntax–related mechanisms. Extensions of the crosscut languages
have been investigated in [5], but still the approach is not model–
based and remains dependent on the code. Regarding model weav-
ing, in [4] there is the attempt to define a meta–model for that op-
eration; in that paper, they propose to relate semantically similar
concepts from different domains by means of links, supported by
the human knowledge of that domains (and eventually heuristics).
By the way, this operation deal with the static modeling, and so
there is no information about dynamic behavior.

5. CONCLUSIONS AND FUTURE WORK
Current AOP approaches suffer from well known problems which
this paper tried to address by leveraging the abstraction of the cross-
cutting concern specification. The approach proposes to relate in-
formation encoded in different role–specific models by using model
weaving, the technique has been illustrated throughout the paper by
means of examples which showed how typical problem patterns can
be better faced with more abstraction in the join point model.

Currently, we are investigating on suitable transformations to au-
tomate the generation toward a target programming language from
the source models by using techniques already proposed by the au-
thors and validated in other domains [1, 3].

6. REFERENCES
[1] Mauro Caporuscio, Davide Di Ruscio, Paola Inverardi,

Patrizio Pelliccione, and Alfonso Pierantonio. Engineer-
ing MDA into Compositional Reasoning for Analyzing
Middleware-Based Applications. In Proceedings of the 2nd

European Workshop on Software Architecture (EWSA’05),
LNCS 3527, pages 130–145, Pisa, Italy, June 2005. Springer.

[2] Walter Cazzola, Sonia Pini, and Massimo Ancona. AOP for
Software Evolution: A Design Oriented Approach. In Pro-

ceedings of the 10th Annual ACM Symposium on Applied
Computing (SAC’05), pages 1356–1360, Santa Fe, New Mex-
ico, USA, on 13th-17th of March 2005. ACM Press.

[3] Davide Di Ruscio and Alfonso Pierantonio. Model Transfor-
mations in the Development of Data-Intensive Web Appli-
cations. In Proceedings of the 17th International Conference
on Advanced Information Systems Engineering (CAiSE’05),
LNCS 3520, pages 475–490, Porto, Portugal, June 2005.
Springer.

[4] Marcos Didonet Del Fabro, Jean Bézivin, Frédéric Jouault,
Erwan Breton, and Guillaume Gueltas. AMW: A Generic
Model Weaver. In Proceedings of the 1ère Journée sur
l’Ingénierie Dirigée par les Modèles (IDM05), Paris, France,
June 2005.

[5] Kris Gybels and Johan Brichau. Arranging Language Fea-
tures for More Robust Pattern-Based Crosscuts. In Proceed-
ings of the 2nd Int’l Conf. on Aspect-Oriented Software De-
velopment (AOSD’03), pages 60–69, Boston, Massachusetts,
April 2003.

[6] Jan Hendrik Hausmann and Stuart Kent. Visualizing Model
Mappings in UML. In Proceedings of the 2003 ACM Sympo-
sium on Software Visualization, pages 169–178, San Diego,
CA, USA, June 2003. ACM.

[7] Gregor Kiczales. The Fun Has Just Begun. Keynote AOSD
2003, Boston, March 2003.

[8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Ker-
sten, Jeff Palm, and Bill Griswold. An Overview of As-
pectJ. In Jørgen Lindskov Knudsen, editor, Proceedings of the
15th European Conference on Object-Oriented Programming
(ECOOP’01), LNCS 2072, pages 327–353, Budapest, Hun-
gary, June 2001. Springer-Verlag.

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-Oriented Programming. In 11th European
Conference on Object Oriented Programming (ECOOP’97),
Lecture Notes in Computer Science 1241, pages 220–242,
Helsinki, Finland, June 1997. Springer-Verlag.

[10] Christian Koppen and Maximilian Störzer. PCDiff: Attacking
the Fragile Pointcut Problem. In Proceedings of the European
Interactive Workshop on Aspects in Software (EIWAS’04),
Berlin, Germany, September 2004.

[11] OMG. Unified Modeling Language (UML) Specification ver-
sion 1.4 (Draft). OMG Document ad/01-02-13, February
2001.

[12] Bram Selic. The Pragmatics of Model-Driven Development.
IEEE Software, 20(5):19–25, September 2003.

[13] Tom Tourwé, Andy Kellens, Wim Vanderperren, and Frederik
Vannieuwenhuyse. Inductively Generated Pointcuts to Sup-
port Refactoring to Aspects. In Proceedings of Software en-
gineering Properties of Languages for Aspect Technologies
(SPLAT’04), Lancaster, UK, March 2004.

[14] Laurence Tratt. Model Transformations and Tool Integration.
Software and Systems Modeling, 4(2):112–122, May 2004.

	1 Introduction
	2 AOP: Potentialities and Limits
	3 Raising abstraction
	4 Related Work
	5 Conclusions and Future Work
	6 References

