
Walter Cazzola and Sonia Pini. AOP vs Software Evolution: a Score in Favor of the Blueprint.
In Proceedings of the 4th ECOOP Workshop on Reflection, AOP and Meta-Data for Soft-
ware Evolution (RAM-SE’07), pages 81–91, Berlin, Germany, July 2007.

AOP vs Software Evolution:
a Score in Favor of the Blueprint.

Walter Cazzola1 and Sonia Pini2

1 Department of Informatics and Communication,
Università degli Studi di Milano, Italy

cazzola@dico.unimi.it
2 Department of Informatics and Computer Science

Università degli Studi di Genova, Italy
pini@disi.unige.it

Abstract. All software systems are subject to evolution, independently by the
developing technique. Aspect oriented software in addition to separate the differ-
ent concerns during the software development, must be “not fragile” against soft-
ware evolution. Otherwise, the benefit of disentangling the code will be burred
by the extra complication in maintaining the code.
To obtain this goal, the aspect-oriented languages/tools must evolve, they have to
be less coupled to the base program. In the last years, a few attempts have been
proposed, the Blueprint is our proposal based on behavioral patterns.
In this paper we test the robustness of the Blueprint aspect-oriented language
against software evolution. Keywords: AOP, Software Evolution, Fragile Point-
cut Problem.

1 Introduction

All software systems are subject to evolution, they evolve over time as new requirements
and functionality emerge, or adaption and extensions are to be made. Studies pointed out
that up to 80% [13] of the system lifetime will be spent on maintenance and evolution
activities. A program that is useful in a real-world environment necessarily must change
or become progressively less useful in that environment [12].

Aspect-oriented programming has been designed with the intention of providing a
better separation of concerns by modularizing concerns that would otherwise be tangled
and scattered across the other concerns. This would made the software more maintain-
able, evolvable and understandable. Paradoxically, the major aspect-oriented techniques
instead of improving software maintainability seem to restrict the evolvability of that
software, as highlighted in [21]. This problem is due to the so called “fragile pointcut
problem" [11].

Pointcuts are deemed fragile when seemingly innocent changes to the base program,
such as renaming or relocating a method, break a pointcut such that it no longer captures
the join points it is intended to capture. When code is added to a program and introduces
new join points in the program, pointcuts are similarly considered fragile in the case
some of these new join points should be captured by the pointcut but it fails to do so.

It implies that all pointcuts of each aspect need to be checked and possibly revised
whenever the base program evolves, since they often break when the base program is
re-factored. All pointcuts referring to the base program need to be examined both after
an evolution and after a re-factoring, because they capture a set of join points based
on some structural and syntactical properties, any change to the structure or syntax of
the base program can alter the set of join points that is captured by the pointcuts. This
problem exists both if a programmer uses wildcards and not.

In practice, the pointcut fragility derives form the dependency on the program syn-
tax and the coupling between aspects and program [1, 7, 8, 20]. The fragile pointcut
problem is a serious inhibitor to evolution of aspect-oriented programs. The critical el-
ement of the past generation of AO tool is the necessity to specify program elements
names and the impossibility to select elements without using naming convention or reg-
ular expressions. In short, they have a linguistic approach, so aspect writers need to be
completely aware of the base-code details and evolution, so each aspect become strictly
bound to the application on who has been designed. To obtain a less fragile approach,
it is necessary a new generation of aspect-oriented languages/tools, less coupled to the
base program.

In the last few years, the main goal of the new generation of AO approaches is
to get a more semantic join point selection mechanism to avoid the fragile pointcut
problem. Some approaches are: the pointcut delta analysis [11, 20], the approach of
Kellens et al. described in [8], the join point model proposed by Mohd Ali and Rashid
in [14], the functional query language proposed by Eichberg et al. in [4], the graphical
approach to model pointcuts described by Stein et al. in [19] and so on. In [3, 16] we
have defined a new (visual) model-based join point selection mechanism. We tackle the
fragile pointcut problem by eliminating the intimate dependency of pointcut definitions
on the base program and by using a high level description of the program behavior
during the join point selection.

In this paper we want to prove the robustness of the Blueprint against the evolu-
tion. The rest of the paper is organized as follows: in section 2 we shortly overview
the Blueprint approach and elements, in section 3 we introduce our test case for the
evolution, finally, in section 4 and in section 5 we face some related works and draw
out our conclusions.

2 The Blueprint Language

The Blueprint framework is based on our previous work [2] and it is completely de-
tailed in [16]. Moreover, a working prototype of the framework has been developed in
Java.

The main goal of the Blueprint language is to overcome many problems of the
past generation of AO language [1, 9, 11], such as, the granularity of the join point, the
fragile pointcut problem, the semantic selection and so on.

The Blueprint is based on the idea that the description of the application behavior
cannot be strictly coupled to the application syntactic details. It permits a loose approach
to the description of the application behavior. This means that the aspect programmer
can use different levels of detail during the description of a single join point blueprint

82

by using any possible combinations of loose and tight elements. This approach per-
mits to describe a well identified behavior tightly coupled to the application code by
specifying the names of the involved elements, and a less known behavior by using
meta-information to abstract from the real application code.

The Blueprint is a novel aspect-oriented framework, its join point selection mech-
anism allows the selection of the join points abstracting from implementation details,
name conventions and any other source code dependency. In particular the aspect pro-
grammer can select the interested join points by describing their supposed location in
the application through UML-like descriptions (basically, activity diagrams) represent-
ing computational patterns on the application behavior; these descriptions are called
blueprints. The blueprints are just patterns on the application behavior, i.e., they are not
derived from the system design information but express properties on them. In other
words, we adopt a sort of enriched UML diagrams to describe the application control
flows or computational properties and to locate the join points inside these contexts.

The Blueprint uses a static quantification, i.e., it allows quantification over the
abstract syntax tree of the program, hereby queries such as “print the value of a variable
used in a loop test condition and modified in the loop body” are possible. This kind of
quantification requires to access the source code of the application, because we need
to obtain a parsed version of the underlying program, to run the transformation rules
realizing the quantified aspects over that abstract syntax tree. The Blueprint language
can be used on the bytecode as well since it can be univocally decompiled (modulo
semantic equivalence) by apposite tools, e.g., by Jode.

In our approach, we do not need to use position qualifiers such as before and after
advices to indicate where to insert the concern inside the base code, since we describe
the context we are looking for, we can either locate the join points exactly where we
want to insert the new code or, to highlight the portion of behavior we want to replace.

The Blueprint framework recalls the AspectJ terminology but some terms are
used with a slightly different meaning. The Blueprint join points are hooks where code
may be added rather than well defined points in the execution of a program as in As-
pectJ. In other words, the AspectJ join points are based on the idea that “when
something happens, then something gets executed3.” In this view a join point consists
of things like method and constructor calls, method and constructor executions, object
instantiations, field references and so on. While the Blueprint approach is that “join
points can occur in any part of the code”, this view permits of changing a single line
of code. We use a statement-level granularity for the join point model whereas As-
pectJ uses an operational level granularity for the join point model. In particular we
consider two different kinds of join points: the local join points that represent points in
the application behavior where to insert the code of the concern, and region join points
that represent portion of the application behavior that must be replaced by the code of
the concern. The pointcuts are obtained as composition/enumeration of the join points
selected by the join point blueprints rather than as the logical composition of queries on
the application code. While introductions and advices keep their usual meaning.

To complete the picture of the situation, we have introduced some new concepts:
join point blueprint and, blueprint space. The former is a template (a blueprint) on

3 http://www.eclipse.org/aspectj/doc/released/progguide/index.html

83

http://www.eclipse.org/aspectj/doc/released/progguide/index.html

<<exactmatch>>
*.foo(..)

method meta-variable
 any foo(..)

<<or>>
variable meta-variable
 Field

use (*.Field in left)

<<method>>

<<joinpoint produce>>
<<joinpoint consume>>

use ((*.Field in right) or
 (*.Field in return))

<<method>>

 produce, consume

ObserverBlueprint

context
 Buffer

Fig. 1. Sample Join Point Blueprint.

the application behavior identifying the join points in their context; these blueprints
describe where the local and region join points should be located in the application
behavior. The blueprint does not completely describe the computational flow but only
the portions relevant for selecting the join points. The latter is the set of all join points
blueprints defined on the same application.

The key element of our approach are the join point blueprints, they graphically
depicts where a join point (both local and region) should be in the application behavior.
They look like an activity diagrams.

The diagram contextualizes the join point location by describing some crucial events
that should occur close to the join point, these events will be used to recognize the join
point. The frame gives some ancillary information, such as the blueprint name (at the
top left corner), the join points name exposed by the blueprint (at the bottom right
corner) and some meta-info used by the weaver to parametrize the context and to get
values from the join point. The listed join points are the only exposed to the pointcut
specification. The join point position is denoted by the «joinpoint name» stereotypea
(ora bya thea couplea «startjoinpoint name» and «endjoinpoint name» for the
region join points).

To get a more expressive language and less coupled to the code syntax and struc-
ture, and by assuming that the aspect programmer does not necessarily know the im-
plementation details of the code, we introduced the meta-information section inside the
blueprint diagram. The meta-information is the textual portion of the blueprint, that al-
lows the programmer of describing the context at the desired implementation detail, i.e.,
either by using real variable, method and field names or less precise information. For
example, if the programmer does know the method name, but he knows its parameter
types, he can use this information, in the meta-information section, by declaring a new

84

method meta-variable with a fantasy name,and indicating the right number and type of
its parameters, and finally by using this new meta-variable in the blueprint to describe
the sought behavior. The meta-information elements will be unified to variable names
used into the application during the weaving phase.

Figure 1 shows a very simple join point blueprint that absolutely do not recall the
whole expressivity allowed by the formalism. For a detailed and exhaustive description,
please, refer to [16] chapter 4.

3 A Test-Bed for the Blueprint Robustness

So far, we have used the Blueprint to locate simple join points in toy-applications, like
showed in [3,16], with few lines of code. Now, it is fundamental to test the robustness of
the Blueprint language against the evolution by using a real application with thousand
lines of code and a long time life cycle with many adaptation steps. To this goal, we
adopted the Health Watcher (HW) system4 developed at UPE and introduced by Soares
et al. in [18].

HW is a typical web-based application that manages health-related information. It
includes a variety of crosscutting concerns, such as concurrency, distribution, persis-
tence, and so on. The same application has been previously used as test-bed by the Lan-
caster University (in [6]), that has created and compared one object-oriented (by using
Java) and two aspect-oriented (by using AspectJ and CaesarJ) implementations of
HW. Moreover, they introduced nine steps of evolution to the initial application.

3.1 HW Evolution

We consider the HW evolution from version 8 to version 9, which adds new func-
tionalities to the application. Version 9 adds the following functionality: insertion of
new health unit, insertion of new medical specialization, insertion of new symptoms,
searching for symptoms, updating of a symptom, searching for specialization by code,
updating of medical specialization, and insertion of new disease types.

These new functionalities involve the creation of new records and repositories for
diseases and symptoms. Potentially, they can introduce changes to the public interface
and interfere with the correct working of the existing pointcuts.

Most of the AOP approaches use a join point model similar to that of AspectJ [10].
The AspectJ pointcut language offers a set of primitive pointcut designators, such as
call, get and set specifying a method call and the access to an attribute. All the
pointcut designators expect, as an argument, a string specifying a pattern for match-
ing method or field signature. These string patterns introduce a real dependency of the
syntax of the base code. Intuitively, since pointcuts capture a set of join points based
on some structural or syntactical property, any change to the structure or syntax of the
base program could also change the applicability of the pointcuts and the set of captured
join points.

4 The complete source code developed is available at http://www.comp.lancs.ac.uk/ greenwop/-
tao

85

Aspect developer implicitly imposes some design rules that the base program devel-
oper has to follow when evolves his program to be compliant with the existing aspects
and avoid of selecting more or less join points than expected. In this case, problems
with evolution depend also of the need of guessing these, often silent, conventions.
These rules derive from the fact that pointcuts often express semantic properties about
the base program in terms of its structural properties.

First to present our approach, we present the problems encountered, also in this
case, by the AspectJ aspects. In particular, we consider the aspect used for the HW
synchronization of concurrent insertion and showed in Listing 1.1.

It is fairly evident that the pointcut definition takes in consideration only the method
name of a particular class and not the behavior or the semantic to locate the interested
join points. In this case, the aspect programmer has written a correct pointcut, and the
corresponding aspect works as intended. When the code is changed (i.e., in version 9)
by adding new persistent entity, i.e., DiseaseRecord and SymptomRecord despite the
behavior added by these new entities is the same of the old entity, the synchroniza-
tionPoints pointcut (see Listing 1.2) has been changed in order to consider also the
new methods.

Listing 1.1. The AspectJ pointcut in version 8

public pointcut synchronizationPoints(Employee employee) :
execution(* EmployeeRecord.insert(Employee))
&& args(employee);

Note that this is only a possible way to write the pointcut, but in general the prob-
lems are the same. For example, in Listing 1.1, we can insert a wildcard in place of the
class name (EmployeeRecord), in this case the pointcut is not broken by the evolution,
but if the programmer decides to change the method name, e.g., from insert to store
the pointcut does not work right, and (s)he must adapt the pointcut definition to locate
all the right point in the application.

Listing 1.2. The AspectJ pointcut in version 9

public pointcut synchronizationPoints(Object o) :
(execution(* EmployeeRecord.insert(Employee)) ||
execution(* DiseaseRecord.insert(DiseaseType)) ||
execution(* SymptomRecord.insert(Symptom)))&& args(o);

Since, the problem of the evolution in aspect-oriented programs is mainly that the
set of join points captured by a pointcut may change when changes are made to the base
program, even though the pointcut definition itself remains unaltered. Then, to avoid
this problem we need a low coupling of the pointcut definition with the source code.
The aim of the Blueprint approach is just to overcome the AOP problem about software
evolution, by allowing the selection of the join points abstracting from implementation
details, name conventions and any other source code dependency.

In Figure 2 is showed the join point blueprint used to locate the methods that need
synchronization, it describes a relevant portion of a method behavior. In particular, since
all application methods that store records into repositories are composed by a check to

86

<<joinpoint b>>

 a, b

SynchronizationBlueprint

<<joinpoint a>>

false true

variable meta-variable
 repository, x

method meta-variable
 void insert(ANY)

<<exactmatch>>
this.repository.insert(x);

Fig. 2. Join Point Blueprint for Insertion Synchronization.

control if the record is already inserted or not inside the repository, we can search an if
statement containing, in the false branch, the code to insert the record.

The «joinpoint b» locate the join point at the beginning of the method that con-
tains the statement that match the relevant portion of behavior, while the «joinpoint
a» locate the join point at the end of the method that contains the matched statements
of the diagram. The diamond indicate that we are looking for a conditional statement,
where the condition is not relevant for the context definition, like so, it is not relevant
what is contained in the true branch.

The repository variable meta-variable used in the action (i.e., the red rounded
rectangle) during the weaving process is unified to a class field. The insert method
meta-variable represents a method that does not return nothing and that has only one
parameter of any type Note that the name of the method meta-variable is completely
independent from the name of the searched method, i.e., changing the name insert in
abcdef the located behavior and unified variables do not change.

Since the new entities have almost the same behavior of the old one, like showed in
Listing 1.3, the behavior described in the blueprint locate all the methods that need a
synchronization point.

Our selection mechanism matches the insert() method of the EmployeeRecord
class presents in version 8, and the insert() methods present in the DiseaseRe-
cord and, SymptomRecord classes, added since version 9, without change anything.
The repository variable meta-variable is respectively unified to employeeReposi-
tory, diseaseRep and rep application’s field. The void insert(ANY)method meta-

87

Listing 1.3. The Application Implementation

// insert method of EmployeeRecord class
public void insert(Employee employee) // throws clause {
if (employeeRepository.exists(employee.getLogin())) {

throw // new exception ;
} else {

employeeRepository.insert(employee);
}

// insert method of DiseaseRecord class
public void insert(DiseaseType td) // throws clause {
if (diseaseRep.exists(td.getCode())) {

throw // new exception ;
} else {

this.diseaseRep.insert(td);
}

// insert method of SymptomRecord class
public void insert(Symptom symptom) // throws clause {
if (rep.exists(symptom.getCode())) {

throw // new exception);
} else {

rep.insert(symptom);
}

}

variable is respectively unified to the insert method of the EmployeeRepositor-
yArray, DiseaseTypeRepositoryArray, and SymptomRepositoryArray class.

4 Related Works

The Blueprint framework is not the first attempt of dealing with the limitations of the
current join point selection mechanisms. In the next of the section we report some of
the most significant attempts, without pretending to be exhaustive.

In [8], Kellens et al. tackle the fragile pointcut problem by replacing the intimate
dependency of pointcut definitions on the base program by a more stable dependency
on a conceptual model of the program. This conceptual model provides an abstraction
over the structure of the source code and classifies base program entities according to
the concepts that they implement. The strength of the approach is on the definition of
the conceptual model of the base program. The classification of source-code entities in
the conceptual model is constructed using annotations in the source code and, defining
extra design constraints that need to be respected by source-code entities, for the model
to be consistent. This approach requires developers to describe a conceptual model of
their program and its mapping to the program code, in this way, it breaks the oblivi-
ousness [5] property. Moreover, it is coupled with the structure of the base program,

88

but not coupled with its implementation, and only the program entities can be used to
define pointcut, since they use the same join point of the AspectJ join point model.
Finally, they still need a mechanism for automatically verifying the correctness of the
classifications defined by the conceptual model.

In [4], Eichberg, et al. present the usage of functional query language for the specifi-
cation of pointcuts. In their approach a pointcut is a set of nodes in a tree representation
of the program’s modular structure, and this set is selected by query on node attribute
written in a query language. They created an XML-to-class file assembler/disassembler
that can be used to create an XML representation of a class file and convert an XML file
back into a class file on the basis of their bytecode framework. The query language is
used on top of this XML representation of the program structure. Their join point model
defines more join point of the AspectJ one, because bytecode structure permits to
identify more point, e.g., the storing of a value in a local variable. Their query language
is general enough to express a wide range of very different pointcut models.

In [17], Sakurai and Masuhara propose a new aspect-oriented programming lan-
guage that uses unit test cases as interface of crosscutting concerns. A test-based point-
cut matches join points in the execution of a target program that (potentially) have
the same execution history as one of the unit test cases specified by the pointcut. This
approach replace the fragile pointcut problem with the maintenance of unit test cases
whose cost should anyhow be paid with practical software development.

In [15], Nagy et al. propose a new approach to AOP by referring to program unit
through their design intentions to answer to the need of expressing semantic pointcuts.
Design intention is represented by annotated design information, which describes for
example the behavior of a program element or its intended meaning. Their approach in-
stead of referring directly to the program, provide a new language abstraction to specify
pointcuts based on some design information. Design information are inserted inside the
base program using annotations and they are associated manually, derived on the pres-
ence of other design information and, through superimposition. The key benefit of this
approach is that it reduces direct dependencies between the crosscutting concerns and
the program source. Unfortunately, this approach breaks the obliviousness [5] property.
This property is broken because certain design information has to be specified by the
software engineer, and moreover the software engineer must use a consistent and co-
herent set of design information for each sub-domain of an application.

5 Conclusions

Current aspect-oriented approaches suffer from well known fragile pointcut problem.
A common attempt to give a solution consists of creating a more semantic mechanism
for the join points selection. This paper shortly describe the Blueprint framework, a
novel approach to join points identification that permits to decouple aspects definition
and base-code syntax and structure. Moreover, this paper presents a test-bed in order to
evidence the robustness of the Blueprint pointcut against the software evolution.

89

6 Acknowledgments

The authors wish to thank the original developers of the HW application and Alessandro
Garcia for sharing the HW code.

References

1. Walter Cazzola, Jean-Marc Jézéquel, and Awais Rashid. Semantic Join Point Models: Mo-
tivations, Notions and Requirements. In Proceedings of the Software Engineering Proper-
ties of Languages and Aspect Technologies Workshop (SPLAT’06), Bonn, Germany, on 21st
March 2006.

2. Walter Cazzola and Sonia Pini. Join Point Patterns: a High-Level Join Point Selection Mech-
anism. In Thomas Khüne, editor, MoDELS’06 Satellite Events Proceedings, Lecture Notes
in Computer Science 4364, pages 17–26, Genova, Italy, on 1st of October 2006. Springer.
Best Paper Awards at the 9th Aspect-Oriented Modeling Workshop.

3. Walter Cazzola, Sonia Pini, and Massimo Ancona. Design-Based Pointcuts Robustness
Against Software Evolution. In Walter Cazzola, Shigeru Chiba, Yvonne Coady, and Gunter
Saake, editors, Proceedings of the 3rd ECOOP Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE’06), in 20th European Conference on Object-Oriented Pro-
gramming (ECOOP’06), pages 35–45, Nantes, France, on 2nd of July 2006.

4. Michael Eichberg, Mira Mezini, and Klaus Ostermann. Pointcuts as Functional Queries. In
Proceedings of the 2nd ASIAN Symposium on Programming Languages and Systems (APLAS
2004), LNCS, Taipei, Taiwan, November 2004. Springer.

5. Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is Quantification
and Obliviousness. In Proceedings of OOPSLA 2000 Workshop on Advanced Separation of
Concerns, Minneapolis, USA, October 2000.

6. Phil Greenwood, Alessandro F. Garcia, Thiago Bartolomei, Sergio Soares, Paulo Borba, and
Awais Rashid. On the Design of an End-to-End AOSD Testbed for Software Stability. In
Proceedings of the 1st International Workshop on Assessment of Aspect-Oriented Technolo-
gies (ASAT’07), Vancouver, Canada, March 2007.

7. Kris Gybels and Johan Brichau. Arranging Language Features for More Robust Pattern-
Based Crosscuts. In Proceedings of the 2nd Int’l Conf. on Aspect-Oriented Software Devel-
opment (AOSD’03), pages 60–69, Boston, Massachusetts, April 2003.

8. Andy Kellens, Kris Gybels, Johan Brichau, and Kim Mens. A Model-driven Pointcut Lan-
guage for More Robust Pointcuts. In Proceedings of Software engineering Properties of
Languages for Aspect Technologies (SPLAT’06), Bonn, Germany, March 2006.

9. Gregor Kiczales. The Fun Has Just Begun. Keynote AOSD 2003, Boston, March 2003.
10. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeff Palm, and Bill Griswold.

An Overview of AspectJ. In Jørgen Lindskov Knudsen, editor, Proceedings of the 15th

European Conference on Object-Oriented Programming (ECOOP’01), LNCS 2072, pages
327–353, Budapest, Hungary, June 2001. Springer-Verlag.

11. Christian Koppen and Maximilian Störzer. PCDiff: Attacking the Fragile Pointcut Problem.
In Proceedings of the European Interactive Workshop on Aspects in Software (EIWAS’04),
Berlin, Germany, September 2004.

12. Meir M. Lehman. Programs, Life Cycles, and Laws of Software Evolution. Proceedings of
the IEEE, 68(9):1060–1076, September 1980. Special Issue on Software Engineering.

13. Meir M. Lehman, Juan Fernandez-Ramil, and Goel Kahen. A Paradigm for the Behavioural
Modelling of Software Processes using System Dynamics. Technical Report 2001/8, Impe-
rial College, Department of Computing, London, United Kingdom, September 2001.

90

14. Noorazean Mohd Ali and Awais Rashid. A State-based Join Point Model for AOP. In
Proceedings of the 1st ECOOP Workshop on Views, Aspects and Role (VAR’05), in 19th

European Conference on Object-Oriented Programming (ECOOP’05), Glasgow, Scotland,
July 2005.

15. István Nagy, Lodewijk Bergmans, Wilke Havinga, and Mehmet Akşit. Utilizing Design
Information in Aspect-Oriented Programming. In Robert Hirschfeld, Ryszard Kowalczyk,
Andreas Polze, and Mathias Weske, editors, Proceedings of 4th Annual International Confer-
ence on Object-Oriented and Internet-based Technologies, Concepts, and Applications for
a Networked World (Net.ObjectDays), LNI 61, pages 39–60, Erfurt, Germany, September
2005.

16. Sonia Pini. Blueprint: A High-Level Pattern Based AOP Language. PhD Thesis, Department
of Informatics and Computer Science, Università di Genova, Genoa, Italy, June 2007.

17. Kouhei Sakurai and Hidehiko Masuhara. Test-based Pointcuts: A Robust Pointcut Mech-
anism Based on Unit Test Cases for Software Evolution. In Proceedings of Linking As-
pect Technology and Evolution revisited (LATE’07), Vancouver, British Columbia, Canada,
March 2007.

18. Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing Distribution and Persis-
tence Aspects with AspectJ. In Mamdouh Ibrahim and Satoshi Matsuoka, editors, Proceed-
ings of the 17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’02), pages 174–190, Seattle, Washington, USA, Novem-
ber 2002. ACM Press.

19. Dominik Stein, Stefan Hanenberg, and Rainer Unland. Modeling Pointcuts. In Proceed-
ings of the AOSD Workshop on Aspect-Oriented Requirements Engineering and Architecture
Design, Lancaster, UK, March 2004.

20. Maximilian Störzer and Jürgen Graf. Using Pointcut Delta Analysis to Support Evolution
of Aspect-Oriented Software. In Proceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM’05), pages 653–656, Budapest, Hungary, September 2005.
IEEE Computer Society.

21. Tom Tourwé, Kris Gybels, and Johan Brichau. On the Existence of the AOSD-Evolution
Paradox. In Proceedings of the Workshop on Software-engineering Properties of Languages
for Aspect Technologies (SPLAT’03), Boston, Massachusetts, April 2003.

91

	1 Introduction
	2 The Blueprint Language
	3 A Test-Bed for the Blueprint Robustness
	3.1 HW Evolution

	4 Related Works
	5 Conclusions
	6 Acknowledgments

