
Walter Cazzola, Andrea Sosio, and Francesco Tisato. Shifting Up Reflection from the
Implementation to the Analysis Level. In Reflection and Software Engineering, Lecture
Notes in Computer Science 1826, pages 1–20. Springer, June 2000.

Shifting Up Reflection from the Implementation
to the Analysis Level

Walter Cazzola, Andrea Sosio, and Francesco Tisato

DISCo - Department of Informatics, Systems, and Communication,
University of Milano Bicocca, Milano, Italy
{cazzolajsosiojtisato}@disco.unimib.it

Abstract. Traditional methods for object-oriented analysis and mod-
eling focus on the functional specification of software systems, i.e., ap-
plication domain modeling. Non-functional requirements such as fault-
tolerance, distribution, integration with legacy systems, and so on, have
no clear collocation within the analysis process, since they are related
to the architecture and workings of the system itself rather than the ap-
plication domain. They are thus addressed in the system’s design, based
on the partitioning of the system’s functionality into classes resulting
from analysis. As a consequence, the smooth transition from analysis
to design that is usually celebrated as one of the main advantages of
the object-oriented paradigm does not actually hold for what concerns
non-functional issues. A side effect is that functional and non-functional
concerns tend to be mixed at the implementation level. We argue that
the reflective approach whereby non-functional properties are ascribed to
a meta-level of the software system may be extended “back to” analysis.
Adopting a reflective approach in object-oriented analysis may support
the precise specification of non-functional requirements in analysis and,
if used in conjunction with a reflective approach to design, recover the
smooth transition from analysis to design in the case of non-functional
system’s properties.

1 Introduction

Traditional methods for object-oriented analysis and modeling focus on the
functional specification of software systems. The relevant concepts from the
application domain are modeled using concepts (classes, object, operation, at-
tributes, associations between classes, and so on) whose scope hardly includes
non-functional requirements such as fault-tolerance, distribution, performance,
persistence, security, and so on. These are not related to properties of the entities
in the real world, but rather to properties of the software objects that represent
those entities. Such non-functional requirements play a major role in the contract
between customer and developer, and are usually included in analysis documents,
maybe in the form of labels or stereotypes attached to analysis classes. Neverthe-
less, their treatment lacks a clear collocation in traditional object oriented pro-
cesses. As a consequence, they tend to be less precisely specified in analysis, and



they do not benefit from the smooth transition from analysis to design which is
usually regarded as one of the main advantages of the object oriented paradigm.
As a consequence, non-functional requirements are only actually dealt with in
the design phase. In traditional object-oriented methods, this phase refines the
(functional) model produced during analysis. Since non-functional issues have
no separate collocation in the decomposition produced by analysis, they tend to
be addressed sparsely within the classes resulting from analysis and their refine-
ments. This is not satisfactory if one considers that non-functional requirements
are often largely (if not completely) orthogonal to functional ones. It also has
the consequence, that code related to non-functional issues is often intertwined
with “functional” code, which makes it hard to later modify or adjust the non-
functional properties of a system based on changed requirements, versions, and
so on.

The main purpose of this paper is that of illustrating in some details the
problem described above and proposing a solution. We argue that a reflective
approach is well suited to address this problem. Reflection is pivoted on the
idea of decomposing a system into a base-level and one or more meta-levels
that perform computation on the computation of the lower levels. Thus, the
domain of the meta-level is the base-level, just like the domain of the base-level
is the application domain itself. Non-functional requirements, which relate to the
workings of the system rather than the application domain, lend themselves to be
described as functional requirements of the meta-level. In traditional literature on
reflection, this approach is only adopted as a design or implementation solution.
We believe that the same ideas can be usefully “shifted up” to the analysis stage.
Just as the meta-level may be programmed in the same paradigm (and even
language) of the base-level, traditional OO concepts, notations, meta-models,
methods, and methodologies used for conventional OO analysis can be employed
in the analysis of non-functional properties once these are recast as computation
on computation. Finally, as a last advantage, if one also adopts a reflective
approach to design, the smooth transition from analysis to design is recovered.

Although reflection has gained increasing attention within the last decade,
and is now recognized as a relevant and useful feature in OO languages and
programming systems, there is still a lack of research efforts devoted to the
definition of an OO process for reflective systems. As this paper proposes an
integrated reflective approach to analysis and design, it can also be regarded as
an attempt to shed some light on what such a process might look like.

The outline of the paper is as follows. Section ?? discusses the problems
encountered in traditional object oriented analysis for what concerns the treat-
ment of non-functional requirements. Section ?? lists some major concepts from
the discipline of (OO) reflection, which provide a basis for solving those prob-
lems. Section ?? illustrates our proposal of a reflective object-oriented analysis,
discussing how non-functional requirements fit into such an approach to OO
analysis. Section ?? briefly points at related works in the discipline of reflection,
and section ?? draws some conclusions.

2



2 Non-Functional Requirements and Traditional
Object-Oriented Analysis

The fundamental step in traditional OO analysis is related to the modeling of
the application domain, and results in the definition of the collection (hierar-
chy) of classes corresponding to the relevant concepts in the domain and of the
relationships (associations) between those classes. Following a traditional, con-
solidated style of software engineering, the authors of those methods insist that
implementation details (how) should be (as systematically as possible) ignored
in analysis (which relates to what the system does). Once classes for the rel-
evant entities in the domain are found, as well as their general behavior and
relationships, the design begins based on the classes found in the analysis, that
are refined and progressively enriched with details about how they are going to
meet their specification. In this process, new classes may be added (sometimes
referred to as architectural as opposed to application or business classes) whose
purpose is that of providing a concrete infrastructure for the analysis classes to
work. One of the major benefits coming from object-orientation is the smooth
transition from analysis to design; the classes that are found in the analysis
phase often preserve their original interfaces and overall interrelationships when
they are refined into more concrete design classes, although several details are
usually added.

This general idea is of course valuable and could hardly be criticized per se.
Nevertheless, we believe that there is a missing piece, namely, the treatment
of non-functional requirements has no clear collocation in the process outlined
above. While it is sensible to postpone the treatment of how issues such as the
choice of algorithms and data structures, the same does not hold for many non-
functional requirements. Issues related to fault-tolerance, distribution, perfor-
mance, persistence, integration with legacy or pre-existing systems, networking,
authentication and security, and so on, may be as relevant to the customer as
functional ones. (Also relevant may be non-functional requirements on the pro-
cess, such as limitations to budget or time to market, development resources,
or the need to reuse COTS components, although we will not discuss this topic
in this paper). These requirements are not captured in analysis if this is con-
ceived as domain modeling alone, since non-functional requirements tend to be
expressible only in terms of properties of the system rather than real-world en-
tities. Note that many traditional methods explicitly prescribe that, after a first
description of the system, the analyst should prune all those elements of the
model that are extraneous to the real world [?]; this prescription often leads to
suppressing non-functional requirements in analysis. Some object-oriented pro-
cesses have also been proposed where analysis explicitly addresses some major
system-related issues; an example is the inception phase of the Rational Object
Process, where the overall architecture of a system is defined. Nevertheless, while
object-oriented concepts obviously apply well to the description of a system’s
functionality, we lack a similar vocabulary of concepts for most non-functional
issues (i.e., issues about the system’s workings). In other words, the problem
with non-functional requirements is that they are not easily captured by tra-

3



ditional OO concepts as employed by traditional OO modeling notations and
meta-models.

To illustrate the problem, we shall consider a classical banking system exam-
ple (of course narrowing our discussion to a very small subset of requirements).
We shall refer to UML [?] as a modeling notation, and to a typical object-oriented
process employing this notation. (Of course, several different processes have been
proposed in the literature; nevertheless, they are all similar with respect to how
they deal with non-functional requirements).

The first stage of the process is requirement analysis, which in UML is done
with use cases describing the actors interacting with the system and typical
uses of the system. For a banking system, for example, the basic actor is the
customer, and use cases include obtaining an account and deposits/withdrawals.
Use cases represent the primary contract between the software purchaser and
developer. They are not related to the system’s structure, and do not include
detailed information on the application domain, although they are intended to
drive, to a great extent, the subsequent stages of the process.

Fig. ?? describes some simple use cases for a banking system.

<<requires>>

<<requires>>

<<requires>>

initiate cashier

deposits/withdrawals

obtain account

from bank

from bank

obtain card

initiate ATM

withdrawals

Fig. 1. Bank Use Case

Requirement analysis is followed by domain analysis (sometimes simply re-
ferred to as analysis), where the basic real-world entities involved in the system
are modeled within one or more classes and related diagrams. This activity is
also referred to as domain modeling. Fig. ?? describes a class diagram for the
banking system.

The classes provided in this diagram should provide the functionality de-
scribed by use cases, although use-cases are at a higher abstraction level, i.e., a
single use case may involve a complex interaction pattern involving a possibly
large collection of objects. Sequence diagrams and other dynamic diagrams can

4



aid in describing the bundle of interactions that correspond to a use case. In this
case, obtaining an account is achieved via the create_account operation of class
Bank, and interactions with an ATM are modeled by the operations to prepare,
cancel, or commit a transaction (we do not consider cashier transactions).

Customer

name
address

issues operations on /owns

owns

issues

Account

balance
type

withdraw()

deposit()

create_account()
issue_card()

Bank

code
password

Card

introduce the card and

required operation

requires

0..*

0..*

access

actually performs the

0..*

/access

0..*

cash_on_hand
cash_dispensed bank_code

name
has

credit_limit

cancel_transaction()

prepare_transaction()

commit_transaction()<<secure>>

<<secure>>

owns0..*

disable_card()

determine which operation to perform

ATM

Fig. 2. Bank Class Diagram

In domain modeling, non-functional issues have no clear collocation. Con-
sider the problem of specifying that operations on the ATM should be secure.
While saying that money may be drawn from a bank account may result, say, in
the definition of a withdraw operation in class Account, saying that an opera-
tion is secure has no obvious counterpart in traditional object oriented concepts.
Nonetheless, this obviously is a requirement (and a fundamental one), so that
it should clearly mentioned before design. Current practice in UML modeling
typically approches this problem using free text specifications or stereotypes.
Stereotypes are adopted in UML as a mechanism to extend the expressive power
of the basic notation with new semantic concepts. In Fig. ??, the operations
prepare_transaction and commit_transaction of the ATM are marked as
«secure». Unfortunately, unless the concept of security is elsewhere formally
specified, a «secure» stereotype is hardly more than an informal, and vague, re-
minder for the designer/implementor. This non-precise specification of (perhaps
essential) system features is of course a non ideal situation, since, for example,
it reduces the effectiveness of requirements’ analysis as a contract between cus-
tomer and developer. Note that the primary role ascribed to use cases in UML,
and the fact that use cases do not capture non-functional issues, may contribute
to this situation.

Related problems occur in the transition from analysis to design. Func-
tional requirements are relatively easily translated into design elements (con-

5



crete classes, methods, attributes); this is usually regarded as one of the major
(if not the main) benefit of the object-oriented paradigm itself. The classes that
were found during analysis are usually kept through to the design stage. They
are possibly enriched with new operations and attributes, and their workings
may be augmented by “helper” or “ancillary” classes. Non-functional issues, of
course, are not tackled as easily. Of course, there is no unique and easy way
to map stereotypes (which, by definition, could have any meaning) or free text
notes into design. In some cases stereotypes are used to represent non-functional
properties which are well-known and have a standard design and implementa-
tion counterpart. This is the case of the «persistent» stereotype. In a typical
design, a Persistent_Object class is introduced, providing operations to store
an object, retrieve it from file, and so on. All classes that were labeled with the
«persistent» stereotype are then connected to the Persistent_Object via in-
heritance, so that their instances are now persistent objects, among other things.
Nevertheless, not all non-functional issues are as standard and well-known. The
fact that non-functional properties are tackled based on the functional parti-
tioning that resulted from analysis may lead to bad design especially for those
non-functional requirements that are not naturally related to any specific object,
but rather require a system-wide infrastructure.

Customer

name
address

issues operations on /owns

owns

Account

balance
type

withdraw()

deposit()

ATM

code
password

Card

requires

0..*

0..*

access

0..*

/access

0..*

cash_on_hand
cash_dispensed

credit_limit

owns0..*
introduce the card and has and checks

issues and checks

holds

Card Database

create_account()
issue_card()

Bank

bank_code
name

verify_card()
process_transaction()

the operation

actually performs the

the availability

verify_credit()

disable_card()

determine which operation to perform,

and asks the bank to authorize

withdrawal, the bank to check

required operation, and asks, on

commit_transaction()

cancel_transaction()

prepare_transaction()

new_card()
remove_card()
update_authorization()
verify_card()

Fig. 3. Refined Bank Class Diagram

6



A typical outcome of this state of facts is that code related to non-functional
issues is often intertwined with functional code in the implemented system, thus
reducing modifiability and reusability. Consider the case of ATM transactions.
Functionally, an ATM transaction is just a movement of money. Nevertheless, it
requires a complex non-functional infrastructure including concurrency control,
fault-tolerance support, authentication, and possibly more. In a traditional OO
process, the designer may receive, as an outcome of analysis, a class ATM provid-
ing one or more operations labeled by stereotypes such as «atomic», «secure»,
«reliable», and so on. The designer will probably cope with these additional
properties refining the ATM operations into a very complex activities, including
security checking and so on, and perhaps described by a state diagram with
dozens of states and transitions. The resulting implementation is necessarily one
where the basic semantics of withdraw is obscured and dispersed in the midst of
a plethora of additional code that has little to do with the movement of money
per se, thus making the ATM object harder to reuse and modify. The effects
of this problem often span multiple classes. Fig. ?? describes an arrangement
for dealing with security. An additional Card Database class has been added,
managing a database of existing cards and their passwords. Whenever the bank
issues a new card, it should notify this to the Card Database (via update_-
authorization); the same occurs, conversely, when a card expires. Also, each
transaction should involve a call to an operation of Card Database (say, ver-
ify_card) to check whether the authorization may be granted. In the example,
the ATM invokes the verify_card of Bank, which in turn will include a call
to the Card Database to check the card against the authentication information
held in the database itself.

Changes in the analysis documents (e.g., if the customer asks for a higher
level of security, e.g., security in network communication between ATMs and
banks) provide no hint as to how the system design and implementation should
be changed (e.g., changes cannot be traced easily from analysis onto design and
implementation). The lack of traceability of non-functional issues from analysis
to design is a relevant problem as it is often the case that non-functional prop-
erties of a system should be tuned for different versions, products in product
families, ports, and so on.

As a final note, we would like to note that many of the considerations above
also apply for issues which are not usually considered as non-functional (the
boundary between functional and non-functional is of course quite blurred).
For example, the problem of blocking withdrawals from an account when the
credit limit is reached could be cleanly dealt with in much the same way as
authentication, as we shall see below.

3 Object Oriented Reflection

3.1 Basic Concepts

Computational reflection (or reflection for short) is defined as the activity per-
formed by an agent when doing computations about itself [?]. The concept ap-

7



plies quite naturally to the OOP paradigm [?,?,?]. Just as objects in conventional
OOP are representations of real world entities, they can themselves be repre-
sented by other objects, usually referred to as meta-objects, whose computation
is intended to observe and modify their referents (the objects they represent).
Meta-computation is often performed by meta-objects by trapping the normal
computation of their referents; in other words, an action of the referent is trapped
by the meta-object, which performs a meta-computation either substituting or
encapsulating the referent’s actions. Of course, meta-objects themselves can be
represented, i.e., they may be the referents of meta-meta-objects, and so on. A
reflective system is thus structured in multiple levels, constituting a reflective
tower. The objects in the base level are termed base-objects and perform compu-
tation on the entities of the application domain. The objects in the other levels
(termed meta-levels) perform computation on the objects residing in the lower
levels.

There is no need for the association between base-objects and meta-objects
to be 1-to-1: several meta-objects may share a single referent, and a single meta-
object may have multiple referents. The interface between adjacent levels in the
reflective tower is usually termed ameta-object protocol (MOP) [?]. Albeit several
distinct reflection models have been proposed in the literature (e.g., where meta-
objects are coincident with classes, or instances of a special class MetaObject,
and so on), such a distinction is not relevant for this discussion and will be
omitted.

In all reflective models and MOPs, an essential concept is that of reification.
In order to compute on the lower levels’ computation, each level maintains a set
of data structures representing (or, in reflection parlance, a reification of ) such
computation. Of course, the aspects of the lower levels’ system that are reified
depend on the reflective model (e.g., structure, state and behavior, communica-
tion). In any case, the data structure comprising a reification are causally con-
nected to the aspect(s) of the system being reified; that is, any change to those
aspects reflects in the reification, and vice versa. It is a duty of the reflective
framework to preserve the causal connection link between the levels (depending
on the reflective model, this infrastructure may operate at compile- or at run-
time): the designers and programmers of meta-objects are insulated from the
details of how causal connection is achieved. Meta-objects can be programmed
in exactly the same programming paradigm as conventional computation. It is
in fact possible, and most usual, that all levels of the reflective tower be pro-
grammed in the same programming language. The fact that all the levels of the
tower be implemented in a single language qualifies, for some authors, as one of
the characterizing features of reflection proper [?].

Another key feature of all reflective models is that of transparency [?]. In the
context of reflection, this term is used to indicate that the objects in each level are
completely unaware of the presence and workings of those in the levels above.
In other words, each meta-level is added to the base-level without modifying
the referent level itself. The virtual machine of the reflective language, in other
words, enforces causal connection between a meta-level and its referent level in

8



a way that is transparent both to the programmer of the meta-level and to the
programmer of the referent level.

3.2 Reflection and non-functional properties

An application of reflection, supported by the feature of transparency, is the
(non-intrusive) evolution of a system: the behavior or structure of the objects
in a system can be modified, enriched, and/or substituted without modifying
the original system’s code. In principle, this may have interesting applications
to the evolution of non-stopping systems or systems that are only available in
black-box form. Depending on the specific support provided by the reflective
language virtual machine, the evolution of a system through the addition of a
meta-level may require recompilation or maybe done dynamically.

Another well-known application, which is the one that will be considered in
this paper, is that of adopting a reflective approach to separate functional and
(possibly several distinct) non-functional features in the design of a system (the
issue of analysis will be considered in a later section). In a typical approach,
the base-level objects may be entrusted to meet the application’s functional
requirements, while meta-levels augment the base-level functionality ensuring
non-functional properties (e.g., fault tolerance, persistence, distribution, and so
on). With reference to this partitioning of a system, in the following we will
sometimes refer to the base-level objects as functional objects and to meta-
level objects as non-functional objects. While functional objects model entities
in the real world (such as Account), non-functional objects model properties of
functional objects (to reflect this, non-functional classes may have names that
correspond to properties, e.g., Fault_Tolerant_Object).

There are several reasons why a design could benefit from such an approach.
Of course, separation of concerns (in general, hence also in this case) enhances
the system’s modifiability. Depending on whether a required modification of the
system involves functional or non-functional properties, functional objects alone
or non-functional objects alone may be modified. If the collection of data com-
prising an account changes, for example, the (functional) class Account will be
modified; if, say, a higher level of fault-tolerance is required, the (non-functional)
class Fault_Tolerant_Object will be changed.

This approach also enhances reusability in two ways: first, the very same
functional object (e.g., a Account object) can be reused with or without the
additional properties implemented by its associated meta-objects, depending on
context. Any additional feature of an object (e.g., fault-tolerance, the capability
to migrate across platforms, persistence, and so on) has an associated overhead.
In a reflective approach, all such features are not hardwired into the code of
the object itself but implemented by separated meta-objects; whenever the ad-
ditional features are not required, the corresponding meta-objects are simply
not instantiated. Note that there is a difference between the reflective approach
to persistence and that mentioned in the previous section. In the reflective ap-
proach a functional object becomes persistent because there is a meta-object

9



that transparently modifies its behavior (e.g., intercepts its constructor/destruc-
tor and complements them as to load/store an image from/to file). On the other
hand, in the non-reflective approach the non-functional object inherits methods
related to persistency which appear in its own interface, with the same status of
methods such as withdraw or deposit. These methods must be invoked (prob-
ably by the object itself) if the object is to be made persistent. The result is
that, even if inheritance may promise some form of separation of concerns, there
will necessarily be some intertwining of functional and non-functional code. For
example, the reverse operation (giving up the persistency of the Account by sup-
pressing the inheritance relation to Persistent_Object) is not usually possible.
As a second form of reuse, many non-functional properties lend themselves to
be implemented in a way that is essentially independent of the specific class of
objects for which they are implemented. As an example, support for persistence
is usually independent of the specific type of object being made persistent, as
demonstrated by the adoption of persistent classes in Java and other main-
stream OO programming languages. In our opinion, this is likely to hold for sev-
eral typical non-functional properties; some examples are provided by the works
on reflective approaches to fault-tolerance [?, ?], persistence [?], atomicity [?],
and authentication [?, ?, ?]. Based on this fact, it is reasonable to expect that
the same meta-object can be reused to attach the same non-functional property
to different functional objects.

In this paper, we are interested in considering whether the idea of com-
putation about computation can be a convenient point of view from which to
tackle the analysis of a system’s non-functional properties. As stated above, such
properties can usually be described as properties of the objects comprising the
system rather than real-world entities. It thus seems reasonable to expect that,
just as we model properties of entities in the real-world by conventional objects,
we could model properties of objects themselves by meta-objects. In a reflective
system designed along the lines described above, non-functional properties of the
system are actually treated as functionality of the meta-level, whose domain is
the software system. This homogeneity of design would yield several benefits if
shifted up to analysis. This is the subject of the following section.

4 Shifting Up Reflection to Analysis

4.1 General Concepts

Two main points from the considerations of the previous section can be high-
lighted:

¶ the property of transparency of reflection allows for functional and non-
functional concerns to be clearly separated in the design of a system, being
respectively entrusted to the base-level and to the meta-levels;

· the concept of reification, and the transparent application of causal connec-
tion by the virtual machine of a reflective programming language, allows for
meta-levels to be programmed in the same paradigm as the base-level.

10



Based on these two points we envisioned a novel approach to the treatment
of non-functional properties in OO analysis. As we discussed in section ??, non-
functional properties have no clear collocation in traditional OO analysis because
they have no counterpart in the vocabulary of OO concepts. Fault-tolerance can-
not be represented as a class, an object, an operation, an attribute, an association
between classes, and so on. Nevertheless, in a reflective approach, those non-
functional properties are represented by meta-objects. Meta-objects are objects
themselves, and lend themselves to be described in OO terms. The transition to
the meta, in a sense, transforms something that is about an object (a property
of an object) into an object itself ; it reifies a property. As a consequence of this
transformation, object properties themselves are absorbed into the scope of no-
tations and meta-models for OO modeling and hence become natural subjects
for OO analysis. This can be further illustrated by the following parallelism.
Just like the concept of reification allows for meta-levels (that implement com-
putation on computation) to be programmed in the same language as used for
the base-level (that implements computation on the domain), so it allows for the
computation performed by the meta-level to be analyzed and modeled using the
same concepts and techniques that are used to analyze and model the computa-
tion in the base level. When applied to base-level objects, these concepts are used
to described properties of the real-world entities that those objects model (e.g.,
operations model the dynamics of real-world objects, such as drawing money
from a bank account). When applied to meta-level objects, the same concepts
model properties of the software objects that represent real-world entities within
the system (e.g., operations model the dynamics of software objects, such as
their ability to be saved onto, or restored from, files). This leads us to the main
idea presented in this paper.

4.2 Reflective Object-Oriented Analysis

We argue that the considerations made insofar suggest a novel approach to
OO analysis, that we shall term reflective object-oriented analysis (ROOA).
In ROOA, the requirements of the system are partitioned, during the analysis
phase, into concepts related to the domain and concepts related to the software
system operating in that domain (i.e., into functional and non-functional). The
concepts related to the software system may, themselves, be partitioned accord-
ing to the properties they deal with (fault-tolerance, persistence, distribution,
reliability, and so on). Observe that this partitioning is orthogonal to the tra-
ditional partitioning of the functional requirements of a system, namely that
guided by OO concepts applied to the application domain. It is then natural to
speak of additional “levels” of specification, which complement the traditional
(functional) level. Note that we are not proposing a method ; it is not our as-
sumption, as for now, that this partitioning into levels be a step that must be
taken before or after traditional analysis. Our perception is simply that such
a partitioning should complement the traditional functional partitioning as as-
sumed, explicitly or implicitly, by current OO methods. Let us consider the
banking system again. The ROOA approach may affect the very first stage of

11



the process, i.e., the definition of use cases. Non-functional or reflective use cases
appear whenever there is some requirement which involves an actor performing
an operation that relates to the system rather than the application domain. An
example is a user configuring or reconfiguring the system, or adding an ATM.

ROOA anyway mostly affects class diagrams. These are also separated ac-
cording to the principle stated above (analysis of the domain vs. analysis of the
system). In doing this, we rely on the concept of meta-objects, although with
that we simply refer to an object that models a property of another object. While
we obviously refer to the same concept as found in reflection, please note that
in this discipline the term is used in a design/implementation context and not
an analysis context. Meta-objects as introduced in this paper may well be im-
plemented with conventional (non-reflective) means. A meta-object provides a
model of a software entity, just like an object is a model of a real-world entity.
Of course, just as conventional objects only model some aspects of real-world
entities (those that are relevant to the system’s functionality), in the same way
ROOA meta-objects model just some specific aspect of software entities (e.g.,
persistence, fault-tolerance, and so on). As for traditional use cases and class
diagrams, non-functional use cases should be made to correspond to interac-
tions of the external actors with meta-objects. As in reflection, we shall consider
meta-objects as comprising a different level of the system, which is largely in-
dependent of the base-level where conventional objects reside. We also allow
for several independently specified meta-levels to coexist, each describing some
particular aspect of the functional objects’ properties.

Each system of this partitioning can be analyzed using standard OO analysis
techniques, and specified within a traditional OO meta-model (e.g., the UML
meta-model). All the concepts from the standard OO vocabulary can be used
when modeling meta-levels (class, inheritance, association, attribute, operation,
and so on), albeit, as mentioned in the previous subsection, these levels are
about properties of the system rather than the domain. Of course, the workings
and semantics of the link that binds the meta-level(s) in the analysis diagrams
to the analysis base should be defined, i.e., the problem should be solved of
how the UML meta-model (or a similar model) can be enriched with a concept
corresponding, in abstract terms, to the causal connection relationship between
base- and meta-level objects in reflective designs and systems. Given the variety
of reflective models, this topic is by itself worth a thorough research. In order
to illustrate more of our approach and its consequences, in the next section we
shall make a (somewhat simplistic) proposal about how this can done.

4.3 Causal Connection in Analysis

As suggested above, we model non-functional properties in terms of computation
performed by meta-objects on the computation of functional ones. In general,
non-functional objects may perform computation on the state and/or the behav-
ior of base-level objects. In the following, we will adopt a simple convention,
and use the same name for a base-level object and the meta-object that models
its non-functional properties. In describing how meta-objects may interact with

12



Card

<<reify>> code
<<reify>> password

Customer

name
address

issues operations on /owns

owns

issues

AccountATM

Account

balance
type

withdraw()

deposit()

ATM

prepare_transaction()

cancel_transaction()

commit_transaction()

create_account()
issue_card()

Bank

code
password

Card

verify_card()

verify_availability()

invoked on 

prepare_transaction()

introduce the card and

required operation

checksauthorizes

checks

credit_limit

balance<<reify>>

requires

owns has

0..*

0..*

0..*

access

actually performs the

0..* 0..*

0..*
Bank

invoked on

commit_transaction()

invoked on both

check_credit_limit()

check_password()

check_owner()
update_authorization()

0..*

<<causal connection>>

/access

<<causal connection>> <<causal connection>>

<<causal connection>>

0..*

cash_on_hand
cash_dispensed bank_code

name

disable_card()

issue_card() and disable_card()

determine which operation to perform

Fig. 4. Reflective Bank Class Diagram

base-level objects, we will of course rely on the results from reflection, although
let us note again that we are not necessarily considering a reflective implemen-
tation.

State is of course represented by attributes of objects. Meta-objects hence
should be entrusted to observe and modify the attributes of (base-level) objects.
Thus, the meta-model should be extended to include the possibility of specifying
which attributes of an object are observed by the meta-object. For the purpose of
this paper, we shall rely on name-matching, i.e., in the examples that follow the
meta-object’s attribute x will be intended to be an image of the corresponding
attribute x in the referent. Also, we shall mark the reification (i.e., the copy of
the attribute held by the meta-object) with stereotype «reify». Of course, a
more flexible mechanism should be useful in practice, although we won’t cover
the syntactical problem of how to describe correspondences between attributes
in different levels.

Behavior in object systems is usually expressed in terms of invocations of
operations (methods). Meta-objects provide operations that integrate and aug-
ment those of their functional counterparts by wrapping (i.e., either enriching or
substituting) them. In our examples, we shall provide an external specification
of mappings between methods using text notes. These compensating operations
are assumed to be invoked whenever the referent’s operations are invoked, and
will usually perform some activity before and/or after invoking the referent’s
method. That outline above is in fact the general strategy adopted in current

13



reflective languages to augment the base-level computation. Note that there are
open problems in the discipline of reflection about the workings of both state
and behavior observation and modification (e.g., the fact that reflection breaks
encapsulation, and the problem of multiple meta-levels trapping a single base-
level method call). We shall not consider these problems here and let the reader
refer to solutions and discussions found in the reflection literature (e.g., [?,?,?]).

Given these premises, consider the statement that ATM transactions are
secure and how this would be expressed in ROOA (Fig. ??). This represents
the same classes as found in Fig. ?? (for functional objects), complemented by
classes for meta-objects performing computation on the functional objects. We
use a dotted and dashed line to represent the association between the classes
of functional objects and those of the meta-objets (which may be introduced
in UML as a «causal connection» stereotyped association), and adopt the
convention of using the same name for functional classes and their corresponding
meta-objects classes. Meta-objects are charged with managing security. A meta-
object is introduced for each ATM, Account, Card, and for each Bank.

Whenever the Bank issues a new card, or an old card expires, this operation
is trapped by the Bank meta-object, which adds the new card onto (removes the
expired card from) its database of cards, together with the associated password.
Next, whenever a transaction is prepared in the ATM (i.e., the card is inserted and
the password introduced), the ATM’s meta-object intercepts this operation and
checks the card with the Bank meta-object. The overall functioning is close to
that depicted in Fig. ?? (i.e., the Bank class of the meta-level works essentially in
the same way as the Card Database), except that a reflective approach keeps the
two levels clearly separated and avoids intermixing functional and non-functional
concerns in the base-level. Note that we can also delegate to the meta-level
issues that may be regarded as functional, for example managing the credit
limit for accounts. In the example, operation commit_transaction is trapped
by the ATM’s meta-object which executes an operation of its own (verify_-
availability) to check whether the requested operation can be performed,
again with the Bank meta-object. Since this check is influenced by the current
balance and the credit limit of the account, this information also has to be reified
at the meta-level (this is why an Account meta-object is needed). Note that, if
management of credit is done at the meta-level, the credit limit itself becomes
a meta-level information (there is no need for a credit_limit attribute at the
base-level).

Of course, it is up to the analyst to decide what should be modeled in meta-
level terms, evaluating pros and cons (just as successful mechanisms such as
exception handling are used in different ways by different designers). Even if
ROOA is strictly adopted for non-functional issues, it is rather obvious that dif-
ferent analysts and designers should disagree as to what is functional. It suffices,
here, to point out at the effects: in the system of Fig. ??, it is very likely that
many operations at the base-level have a straightforward implementation that
directly corresponds to their abstract view as could be found in requirements as
produced by the customer (e.g., a withdrawal removes money, and nothing else).

14



4.4 After ROOA: Design and Implementation

ROOA, as described above, is an analysis technique and does not include pre-
scriptions about design and implementation. Per se, the approach should yield
a more precise specification of non-functional issues. After such requirements
have been analyzed and modeled, it is up to the designer/implementor to de-
cide to what extent should a reflective approach be followed in the subsequent
stages of development. As mentioned in section ??, one of the drawbacks of
the conventional approaches to analysis is a lack of separation of concerns, in
the implementation, between functional and non-functional issues. To solve this
problem, a reflective approach could be applied in design as well, that is, the
system could actually be designed following a decomposition into levels in the
reflective sense (i.e., be designed as to have a reflective architecture). If this
is done, ROOA provides the additional benefit that a smooth transition from
analysis to design for non-functional requirements is achieved. Meta-objects are
implemented as instances of independent classes and are designed to rule over,
and modify, the behavior and state of functional objects. Carrying a reflective
approach to design allows the developer to take full advantage of ROOA, and
ideally solves all the problems we mentioned in section ?? for what concerns the
tackling of non-functional issues in system development.

If the system is designed as to have a reflective architecture, there is a further
choice to be taken, namely whether a reflective language should or should not
be used for the actual implementation. Although many popular languages (first
of all Java) include some weak form of reflection, it does not seem reasonable
to expect reflective languages to be widely adopted in (industry) development.
Nevertheless, of course, the ROOA approach (complemented with reflective de-
sign) does not require that a reflective language be used. If a reflective language
is used, the link between the non-functional and functional levels is implicitly
provided by causal connection. The specific form of reflection we relied upon
in this paper (reflection on state and behavior) was explicitly chosen because
it is fully supported by many reflective languages, including OpenC++ [?], and
OpenJava [?]. On the other hand, if a reflective language is not used in the im-
plementation, support for causal connection should be explicitly implemented
as a part of the system. It seems reasonable to suggest that the system be first
designed assuming causal connection, and then the final design be augmented
with a further stage where the causal connection mechanism itself is designed.
In this case, the infrastructure for causal connection could be tailored to the
specific needs of the application at hand.

Note that the analysis documents are of course the same irrespective of
whether the design is reflective and irrespective of the target language, so that
they could even be reused for different implementations, some using reflection
explicitly, and others using a mainstream (non reflective) language.

15



5 Related Work

Several authors within the Reflection field have considered the application of re-
flective techniques to address non-functional software requirements. Hürsch and
Videira-Lopes [?] highlight the relevance of an approach that separates multi-
ple concerns (including functionality as one specific concern, as opposed to other
non-functional concerns) both at the conceptual and implementation level. They
provide a tentative classification of the concerns that may be separated in gen-
eral software systems, and encompass the major techniques that may be used to
separate them, namely meta-programming, pattern-oriented programming, and
composition filters. Their discussion is somewhat less specific than that pro-
vided by this paper, as their concept of separation of concerns is not necessarily
achieved via the use of reflective techniques (i.e., meta-programming). Most of
other related efforts propose design approaches (rather than analysis approaches)
for structuring a software system in such a way that non-functional requirements
are addressed by a system’s meta-level(s) and thus cleanly separated from func-
tional (base level) code. As we basically aim at supporting a smooth transition
from analysis to design via reflection, reflective design approaches to the enforce-
ment of non-functional properties provide us with some hints as to what the
result of this process (that is, the resulting design) should look like. Stroud and
Wu [?] discuss a reflective approach to the dynamic adaptation of nonfunctional
properties of software systems. In their approach, security, persistence and repli-
cation properties are transparently added to an existing system (even available
in black-box form) and easily tailored to any specific environment onto which the
system is downloaded. Their paper explicitly tackles the issue of separating func-
tional and non-functional requirements and reusing meta-objects implementing
non-functional properties. Several authors addressed the transparent addition of
fault-tolerance features to a software system via reflection, e.g. [?] (that applies
channel reification to communication fault-tolerance) [?] (that employs reflective
N-version programming and both active and passive replication mechanisms) [?]
(that employs reflective server replication) and [?] (that employs reflective check-
pointing in concurrent object-oriented systems). As mentioned above, other non-
functional issues that were demonstrated to be effectively tackled via reflection
include persistence [?], atomicity [?], and authentication [?, ?, ?].

Also related to the topic of this paper is our work on Architectural Reflection
(AR) [?,?,?]. In AR, a reflective approach is adopted for reifying the software
architecture of a software system. While the definition of the architecture of a
system is usually regarded as belonging to (early) design, there are cases where
requirements on the architecture of a system should be considered from the out-
set (i.e., the need for integration with legacy systems, the need to reuse COTS
components, and so on). Architectural properties of both the whole system and
of single objects may be addressed in a reflective approach like that suggested in
this paper. Other authors have considered addressing architectural properties of
objects using a meta-level; for example, [?] proposes a reflective object-oriented
pattern for the separated definition of an object’s behaviour, and [?] proposes
the R-Rio system for system’s dynamic reconfiguration through a reflective de-

16



scription of the system’s software architecture. Also strictly related to our work
is [?], that proposes to use a reflective approach in analysis (within the context
of component-based software development), although it is clearly the intention
of the authors that reflection be kept as a basic mechanism through design to
implementation.

6 Conclusions and Future Work

This paper is intended to suggest how traditional OO analysis could be extended
in order to cope with non-functional requirements in a cleaner way than sup-
ported by current methods. It suggests that a reflective approach could be taken,
whereby a system’s specification is partitioned into levels (i.e., in way that is or-
thogonal to a functional partitioning), where the base level includes information
on the domain, and the other levels include information on the system. This
partitioning into levels could then be mapped easily onto a reflective architec-
ture where requirements related to the system are refined into meta-objects that
augment base-objects with non-functional properties. We propose the general
lines of a modified object-oriented analysis methodology (which can be applied
in any context, e.g., using UML and a method such as Objectory [?]) where
non-functional issues are dealt with in a reflective fashion.

While the approach can be used independent of the adoption of reflective
principles in design (or implementation), we also believe that this paper also
provides some useful suggestion for the design of reflective systems themselves.
To the best of our knowledge, few efforts have been made to propose extensions
or adaptations of OO methods, methodologies, and processes to OO reflective
systems. In our view, the best way to design a reflective system is that of con-
sidering it in a reflective perspective from the outset, i.e., from analysis. This
means that the analysis phase should include a partitioning of the system’s re-
quirements into levels as that proposed here.

Of course, this is just a “vision” paper. We plan to continue this work by
considering the issues raised in this paper in more detail. In particular, we would
like to progress in at least two directions. First, we will study in greater detail
how the ROOA may fit with mainstream OO notations, meta-models, methods,
and methodologies (starting from the UML meta-model and related processes
and methods). As ROOA necessarily leads to a definition of the overall structure
of the system from the first stages of analysis, it would probably fit best with
methods that include an early definition of architecture, such as the already
mentioned Rational process. We believe that a very interesting side effect of this
study would be that of clarifying, in a sense, the essence of (OO) reflection.
In other words, while traditional OO concepts have been deeply understood
and clearly formalized in notations such as UML, OO reflective concepts, in
our view, are usually perceived as belonging to a lower abstraction level than
basic OO concepts such as inheritance, associations, and so on. We believe that
reflective concepts will tend to become ever more ubiquitous in object-oriented
development, and that a precise understanding of their meaning, at the highest
abstraction level possible, is strongly needed.

17



As a second line of research, we would like to investigate how different re-
flective models apply within ROOA. We plan to investigate how the different
models apply to the specification of traditional non-functional requirements. We
believe that this will hardly lead to identifying the best model. Rather, it is likely
that non-funtional issues can be classified according to what reflective model is
required to express them most clearly (i.e., no single model applies in all cases).

Acknowledgements

This work has been supported by DISCo (Department of Informatics, Systems
and Communication), University of Milano Bicocca.

References

1. Massimo Ancona, Walter Cazzola, Gabriella Dodero, and Vittoria Gianuzzi. Chan-
nel Reification: a Reflective Approach to Fault-Tolerant Software Development. In
OOPSLA’95 (poster section), page 137, Austin, Texas, USA, on 15th-19th October
1995. ACM. Available at http://homes.dico.unimi.it/~cazzola/references.
html.

2. Massimo Ancona, Walter Cazzola, and Eduardo B. Fernandez. Reflective Autho-
rization Systems: Possibilities, Benefits and Drawbacks. In Jan Vitek and Christian
Jensen, editors, Secure Internet Programming: Security Issues for Mobile and Dis-
tributed Objects, Lecture Notes in Computer Science 1603, pages 35–49. Springer-
Verlag, July 1999.

3. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Object Technology Series. Addison-Wesley, Reading, Mas-
sachusetts, third edition, February 1999.

4. Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. Architectural
Reflection: Bridging the Gap Between a Running System and its Architectural
Specification. In Proceedings of 6th Reengineering Forum (REF’98), pages 12–1–
12–6, Firenze, Italia, on 8th-11th March 1998. IEEE.

5. Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. Architectural
Reflection: Concepts, Design, and Evaluation. Technical Report RI-DSI 234-99,
DSI, Università degli Studi di Milano, May 1999. Available at http://homes.
dico.unimi.it/~cazzola/references.html.

6. Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. Rule-Based
Strategic Reflection: Observing and Modifying Behaviour at the Architectural
Level. In Proceedings of 14th IEEE International Conference on Automated Soft-
ware Engineering (ASE’99), pages 263–266, Cocoa Beach, Florida, USA, on 12th-
15th October 1999.

7. Shigeru Chiba. A Meta-Object Protocol for C++. In Proceedings of the 10th An-
nual Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA’95), volume 30 of Sigplan Notices, pages 285–299, Austin, Texas,
USA, October 1995. ACM.

8. Scott Danforth and Ira R. Forman. Reflections on Metaclass Programming in
SOM. In Proceedings of the 9th Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’94), volume 29 of Sigplan
Notice, pages 440–452, Portland, Oregon, USA, October 1994. ACM.

18

http://homes.dico.unimi.it/~cazzola/references.html
http://homes.dico.unimi.it/~cazzola/references.html
http://homes.dico.unimi.it/~cazzola/references.html
http://homes.dico.unimi.it/~cazzola/references.html


9. François-Nicola Demers and Jacques Malenfant. Reflection in Logic, Functional
and Object-Oriented Programming: a Short Comparative Study. In Proceedings
of the IJCAI’95 Workshop on Reflection and Metalevel Architectures and their
Applications in AI, pages 29–38, Montréal, Canada, August 1995.

10. Jean-Charles Fabre, Vincent Nicomette, Tanguy Pérennou, Robert J. Stroud, and
Zhixue Wu. Implementing Fault Tolerant Applications Using Reflective Object-
Oriented Programming. In Proceedings of FTCS-25 “Silver Jubilee”, Pasadena, CA
USA, June 1995. IEEE.

11. Jacques Ferber. Computational Reflection in Class Based Object Oriented Lan-
guages. In Proceedings of 4th Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA’89), volume 24 of Sigplan Notices,
pages 317–326. ACM, October 1989.

12. Nicolas Graube. Metaclass Compatibility. In Norman K. Meyrowitz, editor, Pro-
ceedings of the 4th Conference on Object-Oriented Programming: Systems, Lan-
guages, and Applications (OOPSLA’89), volume 24(10) of Sigplan Notices, pages
305–316, New Orleans, Louisiana, USA, October 1989. ACM.

13. Walter Hürsch and Cristina Videira Lopes. Separation of Concerns. Technical
Report NU-CCS-95-03, Northeastern University, Boston, February 1995.

14. Mangesh Kasbekar, Chandramouli Narayanan, and Chita R. Das. Using Reflection
for Checkpointing Concurrent Object Oriented Programs. In Shigeru Chiba and
Jean-Charles Fabre, editors, Proceedings of the OOPSLA Workshop on Reflection
Programming in C++ and Java, October 1998.

15. Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaob-
ject Protocol. MIT Press, Cambridge, Massachusetts, 1991.

16. Luciane Lamour Ferreira and Cecília M. F. Rubira. The Reflective State Pattern.
In Steve Berczuk and Joe Yoder, editors, Proceedings of the Pattern Languages of
Program Design, TR #WUCS-98-25, Monticello, Illinois - USA, August 1998.

17. Arthur H. Lee and Joseph L. Zachary. Using Meta Programming to Add Persistence
to CLOS. In International Conference on Computer Languages, Los Alamitos,
California, 1994. IEEE.

18. Orlando Loques, Julius Leite, Marcelo Lobosco, and Alexandre Sztajnberg. In-
tegrating Meta-Level Programming and Configuration Programming. In Walter
Cazzola, Robert J. Stroud, and Francesco Tisato, editors, Proceedings of the 1st

Workshop on Object-Oriented Reflection and Software Engineering (OORaSE’99),
pages 137–151. University of Milano Bicocca, November 1999.

19. Pattie Maes. Concepts and Experiments in Computational Reflection. In Nor-
man K. Meyrowitz, editor, Proceedings of the 2nd Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’87), volume 22 of
Sigplan Notices, pages 147–156, Orlando, Florida, USA, October 1987. ACM.

20. Juan-Carlos Ruiz-Garcia Marc-Olivier Killijian, Jean-Charles Fabre and Shigeru
Chiba. A Metaobject Protocol for Fault-Tolerant CORBA Applications. In Pro-
ceedings of the 17th Symposium on Reliable Distributed Systems (SRDS’98), pages
127–134, 1998.

21. Philippe Mulet, Jacques Malenfant, and Pierre Cointe. Towards a Methodology
for Explicit Composition of MetaObjects. In Proceedings of the 10th Annual Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’95), volume 30 of Sigplan Notice, pages 316–330, Austin, Texas, USA,
October 1995. ACM.

22. Thomas Riechmann and Jürgen Kleinöder. Meta-Objects for Access Control: Role-
Based Principals. In Colin Boyd and Ed Dawson, editors, Lecture Notes in Com-

19



puter Science, number 1438 in Proceedings of 3rd Australasian Conference on In-
formation Security and Privacy (ACISP’98), pages 296–307, Brisbane, Australia,
July 1998. Springer-Verlag.

23. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, Engle-
wood Cliffs, NJ, 1991.

24. Robert J. Stroud. Transparency and Reflection in Distributed Systems. ACM
Operating System Review, 22:99–103, April 1992.

25. Robert J. Stroud and Ian Welch. Dynamic Adaptation of the Security Properties of
Application and Components. In Proceedings of ECOOP Workshop on Distributed
Object Security (EWDOS’98), in 12th European Conference on Object-Oriented
Programming (ECOOP’98), pages 41–46, Brussels, Belgium, July 1998. Unité de
Recherche INRIA Rhǒne-Alpes.

26. Robert J. Stroud and Zhixue Wu. Using Meta-Object Protocol to Implement
Atomic Data Types. In Walter Olthoff, editor, Proceedings of the 9th Conference
on Object-Oriented Programming (ECOOP’95), LNCS 952, pages 168–189, Aarhus,
Denmark, August 1995. Springer-Verlag.

27. Robert J. Stroud and Zhixue Wu. Using Metaobject Protocols to Satisfy Non-
Functional Requirements. In Chris Zimmerman, editor, Advances in Object-
Oriented Metalevel Architectures and Reflection, chapter 3, pages 31–52. CRC
Press, Inc., 2000 Corporate Blvd.,N.W., Boca Raton, Florida 33431, 1996.

28. Junichi Suzuki and Yoshikazu Yamamoto. Extending UML for Modeling Reflective
Software Components. In Robert France and Bernhard Rumpe, editors, Lecture
Notes in Computer Science, number 1723 in Proceedings of «UML»’99 - The Unified
Modeling Language: Beyond the Standard, the Second International Conference,
pages 220–235, Fort Collins, CO, USA, October 1999. Springer-Verlag.

29. Michiaki Tatsubori. An Extension Mechanism for the Java Language. Master of
engineering dissertation, Graduate School of Engineering, University of Tsukuba,
University of Tsukuba, Ibaraki, Japan, February 1999.

20


	1 Introduction
	2 Non-Functional Requirements and Traditional Object-Oriented Analysis
	3 Object Oriented Reflection
	3.1 Basic Concepts
	3.2 Reflection and non-functional properties

	4 Shifting Up Reflection to Analysis
	4.1 General Concepts
	4.2 Reflective Object-Oriented Analysis
	4.3 Causal Connection in Analysis
	4.4 After ROOA: Design and Implementation

	5 Related Work
	6 Conclusions and Future Work

