
AOSD and Reflection:
Benefits and Drawbacks to Software Evolution

Report on the WS RAM-SE at ECOOP’06

Walter Cazzola1, Shigeru Chiba2, Yvonne Coady3, and Gunter Saake4

1 DICo - Department of Informatics and Communication,
Università degli Studi di Milano, Milano, Italy

cazzola@dico.unimi.it
2 Department of Mathematical and Computing Sciences,

Tokyo Institute of Technology, Tokyo, Japan
chiba@is.titech.ac.jp

3 Department of Computer Science,
University of Victoria, Victoria, Canada

ycoady@cs.uvic.ca
4 Institute für Technische und Betriebliche Informationssysteme,

Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
saake@iti.cs.uni-magdeburg.de

Abstract. Following last two years’ RAM-SE (Reflection, AOP and Meta-Data
for Software Evolution) workshop at the ECOOP conference, the RAM-SE 2006
workshop was a successful and popular event. As its name implies, the work-
shop’s focus was on the application of reflective, aspect-oriented and data-mining
techniques to the broad field of software evolution. Topics and discussions at the
workshop included mechanisms for supporting software evolution, technological
limits for software evolution and tools and middleware for software evolution.

The workshop’s main goal was to bring together researchers working in the
field of software evolution with a particular interest in reflection, aspect-oriented
programming and meta-data. The workshop was organized as a full day meeting,
partly devoted to presentation of submitted position papers and partly devoted to
panel discussions about the presented topics and other interesting issues in the
field. In this way, the workshop allowed participants to get acquainted with each
other’s work, and stimulated collaboration. We hope this helped participants in
improving their ideas and the quality of their future publications.

The workshop’s proceedings, including all accepted position papers can be
downloaded from the workshop’s web site and a post workshop proceeding, in-
cluding an extension of the accepted paper is published byt the University of
Magdeburg.

In this report, we first provide a session-by-session overview of the presenta-
tions, and then present our opinions about future trends in software evolution.

Workshop Description and Objectives

Software evolution and adaptation is a research area, as also the name states, in con-
tinuous evolution, that offers stimulating challenges for both academic and industrial

M. Südholt and C. Consel (Eds.): ECOOP 2006 , LNCS 4379, pp. 40–52, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Ws



AOSD and Reflection: Benefits and Drawbacks to Software Evolution 41

researchers. The evolution of software systems, to face unexpected situations or just
for improving their features, relies on software engineering techniques and methodolo-
gies. Nowadays a similar approach is not applicable in all situations e.g., for evolving
nonstopping systems or systems whose code is not available.

Features of reflection such as transparency, separation of concerns, and extensibil-
ity seem to be perfect tools to aid the dynamic evolution of running systems. Aspect-
oriented programming (AOP in the next) can simplify code instrumentation whereas
techniques that rely on meta-data can be used to inspect the system and to extract the
necessary data for designing the heuristic that the reflective and aspect-oriented mech-
anism use for managing the evolution.

We feel the necessity to investigate the benefits brought by the use of these techniques
on the evolution of object-oriented software systems. In particular we would determine
how these techniques can be integrated with more traditional approaches to evolve a
system and the benefits we get from their use.

The overall goal of this workshop was that of supporting circulation of ideas between
these disciplines. Several interactions were expected to take place between reflection,
aspect-oriented programming and meta-data for the software evolution, some of which
we cannot even foresee. Both the application of reflective or aspect-oriented techniques
and concepts to software evolution are likely to support improvement and deeper un-
derstanding of these areas. This workshop has represented a good meeting-point for
people working in the software evolution area, and an occasion to present reflective,
aspect-oriented, and meta-data based solutions to evolutionary problems, and new ideas
straddling these areas, to provide a discussion forum, and to allow new collaboration
projects to be established. The workshop was a full day meeting. One part of the work-
shop was devoted to presentation of papers, and another to panels and to the exchange
of ideas among participants.

Workshop Topics and Structure

Every contribution that exploits reflective techniques, aspect-oriented programming
and/or meta-data to evolve software systems were welcome. Specific topics of inter-
est for the workshop have included, but were not limited to:

– aspect-oriented middleware and environments for software evolution;
– adaptive software components and evolution as component composition;
– evolution planning and deployment through aspect-oriented techniques and reflec-

tive approaches;
– aspect interference and composition for software evolution;
– feature- and subject-oriented adaptation;
– unanticipated software evolution supported by AOSD or reflective techniques;
– MOF, code annotations and other meta-data facilities for software evolution;
– software evolution tangling concerns;
– techniques for refactoring into AOSD and to get the separation of concerns.

To ensure lively discussion at the workshop, the organizing committee has chosen
the contributions on the basis of topic similarity that will permit the beginning of new



42 W. Cazzola et al.

collaborations. To grant an easy dissemination of the proposed ideas and to favorite an
ideas interchange among the participants, accepted contributions are freely download-
able from the workshop web page:

http://homes.dico.unimi.it/RAM-SE06.html.

The workshop was a full day meeting organized in four sessions. The first session
was devoted to the Awais Rashid’s keynote speech on “Aspects and Evolution: The
Case for Versioned Types and Meta-Aspect Protocols”. Each of the remaining sessions
has been characterized by a dominant topic that perfectly describes the presented papers
and the related discussions. The three dominant topics were: aspect-oriented modeling
for software evolution, tools and middleware for software evolution, and technological
limits to software evolution. During each session, half time has been devoted to papers
presentation, and the rest of the time has been devoted to debate about the on-going
works in the area, about relevance of the approaches in the software evolution area and
the achieved benefits. The discussion related to each session has been brilliantly lead
respectively by Theo D’Hondt, Mario Südholt and Hidehiko Masuhara.

The workshop has been very lively, the debates very stimulating, and the high num-
ber of participants (see appendix A) testifies the growing interest in the application of
reflective, aspect- and meta-data oriented techniques to software evolution.

Important References

The following publications are important references for people interested in learning
more about the topics of this workshop:

– Pattie Maes. Computational Reflection. PhD thesis, Vrije Universiteit Brussel,
Brussels, Belgium, 1987.

– Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
11th European Conference on Object Oriented Programming (ECOOP’97), LNCS
1241, pages 220–242, Helsinki, Finland, June 1997. Springer-Verlag.

– The proceedings of the International Conference on Aspect-Oriented Software De-
velopment (AOSD) from 2002 to 2006. See also http://aosd.net/archive/
index.php.

– Several tracks related to aspect-oriented software development and evolution at
the International Conference on Software Maintenance (ICSM) and the Working
Conference on Reverse Engineering (WCRE), from 2002 onward.

– The software evolution website at the Program Transformation wiki:

http://www.program-transformation.org/twiki/bin/view/
Transform/SoftwareEvolution.

1 Workshop Overview: Session by Session

In this section of the report we summarize the workshop. In particular, Shigeru Chiba,
in the role of chairman of the invited talk session, will comment the Nierstrasz’s talk
and the discussions raised from the talk, then a short summary of the the remaining
sessions will follow.

http://homes.dico.unimi.it/RAM-SE06.html
http://aosd.net/archive/index.php
http://aosd.net/archive/index.php
http://www.program-transformation.org/twiki/bin/view/Transform/SoftwareEvolution
http://www.program-transformation.org/twiki/bin/view/Transform/SoftwareEvolution


AOSD and Reflection: Benefits and Drawbacks to Software Evolution 43

Session on Aspects and Evolution
Keynote Speech by Awais Rashid (Lancaster University, UK)
Summary by Shigeru Chiba (Session Chair, Tokyo Institute of Technology)

In the first morning session, we had a keynote talk by Dr. Awais Rashid:

– Aspects and Evolution: The Case for Versioned Types and Meta-Aspect Protocol.

Abstract. One of the often cited advantages of aspect-oriented programming (AOP)
is improved evolvability. No doubt the modularisation support provided by aspects
helps to localise changes thus supporting evolution. However, evolution often re-
quires keeping track of changes in order to make them reversible. Furthermore,
often such changes (and their reversal) needs to be done online, e.g., in case of
business and mission critical systems that can’t be taken offline. In this talk, I will
discuss whether current AOP mechanisms are suited to such evolution needs. I
will highlight the need for first class support for versioned types as well as fully-
fledged meta-aspect protocols and present some practical experiences of imple-
menting these in the Vejal aspect language and its associated dynamic evolution
framework. The talk will conclude with a roadmap of key research issues that need
to be tackled to ensure that the full potential of aspects can be realised with regards
to improving the evolvability of software systems.

Dr. Rashid’s keynote was very interesting and led active discussion among participants.
In particular, the first half of his talk was about a classic problem in AOP, which is the
problem of obliviousness and quantification. Although it was first proposed by Filman
and Friedman [10] that the primary properties of AOP are obliviousness and quantifica-
tion, this issue has been actively discussed by many researchers. Dr. Rashid’s claim was
that obliviousness and quantification are not mandatory properties of AOP but they are
only desirable properties. According to his talk, the obliviousness property often makes
modular reasoning difficult. Hence, open modules and XPIs have been proposed as tech-
nique for limiting the obliviousness property and enabling easier modular reasoning.
This fact shows that this property is not necessary (therefore, it can be limited). The quan-
tification property is also useful but most of aspects, for example, in the database trans-
action domain, are not heterogeneous aspects but homogeneous aspects. Homogeneous
aspects do not need the complex functionality of the quantification property. His claim
was appealing and led a number of comments, objections, and supports from the floor.

Session on Aspect-Oriented Modeling for Software Evolution

The second session was related to the use of the aspect-oriented modeling to support
the software evolution, Theo D’Hondt (Vrije Universiteit Brussel, Belgium) was the
chairman. Three papers have been presented:

[7] Improving AOP Systems’ Evolvability by Decoupling Advices from Base Code.
Alan Cyment, Nicolas Kicillof, Rubén Altman, and Fernando Asteasuain (Univer-
sity of Buenos Aires, Argentina).

Alan Cyment gave the talk.



44 W. Cazzola et al.

[16] Making Aspect Oriented System Evolution Safer. Miguel Ángel Pérez Toledano,
Amparo Navasa Martinez, Juan M. Murillo Rodriguez, (University of Extremadura,
Spain) and Carlos Canal (University of Málaga).

Miguel Ángel Pérez Toledano gave the talk.

[6] Design-Based Pointcuts Robustness Against Software Evolution. Walter Cazzola
(DICo Università degli Studi di Milano, Italy), Sonia Pini, and Massimo Ancona
(DISI Università degli Studi di Genova, Italy).

Sonia Pini gave the talk.

Session on Tools and Middleware for Software Evolution

The papers in this session covered the topic of adaptive middleware to support software
evolution. Mario Südholt (École de Mines de Nantes) has chaired the session. Three
papers have been presented:

[1] Evolution of an Adaptive Middleware Exploiting Architectural Reflection.
Francesca Arcelli, and Claudia Raibulet (Università degli Studi di Milano-Bicocca,
Italy).

Claudia Raibulet gave the talk.

[3] An Aspect-Oriented Adaptation Framework for Dynamic Component Evolution.
Javier Cámara Moreno, Carlos Canal, Javier Cubo (University of Málaga, Spain),
and Juan M. Murillo Rodriguez (University of Extremadura, Spain).

Javier Cámara Moreno gave the talk.

[12] An Aspect-Aware Outline Viewer. Michihiro Horie, and Shigeru Chiba (Tokyo
Institute of Technology, Japan).

Michihiro Horie has given the talk.

Session on Technological Limits for Software Evolution

The papers in this session explore the technological limits of the AOP and reflective
techniques to support software evolution. Hidehiko Masuhara (University of Tokyo,
Japan) has lead the session. Four papers have been presented:

[18] Solving Aspectual Semantic Conflicts in Resource Aware Systems. Arturo Zam-
brano, Tomás Vera, and Silvia Gordillo (University of La Plata, Argentina).

Arturo Zambrano has given the talk.

[8] Statement Annotations for Fine-Grained Advising. Mark Eaddy, and Alfred Aho
(Columbia University, USA).

Mark Eaddy gave the talk.



AOSD and Reflection: Benefits and Drawbacks to Software Evolution 45

[9] Dynamic Refactorings: Improving the Program Structure at Run-time. Peter Ebraert
and Theo D’Hondt (Vrije Universiteit Brussel, Belgium).

Peter Ebraert gave the talk.

[13] Implementing Bounded Aspect Quantification in AspectJ. Christian Kästner, Sven
Apel, and Gunter Saake (Otto-von-Guericke-Universität Magdeburg, Germany).

Christian Kästner gave the talk.

2 Software Evolution Trends: The Organizers’ Opinion

The authors, with this report, would like to go beyond the mere presentation of statistical
and generic information related to the workshop and to its course. They try to speculate
about the current state of art of the research in the field and to evaluate the role of
reflection, AOSD and meta-data in the software evolution.

Can or Cannot the AOP Support the Software Evolution?
Comment by Walter Cazzola (Università di Milano, Italy)

In [2], software evolution is defined as a kind of software maintenance that takes place
only when the initial development was successful. The goal consists of adapting the
application to the ever changing user requirements and operating environment.

Software systems are often asked for promptly evolving to face critical situations
such as to repair security bugs, to avoid the failure of critical devices and to patch the
logic of a critical system. It is fairly evident the necessity of improving the software
adaptability and its promptness without impacting on the activity of the system itself.
This statement brings forth to the need for a system to manage itself to some extent,
to dynamically inspect component interfaces, to augment its application-specific func-
tionality with additional properties, and so on.

Independently of the mechanism adopted for planning the evolution, it requires a
mechanism that permits of concreting the evolution on the running system. In particular
this mechanism should be able of i) extruding the code interested by the evolution from
the whole system code, ii) carrying out the patches required by the planned evolution on
the located code. Often, both these steps must occur without compromising the system
stability and the services availability (that is, without stopping the system providing
them).

AOP [14] provides some mechanisms (join points, pointcut and aspect weaving)
that allow of modifying the behavior and the structure of an application. The AOP
technology better addresses functionality that crosscut the whole implementation of the
application. Evolution is a typical functionality that crosscut the code of many objects
in the system. Moreover, the AOP technology seems suitable to deal with the detection
of the code to evolve and with the instrumentation of such a code.

From AOP characteristics, it is fairly evident that AOP has the potential for providing
the necessary tools for instrumenting the code of a software system, especially when



46 W. Cazzola et al.

aspects can be plugged and unplugged at run-time. Pointcuts should be used to pick out
a region of the code involved by the evolution, whereas the advices should be used to
define how the selected region of code should evolve. Weaving such an aspect on the
running system should either inject new code or manipulate the existing code, allowing
the dynamic evolution of the system.

Unfortunately, to define pointcuts that point out the code interested by the evolution
is a hard task because such modifications can be scattered and spread all around the
code and not confined to a well-defined area that can be taken back to a method call.
Moreover the changes could entail only part of a statement, e.g., the exit condition of a
loop or an expression, and not the entire statement.

The AOP technology could be the right approach to deal with the evolution concern
but some scenarios are difficult to administrate with the current aspect-oriented frame-
works. The main issues that obstacle the use of the AOP approaches are: the granularity
of the requested manipulation and the locality of the code to manipulate. The necessary
granularity for the pointcut is too fine, traditional join point models refer to method
invocation in several way whereas we want to be able to manipulate a single statements
or a group of statements in somehow related. This means that we can manipulate the
method execution at its beginning and at its ending but we cannot alter its computational
flow requiring the execution of another statement between two statements of its body.

These problems are due to the poor expressiveness of the pointcut definition lan-
guages and of the related join point models provided by most of the actual AOP frame-
works. Nowadays AOP languages provide very basic pointcut definition languages that
heavily rely on the structure and syntax of the software application neglecting its se-
mantics. The developer has to identify and to specify in the correct way the pointcut by
using, what we call the linguistic pattern matching mechanism; it permits of locating
where an advice should be applied by describing the join points as a mix of references
to linguistic constructs (e.g., method calls) and of generic references to their position,
e.g., before or after it occurs. Therefore, it is difficult to define generic, reusable and
comprehensible pointcuts that are not tailored on a specific application. Moreover, cur-
rent join point model is too abstract. Join points are associated to a method call whereas
a finer model should be adopted to permit of altering each single statement.

Therefore, to benefit from the AOP technology, this one and the underlying join point
models, have to support a finer granularity of the join point model with a pointcut dec-
laration language that abstracts from the syntax and deals with the semantics/behavior
of the application. A few attempts in this direction are under development [5, 11, 15].

Unanticipated Software Evolution: Does It Exist?
Comment by Shigeru Chiba (Tokyo Institute of Technology, Japan)

An interesting issue on software evolution is what kind of evolution we must support.
For example, if we use AOP or reflection, we can extend our applications so that they
can fit new requirements. However, if we anticipate future changes of requirements
when we design the applications, we can prepare against those future changes. We will
define extra interfaces for better modularity. We may apply some design patterns such
as the visitor pattern. If we can perfectly anticipate future changes, we will not need



AOSD and Reflection: Benefits and Drawbacks to Software Evolution 47

AOP or reflection. We will be able to prepare within confines of existing technologies
such as object-oriented programming.

Some readers might say the value of AOP and reflection is that they provide better
syntax. Although preparation by existing technologies is often complicated, prepara-
tion by AOP or reflection is much simpler or unnecessary. However, I think that the
real value of AOP and reflection is that they can be used for implementing unantici-
pated evolution. If we use AOP or reflection, we do not have to prepare against future
changes at all when we design and implement a first version of our applications. On the
other hand, existing technologies such as object oriented programming do not address
unanticipated evolution. To adapt applications to new requirements, those technologies
force developers to edit and modify source code of the applications. I think that the
study in this research field should consider differences between anticipated evolution
and unanticipated one.

AOP vs. Reflection for Evolution
Comment by Gunter Saake (University of Magdeburg, Germany)

Evolution of software artifacts means continuous adaptation to a changing environment
and changing requirements. However, this process can be performed on different ab-
straction levels and in different kinds of environments. Important dimensions for adap-
tation are the following:

– Anticipated evolution can be foreseen at software production time. Typical tech-
niques can be built-in parametrization and reconfiguration methods, e.g., based on
components or design patterns. Unanticipated adaptation means the reaction on un-
foreseen changes, which is of course much harder.

– The adaption process can be performed manually as part of the maintenance pro-
cess. Automatic adaptation is possible in some situations but requires the detection
of environmental changes and planning and validation of adaption steps by the soft-
ware system itself.

– Adaptation can take place on different abstraction levels, from the model level (for
example UML) down to the code level.

These dimensions are not independent and usually they overlap. For example, planning
of an adaptation requires in most case a semantic-rich representation of the system and
it is hard to plan on the syntactic code-level.

How do AOSD and reflection fit to this general picture? Figure 1 shows the current
situation for AOP and reflection techniques.

AOP techniques can directly manipulate (syntactic) code. However, since common
AOP techniques are based on the syntactic structure of the program it is hard to use
them for semantic based tasks which are used for a fully automatic adaption. AOP is
general enough to allow manual adaptation to unforeseen changes.

Reflection and meta-programming on the other hand is based on an internal model of
the software. Current technology can use reflection for automatic reconfiguration at run-
time, which can be used for reaction on anticipated changes. Unanticipated changes are
hard to cope with basic reflection techniques, because that would require besides the



48 W. Cazzola et al.

automatic

adaptation

adaptation

manual

anticipated
evolution

unanticipated
evolution

code level

model level

?reflection

components

design patterns
AOP

meta−programming

Fig. 1. AOP versus Reflection

internal model of the software also a complete model of the environment which has
to be general enough to capture all unforeseen changes. Also it is hard to use these
techniques for the code level.

So, AOP and reflection are currently playing in different corners of the adaptation
techniques landscape. What is their interplay?

First of all, AOP techniques can be used to prepare software for reflection. Pointcuts
can identify points of interaction between meta-level and base-level in the code. This
can be used to built in the necessary communication between the base-level objects and
the meta-level objects.

Second, a combination of techniques from both approaches may shift one of them
a little bit toward the “hard” corner (automatic reaction to unanticipated changes [4]).
Pointcuts related to semantic properties as described for example in [15] in combina-
tion with dynamic weaving may become a (semi) automatic technique for performing
semantic adaptation resulting of a plan generated by a reflective analysis of the changed
environment.

Natural Selection and System Microevolution:
A New Modularity for RAM-SE’07?
Comment by Yvonne Coady (University of Victoria, Canada)

Microevolution can be thought of on a small scale, within a single population, while
macroevolution transcends the boundaries of a single species. Despite their differences,
evolution on both of these scales relies on the same mechanisms of evolutionary change,
such as natural selection. Natural selection is the differential survival of a subset of a
population over other subsets. In terms of software, we can apply theories of microevo-
lution within single, open source systems, and can see how natural selection drives



AOSD and Reflection: Benefits and Drawbacks to Software Evolution 49

evolution. For example, if we consider a single population such as Linux, natural selec-
tion determines which kernel extensions survive as the system evolves. But what factors
determine survival of the fittest? Why do some extensions survive while others do not?

Companies and governments alike are relying upon evolution of Linux to reduce
the cost and time-to-market of developing WiFi routers, cell phones, and telecommu-
nications equipment and of running services on specialized servers, clusters, and high-
performance supercomputers. One important benefit of starting from the same Linux
source for all of these systems is that developers have access to this open source project
and can easily create variants that are directly tailored for their application domain.
Major evolutionary variants of a mainline Linux kernel are typically created by incre-
mentally adding kernel extensions by fine grained instrumentation of source.

Current best practice is to implementing such extensions is by directly instrumenting
the code-base of a mainline Linux kernel. Upon completing the development of an
extension, developers extract the instrumentation as a whole with tools such as diff
to create a “patch”. They can then share the resulting patch with others, who in turn
integrate the extension into their version of the kernel using tools such as patch.

It is interesting to note that patch sets must be approved before they can be incor-
porated into a mainline version of the kernel. As a result, all instrumentation must be
reasoned about and tested comprehensively. The problem is that, though well local-
ized, patch sets themselves are almost impossible to reason about at a high-level, as
their granularity of interaction is expressed in terms of line numbers with very little
surrounding context.

Given that there are a number of highly invasive patch sets that have yet to be main-
lined, it is indeed reasonable to assume that it is ultimately their lack of explicit repre-
sentation of interaction with the rest of the system that may be an ultimate determining
factor in survival. That is, highly invasive patches are exterminated due to natural selec-
tion, meaning that modularity is indeed an evolutionary factor in system microevolution.

For most of these extensions however, the answer does not come in the form of
aspects as we know them today. This is due to the aggressive nature of the required
refactoring necessary to reveal suitable join points given current join point models.
Aggressive refactoring is not an option in this context, within this domain, as it would
make the entire patch set less likely to be adopted into a mainline kernel.

Others have suggested a need for a finer-grained join point model, and this challenge
problem of microevolution seems to echo that same call. At the same time however, it
is necessary that these new mechanisms provide substantially more semantic leverage
than that which is currently available in tools such as diff and patch. The question as
to how a new modularity can be developed to simultaneously provide (1) fine-grained
points of interaction, along with (2) a high enough level of abstraction upon which
semantic conflicts can be reasoned about, is an interesting challenge problem for par-
ticipants at RAM-SE’07!

3 Final Remarks

The workshop’s main goal was to bring together researchers interested in the field and
to allow them to get to know each other and each other’s work. The workshop lived



50 W. Cazzola et al.

up to its expectations, with high-quality submissions and presentations, and lively and
stimulating discussions. We hope participants found the workshop interesting and use-
ful, and encourage them to finalize their position papers and submit them as full papers
to international conferences interested in the topics of this workshop.

Acknowledgements. We wish to thank Awais Rashid, Theo D’Hondt, Mario Südholt
and Hidehiko Masuhara both for their interest in the workshop, and for their help during
the workshop as chairmen and speakers. We wish also to thank all the researchers that
have participated to the workshop.

We have also to thank the Department of Informatics and Communication of the
University of Milan, the Department of Mathematical and Computing Sciences of the
Tokyo institute of Technology and the Institute für Technische und Betriebliche Infor-
mationssysteme, Otto-von-Guericke-Universität Magdeburg for their various supports.

References

1. Francesca Arcelli and Claudia Raibulet. Evolution of an Adaptive Middleware Exploiting
Architectural Reflection. In Walter Cazzola, Shigeru Chiba, Yvonne Coady, and Gunter
Saake, editors, Proceedings of ECOOP’2006 Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE’06), pages 49–58, Nantes, France, July 2006.

2. Keith H. Bennett and Václav T. Rajlich. Software Maintenance and Evolution: a Roadmap.
In Anthony Finkelstein, editor, The Future of Software Engineering, pages 75–87. ACM
Press, 2000.

3. Javier Cámara Moreno, Carlos Canal, Javier Cubo, and Juan M. Murillo Rodriguez. An
Aspect-Oriented Adaptation Framework for Dynamic Component Evolution. In Walter
Cazzola, Shigeru Chiba, Yvonne Coady, and Gunter Saake, editors, Proceedings of
ECOOP’2006 Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-
SE’06), pages 59–70, Nantes, France, July 2006.

4. Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Software Evolution through Dynamic
Adaptation of Its OO Design. In Hans-Dieter Ehrich, John-Jules Meyer, and Mark D. Ryan,
editors, Objects, Agents and Features: Structuring Mechanisms for Contemporary Soft-
ware, Lecture Notes in Computer Science 2975, pages 69–84. Springer-Verlag, Heidelberg,
Germany, July 2004.

5. Walter Cazzola, Sonia Pini, and Massimo Ancona. AOP for Software Evolution: A Design
Oriented Approach. In Proceedings of the 10th Annual ACM Symposium on Applied Com-
puting (SAC’05), pages 1356–1360, Santa Fe, New Mexico, USA, on 13th-17th of March
2005. ACM Press.

6. Walter Cazzola, Sonia Pini, and Massimo Ancona. Design-Based Pointcuts Robustness
Against Software Evolution. In Walter Cazzola, Shigeru Chiba, Yvonne Coady, and Gunter
Saake, editors, Proceedings of ECOOP’2006 Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE’06), pages 35–45, Nantes, France, July 2006.

7. Alan Cyment, Nicolas Kicillof, Rubén Altman, and Fernando Asteasuain. Improving AOP
Systems’ Evolvability by Decoupling Advices from Base Code. In Walter Cazzola, Shigeru
Chiba, Yvonne Coady, and Gunter Saake, editors, Proceedings of ECOOP’2006 Work-
shop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’06), pages 9–21,
Nantes, France, July 2006.



AOSD and Reflection: Benefits and Drawbacks to Software Evolution 51

8. Mark Eaddy and Alfred Aho. Statement Annotations for Fine-Grained Advising. In Wal-
ter Cazzola, Shigeru Chiba, Yvonne Coady, and Gunter Saake, editors, Proceedings of
ECOOP’2006 Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-
SE’06), pages 89–99, Nantes, France, July 2006.

9. Peter Ebraert and Theo D’Hondt. Dynamic Refactorings: Improving the Program Structure
at Run-time. In Walter Cazzola, Shigeru Chiba, Yvonne Coady, and Gunter Saake, editors,
Proceedings of ECOOP’2006 Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE’06), pages 101–110, Nantes, France, July 2006.

10. Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is Quantification
and Obliviousness. In Proceedings of OOPSLA 2000 Workshop on Advanced Separation of
Concerns, Minneapolis, USA, October 2000.

11. Jeff Gray, Janos Sztipanovits, Douglas C. Schmidt, Ted Bapty, Sandeep Neema, and Anirud-
dha Gokhale. Two-Level Aspect Weaving to Support Evolution in Model-Driven Synthesis.
In Robert E. Filman, Tzilla Elrad, Siobhàn Clarke, and Mehmet Akşit, editors, Aspect-
Oriented Software Development, chapter 30, pages 681–709. Addison-Wesley, October 2004.

12. Michihiro Horie and Shigeru Chiba. An Aspect-Aware Outline Viewer. In Walter Cazzola,
Shigeru Chiba, Yvonne Coady, and Gunter Saake, editors, Proceedings of ECOOP’2006
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’06), pages
71–75, Nantes, France, July 2006.

13. Christian Kästner, Sven Apel, and Gunter Saake. Implementing Bounded Aspect Quan-
tification in AspectJ. In Walter Cazzola, Shigeru Chiba, Yvonne Coady, and Gunter Saake,
editors, Proceedings of ECOOP’2006 Workshop on Reflection, AOP and Meta-Data for Soft-
ware Evolution (RAM-SE’06), pages 111–122, Nantes, France, July 2006.

14. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In 11th European Con-
ference on Object Oriented Programming (ECOOP’97), Lecture Notes in Computer Science
1241, pages 220–242, Helsinki, Finland, June 1997. Springer-Verlag.

15. Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive Pointcuts for In-
creased Modularity. In Andrew P. Black, editor, Proceedings of the 19th European Confer-
ence on Object-Oriented Programming (ECOOP’05), LNCS 3586, pages 214–240, Glasgow,
Scotland, July 2005. Springer.

16. Miguel Ángel Pérez Toledano, Amparo Navasa Martinez, Juan M. Murillo Rodriguez, and
Carlos Canal. Making Aspect Oriented System Evolution Safer. In Walter Cazzola, Shigeru
Chiba, Yvonne Coady, and Gunter Saake, editors, Proceedings of ECOOP’2006 Workshop
on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’06), pages 23–34,
Nantes, France, July 2006.

17. Awais Rashid. Aspects and Evolution: The Case for Versioned Types and Meta-Aspect Proto-
cols. In Walter Cazzola, Shigeru Chiba, Yvonne Coady, and Gunter Saake, editors, Proceed-
ings of ECOOP’2006 Workshop on Reflection, AOP and Meta-Data for Software Evolution
(RAM-SE’06), pages 3–5, Nantes, France, July 2006.

18. Arturo Zambrano, Tomás Vera, and Silvia Gordillo. Solving Aspectual Semantic Conflicts
in Resource Aware Systems. In Walter Cazzola, Shigeru Chiba, Yvonne Coady, and Gunter
Saake, editors, Proceedings of ECOOP’2006 Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE’06), pages 79–88, Nantes, France, July 2006.



52 W. Cazzola et al.

A Workshop Attendee

The success of the workshop is mainly due to the people that have attended it and to
their effort to participate to the discussions. The following is the list of the attendees in
alphabetical order.

Name Affiliation Country e-mail
Altman, Rubén Universidad de Buenos Aires Argentina ruben.altman@miva.com
Bernard, Emmanuel jBoss Europe France
Beurton-aimar Marie LaBRI, Université de Bordeaux 1 France aimar@labri.u-bordeaux.fr
Cámara Moreno, Javier Universidad de Málaga Spain jcamara@lcc.uma.es
Cazzola, Walter Università degli Studi di Milano Italy cazzola@dico.unimi.it
Chiba, Shigeru Tokyo Institute of Technology Japan chiba@is.titech.ac.jp
Cyment, Alan Universidad de Buenos Aires Argentina acyment@yahoo.com
David, Pierre-Charles France Télécom R&D France pierrecharles.david@francetelecom.com
D’Hondt, Theo Vrij Universiteit Brussel Belgium tjdhondt@vub.ac.be
Dubochet, Gilles École Polytechnique Fédérale de Lausanne Switzerland gilles.dubochet@epfl.ch
Eaddy, Mark Columbia University USA eaddy@cs.columbia.edu
Ebraert, Peter Vrij Universiteit Brussel Belgium pebraert@vub.ac.be
Horie, Michihiro Tokyo Institute of Technology Japan horie@csg.is.titech.ac.jp
Kästner, Christian University of Magdeburg Germany christian.k@stner.de
Masuhara, Hidehiko University of Tokyo Japan masuhara@graco.c.u-tokyo.ac.jp
Meister, Lior Rafael Israel meister@rafael.co.il
Nguyen, Ha École des Mines de Nantes France ha.nguyen@emn.fr
Pérez Toledano, Miguel Ángel University of Extremadura Spain toledano@unex.es
Pini, Sonia Università degli Studi di Genova Italy pini@disi.unige.it
Raibulet, Claudia Università di Milano Bicocca Italy raibulet@disco.unimib.it
Rashid, Awais Lancaster University United Kingdom marash@comp.lancs.ac.uk
Saake, Gunter University of Magdeburg Germany saake@iti.cs.uni-magdeburg.de
Shakil Khan, Safoora Lancaster University United Kingdom safoorashakil@hotmail.com
Stein, Krogdahl University of Oslo Norway stein.krogdahl@ifi.uio.no
Südholt, Mario École des Mines de Nantes France sudholt@emn.fr
Tsadock, Carmit Rafael Israel
Zambrano, Arturo Universidad de La Plata Argentina arturo@sol.info.unlp.edu.ar


	Workshop Overview: Session by Session
	Software Evolution Trends: The Organizers' Opinion
	Final Remarks
	Workshop Attendee

