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Abstract—As the size and complexity of software systems in-
crease, a relevant part of the system overall functionality shifts
from the applicative domain to run-time system management
activities, i.e., management activities which cannot be per-
formed off-line. These range from monitoring to dynamic re-
configuration and, for non-stopping systems, also include evo-
lution, i.e., addition or replacement of components or entire
subsystems. In current practice, run-time system management
is impeded by the fact that the knowledge of the overall struc-
ture and functioning of the system (i.e., its software architec-
ture) is confined in design specification documents, while it is
only implicit in running systems. In this paper we introduce,
provide rationale for, and briefly demonstrate an approach to
system management where the system maintains, and oper-
ates on, an architectural description of itself. This descrip-
tion is causally connected to the system’s concrete structure
and state, i.e., any change of the system architecture affects
the description, and vice versa. This model can be said to ex-
tend the principles of computational reflection from the realm
of programming-in-the-small to that of programming-in-the-
large.
Keywords: Reflection, Layered Systems, Software
Architecture, Software Components, System Manage-
ment.

I. INTRODUCTION

As the size and complexity of software systems increase, a
relevant part of the system overall functionality shifts from the
application domain to run-time system management activities

such as dynamic reconfiguration, on-line monitoring, fault
detection and recovery, security, and so on. In the commercial
arena, products are widely available based on SNMP, CMIP
and other protocols [1] which address system management for
both hardware and software resources.

In our view, current practice in system management would
benefit from considering the software architecture [2] of sys-
tems, that is, the rules governing the assembly and interaction
of their constituting parts, e.g., system topology or cooperation
protocols. While architectural concepts are widely appreci-
ated by software engineers as a means to describe software
systems at a higher level than that supported by conventional
languages and development tools, and are ubiquitous in design
specifications, exploiting such concepts in run-time system
management is impeded by the fact that in current practice
architectural information is not explicit in running systems,
but implicit and scattered in the code of components.

As an example, consider a distributed system whose compo-
nents interact according to a certain protocol. While architec-
tural specifications may include a description of the protocol
in its entirety, at run-time such a description is lacking, and
each component only knows the part of the protocol it is con-
cerned with. Now consider the following system management
operations:

1. inserting a new component into the system, which entails
verifying its compatibility with the protocol and, if inser-
tion proves possible, determine when it may take place;

2. dynamically modifying the protocol.

Verifying the compatibility of the new component with the
existing protocol requires knowledge of the overall protocol.
Modifying the protocol entails modifying the various compo-
nent which participate in it. Unfortunately, since at run-time
the protocol is implicit, it is hardly possible to reason about it
(e.g., to check components’ compatibility) or modify it. In gen-
eral, in order to solve this kind of problems, the following must
hold:

1. a run-time description of the overall architecture of the
system must exist;

2. a run-time description must also exist of the state of the
system, conveying all information relevant to operate on
such architecture (e.g., to insert a new component);
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3. these descriptions must be maintained coherent with the
concrete system itself, i.e., it must be possible to observe
and manipulate the system in terms of such descriptions.

In our example, we need an entity that both knows the
protocol and tracks the state of the interaction, being able to
manipulate such information in such a way that any change
made to it be propagated to the structure and behaviour of the
system.

Using a concept from the discipline of reflection, the three
points above can be restated by saying that a description of
the software architecture and overall state of the system must
exist which is causally connected to the system’s architecture
and state. In this paper, we introduce architectural reflection,
an approach to designing software systems that applies reflec-
tive concepts to software architecture in order to fulfill this goal.

The outline of the paper is as follows. Section II introduces
some preliminary concepts in both reflection and software ar-
chitecture. Section III defines architectural reflection, includ-
ing a comparison with computational reflection and a discus-
sion of its possible applications within a software system’s life-
cycle. Section IV presents an example, and section V draws
some conclusion and presents future work.

II. PRELIMINARY CONCEPTS

A. Computational Reflection

Computational reflection or reflection is defined as the activity
performed by an agent when doing computations about
itself [3]. Behavioural and structural reflection are reflection
sub-branches which involve, respectively, agent computation
and structure (for more details see [4]).

A reflective system is logically structured in two or more
levels, constituting a reflective tower. Entities working in the
base level, called base-entities or reflective entities, define the
system basic behaviour. Entities working in the other levels
(meta-levels), called meta-entities, perform the reflective ac-
tions and define further characteristics beyond the application
dependent system behaviour.

Each level is causally connected to adjacent levels, i.e., entities
belonging in a level maintain data structures representing (or,
in reflection parlance, reifying) the states and the structures
of the entities in the level below. Any change in the state or
structure of an entity is reflected in the data structures reifying
it, and any modification to such data structures affects the
entity’s state, structure and behaviour.

Computational reflection allows properties and functionality to
be added to the application system in a manner that is trans-
parent to the system itself (separation of concerns), for details
see [5].

B. Software Architecture

The architecture of a software system is the system’s overall
structure as an organized collection of interacting components.

It is described by stating:

1. how the overall functionality of the system is partitioned
into its constituting modules, or components;

2. how such modules interact and cooperate (i.e., what con-
nectors exist between components [2]).

The description of components and connectors, in turn, omits
internal details such as algorithms and data structures, while
it conveys information related to system integration and
coordinated behaviour, e.g., interaction protocols, obligations
posed by a module on its environment, and so on. In other
words, architectural descriptions express concepts belonging
to the realm of programming in the large rather than that of
programming in the small [6].

To describe architectures we adopt a model close to that of
the Wright language [2]. Components are described by state
machines whose state and behaviour is an abstraction of
those of the concrete components (modules) which constitute
the actual system. Examples of such abstract states could be
“ready to send a message”, “ready to receive a message”,
“faulty”, and so on. The transitions are labeled by events
which modify such a state (e.g., the sending of a message).

Connectors are also described by state machines that model
interactions rather than the behaviour of modules in isolation.
The connector in figure 1 describes a simple clientjserver
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Figure 1. State machine and transition coupling
example

interaction.

The transitions of a connector between two or more compo-
nents can be coupled to transitions in such components; for
the sake of simplicity, we represent transition coupling by
labeling coupled transitions with the same event name, as in
figure 1. The dynamic behaviour of a system of components
and connectors is modeled in the usual way by the firing
of ready transitions and the rule that two or more coupled
transitions are deemed ready only if and when they are both
ready (as considered in isolation); see [7].

Based on this model, we can isolate two orthogonal concepts in
architectural description: topology and strategy.

The topology (or configuration) of a system is defined by the
collection of its components and the connectors between them
(all described by state machines). The system’s strategy is
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defined by the set of rules governing the order and time of
firing of ready transitions. Concurrent execution, as assumed
by most state machine models, is only one such strategy. Other
examples include sequential and temporized (real-time) plans.

We also define the system’s computation in the large as the fir-
ing of ready transitions and its computation in the small as the
execution of code inside concrete components. The former is
an abstraction of the latter. For example, the firing of tran-
sition “send request” may involve the execution of several op-
erations in the small, e.g., parameter marshaling, writing in
output buffers, and so on.
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Figure 2. Classic and Architectural Reflective
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III. ARCHITECTURAL REFLECTION

def. Architectural Reflection is the computation per-
formed by a system about its own software architecture.

As opposed to classic reflection, where actions are performed
on a single entity or interaction, architectural reflection
operates in the large, i.e., on the whole architecture and on
how components interact.

An architectural reflective system is structured into sev-
eral (potentially infinite) layers, called architectural layers,
costituting an architectural reflective tower. Every layer is
architecturally causally connected to the layer below, i.e., in
every architectural meta-layer entities work, called architec-
tural meta-entities, which maintain data structures reifying the
software architecture of the underlying system. Such layers
are causally connected, i.e., every change made to these data
structures reflects on the system architecture, and vice versa.
Every architectural layer reifies a description of the software
architecture of the underlying system that includes the
architectural meta-entities operating in the layers below, as
these architectural meta-entities, too, are part of the software
architecture of the system that the entities in the layer above
manipulate. Note that we use the terms “level” and “layer” to
distinguish, respectively, the levels of the reflective tower from
those of the architectural one.

Also note that the architectural reflective tower is distinct from
the computational reflective tower as classic meta-entities are
also described by the software architecture of the system,
and are therefore reified by architectural reflection. In
other words, recalling what Maes stated in [3] about com-
putational domains, the meta-entities and the architectural
meta-entities operate on different domains and particularly
the domain on which the architectural meta-entities operate
includes the meta-entities (see figure 2). Note that we use
the terms “level” and “layer” to distinguish, respectively, the
levels of the reflective tower from those of the architectural one.

Every architectural layer operates on the architecture of the
layer below being unaware of the presence and behaviour of
the layers above (i.e., the property of transparency typical
of the computational reflection still holds for architectural
one). In general, every layer of the tower accomplishes
system control tasks and adds, still on a system basis, new
functionalities to the original system (separation of concerns).

Based on our definition of topology and strategy as orthogonal
aspects of software architecture, we can further define the
definition of architectural reflection by defining topological
and strategic reflection.

def. Topological reflection is the computation performed
by a system about its own topology.

Examples of topologically reflective actions include adding or
removing components or connectors.

def. Strategic reflection is the computation performed by
the system about its own computation in the large, i.e.,
observation of the abstract state of components and con-
nectors and observationjmanipulation of the strategy.

An example of strategically reflective actions is changing
priorities associated to transitions in a priority-based strategy.

As depicted in figure 3, topological reflection can be compared
to structural reflection, as both act on the structure of the
entities they manipulate, the former operating in the large,
i.e., on the topology of the system, the latter in the small, i.e.,
on the code of a single entity. Likewise, strategic reflection

Strategic

In The Large In The Small

is like

Topological
+

Behavioural

Structural
+

ReflectionReflection

Figure 3. Reflection in the Large vs Reflection in
the Small

can be compared to behavioural reflection, as both act on
the behaviour of the entities they manipulate, the former in
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the large, by observing and modifying the strategy of the
system, the latter in the small, by observing and altering the
computational flow of a single entity.

Obviously, just as computational reflection requires ad-hoc
languages and compilers, so architectural reflection would re-
quire suitable development tools which support building com-
ponents and connectors that do not embed any assumption
about the topology or the strategy of the system where they are
employed, or, at least, provide hooks for architectural meta-
entities to override such assumptions.

A. Realizing Architectural Reflection: Who and How

In the computational reflective approach, as supported by
reflective object-oriented programming languages, structural
and behavioural reflection are usually charged to different
entities. In most models structural information is maintained
by the reflective object class, as by definition this describes
objects’ structure. Computational reflection is performed by
meta-entities which rely on structural information maintained
in classes and reify only the information that may be different
in different class instances (e.g., state). Meta-entities (be they
meta-objects [8], channels [9] or messages [10]) perform meta-
computation by trapping the normal computation of reflective
objects; in other words, each base-entity action is trapped
by a meta-entity, which performs a meta-computation either
substituting or encapsulating the base-entity’s action. This
can be done either at run-time [11] or at compile-time [12].

The parallelism between computational and architectural re-
flection depicted in figure 3 can be extended to the realization
model. Just as in the computational approach, structural
and behavioural reflection are charged to different entities,
so for architectural reflection there will be two architectural
meta-entities per system, termed topologist and strategist, in
charge of topological and strategic reflection respectively. The
topologist maintains information about topology (components,
connectors, and their state machines), while the strategist
relies on topological information held by the topologist and
reifies both the current state of components and connectors
and the specific strategy at hand.

As stated above, in order for the strategy to be subject to
manipulation, the base-level system’s strategy must lend itself
to be substituted by the strategist, just as behavioural meta-
entities encapsulatejsubstitute single actions. This implies that
the strategist must also play the role of a transition scheduler
enforcing the flow of control in the large, i.e., it must have
operations for firing ready transitions.

Topologist and strategist could be implemented as a single en-
tity for the sake of efficiency, but a separated implementation
enhances chances for design reuse (see xIII.B).

System bootstrap and shutdown can also be handled by archi-
tectural reflection, since they involve topological and strategic
actions (creation and destruction of components, activation of
initialization activities, and so on). In this case, topologist and

strategist must exist before andjor after the creation andjor de-
struction of the system.

B. Architectural Reflection Applied to System Lifecy-
cle

Architectural reflection holds the promise of providing bene-
fits for all software lifecycle activities which relate to the over-
all system rather than its components considered in isolation.
Such activities may belong to the system’s development, run-
time management, or evolution.

� Development. Architectural reflection can aid system de-
velopment in several ways, thanks to the possibility of
designing and developing architectural meta-entities in-
dependent of, and before, the architectural base-layer
system. For example, architectural meta-entities could
be used to simulate the system’s computation in the
large before developing the system itself (compare [13]);
they could support testing and debugging at a higher
level than that currently supported by programming en-
vironments (e.g., checking the system against deadlock
or other undesiderable properties of the components’
integrated behaviour). Moreover, reusing architectural
meta-entities (and hence the architecture they embody)
is a way to extend software reuse from code to design
(see [14]).

� Run-time system management. As already mentioned in
this paper, a whole range of run-time activities involve
manipulating the architecture of a system and would
benefit from a causally connected representation of such
architecture as proposed by this paper. Examples in-
clude start-up of large component-based systems, dy-
namic reconfiguration, on-line monitoring, and fault de-
tection and recovery.

� Evolution. While dynamic reconfiguration is an archi-
tectural modification which moves the system within a
space of “configurations” foreseen by its designer (e.g.,
adding a new set of modules to cope with a new user in a
mail system), the term evolution is used to indicate dra-
matic changes such as the introduction of radically new
features or the integration with other systems. In a sense,
evolution can be regarded as a “redesign” of the system
architecture (including new kinds of components or re-
casting the old architecture as a sub-architecture of a
larger system). Since, in our approach, the architectural
structure of a system is encapsulated by its architectural
meta-entities rather than being scattered over its compo-
nents’ code, evolution can effectively performed by sub-
stituting the architectural meta-entities themselves, as
discussed in the next section.

IV. AN EXAMPLE:
A DISTRIBUTED TRACK CONTROL SYSTEM

We now consider an example involving a distributed track
control system (loosely inspired by [7]). The system controls
a set of vehicles moving along a ring-shaped path formed by
a set of tracks. It is a distributed system: there is a software
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Figure 4. State machines for connectors of the
track control system

component for each track. Vehicles are not modeled by soft-
ware components: rather, each track component maintains a
flag indicating whether it is currently being run through by a
vehicle. Each track is only connected with its neighbours in
the ring.

The overall system protocol requires that tracks be reserved
before a vehicle can enter them. Tracks are only released when
the vehicle that entered them has successfully reached the next
track.

To adhere to such protocol, each track component loops
through the following steps:

1. waits for a reservation message from the previous track,
and sends an acceptance message;

2. when the vehicle arrives, sends a release message to the
previous track;

3. when the vehicle approaches the track’s end, sends a
reservation message to the next track;

4. waits for a reservation acceptance message, then allows
the vehicle to go on to the next track;

5. waits for a release message from the next track.

The state machines for components and connectors are
depicted in figure 4 and figure 5. For each connector transition
t, p and s are used to distinguish in which of the two connected
tracks the transition with that event name is coupled to t.

The overall strategy (not represented) is concurrent: ready
transitions fire in an unspecified order. Nevertheless, as
discussed in the following, the strategist must also be able
to freeze undesiderable transitions in certain situations. Its
internal representation of the strategy could be, say, the set of
enabled transitions.

The operations provided by the topologist to manipulate the
system’s topology define the class of topologies the system can
exhibit. In this specific example, we assume that the system
can be reconfigured, say, to add tracks, as long as the following
hold:

1. components and connectors behave as described by the
state machines above;

2. tracks form a ring.

free

send_reservation_request

send_reservation_acceptance
get_reservation_acceptance

get_release_message

locked

send_release_message

get_reservation_request

opted

lockedwait

busy

Figure 5. State machines for components of the
track control system

The topologist’s operations assume and preserve such con-
straints. This means, for example, that insertion of a new
track will be done by an operation that actually interposes
it between two existing ones, reconfiguring connectors to
preserve the ring structure.

In other words, the topologist’s operations define a space of
topologies and specify how the current topology can evolve
within such space. In this example, the space of topologies is
the space of all track rings.

Topological manipulations actually involve the strategist as
well. The topologist handles the effective creation of compo-
nents and connectors (via architectural causal connection),
while the strategist guarantees that the reconfiguration
performed by the topologist take place in a stable system.

In the case of the insertion of a new track (say, between
track A and track B), the strategist has to guarantee that the
system state is a consistent state to perform that operation
(for example, that B is not about to release A , which would
cause deadlock if the insertion was done before this actually
happens). In order to do so, the strategist must check the
components’ and connectors’ abstract states, and regulate
the firing of transitions (for example, any transition that can
lead the system in a non-consistent state while reconfiguration
takes place must be freezed).

Modifications of the topology which would imply moving out of
the space of topologies defined by the topologist (for example,
switching to a star organization for track components) require
substitution of the topologist itself, as it involves a change in
the set of operations performed by the topologist. Obviously,
this operation cannot be performed at the first architectural
meta-layer, because architectural meta-entities are in the
domain of architectural meta-meta-entities. In turn, such
substitution must be an operation supported by the topologist
of the meta-meta-layer, which hence defines a class of classes
of topologies.

Just as described for the substitution of components for the
base-layer system, substituting the topologist (considered as
a component of the meta-meta-layer domain), may require
cooperation between the meta-meta-layer’s topologist and
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strategist. For example, the topologist should not be substi-
tuted while it is reconfiguring the application-level system;
the meta-meta-layer strategist is in charge of guaranteeing this.

In our approach, as stated above, the strategist plays a double
role: it enforces the strategy besides observingjmanipulating
it; in other words, it must explicitly activate transitions,
or the flow of control in the large could not be subject to
manipulation (see xIII.A).

As for the topologist, the strategist provides a set of opera-
tions for strategy manipulationjobservation which depend on
the specific strategy at hand. In a real-time system, for exam-
ple, the strategist should provide operations to associate tran-
sitions to specific clock values or timelines.1 The strategist’s
operations define a class of strategies and govern the evolution
of the current strategies within such space. This space can be
abandoned by the system’s strategy only if the strategist itself
is substituted by the architectural meta-meta-entities.

V. CONCLUSION AND FUTURE WORK

This paper introduces the basic concepts and rationale for a
novel approach to designing software systems which draws
from recent results in the disciplines of software architecture
and reflection. In this approach, the architectural description
of a system, traditionally confined in design specification
documents, is maintained at run-time to be inspected and
manipulated by special entities (termed architectural meta-
entities), and it is causally connected to the system’s concrete
structure. This provides a means to operate on complex,
component-based systems at a higher level of abstraction than
that supported by current practice techniques.

The approach holds the promise of providing benefits in
all software engineering activities that entail observing and
manipulating a software system as a whole rather than its
components considered in isolation. All stages of a system’s
lifecycle, from design and development to evolution, comprise
activities of this kind. Sample applications are: reusing
architectural designs, on-line monitoring, and dynamic
reconfiguration.

Our research on architectural reflection is currently address-
ing two main topics: the definition of a complete architectural
model including issues outside those considered in this paper
(such as distribution and performance); and the definition
of an implementation model that does not impede system
efficiency and that effectively supports reusing architectural
meta-entities (hence architectures) in the design of new sys-
tems, most likely within an object-oriented perspective. This
latter topic turns out to be closely related to the incremental
definition of architectural styles through specialization [2]
and the reuse of design patterns in object-oriented frame-

1The set of operations should also allow the strategist to cooper-
ate with the topologist during reconfiguration, as discussed above;
for example, operations should be provided to disable dangerous
transitions.

works [14].

We are further analyzing the reflective aspect of architectural
reflection, in particular the comparison with the classic ap-
proach. We are also working on semantics and implementation
of the architectural causal connection and on a framework to
introduce architectural reflection in a programming language.
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