Walter Cazzola, Sonia Pini, and Massimo Ancona. The Role of Design Information in Software
Evolution. In Proceedings of the 2" ECOOP Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE’05), pages 59-70, Glasgow, Scotland, July 2005.

The Role of Design Information
in Software Evolution

Walter Cazzola!, Sonia PiniZ, and Massimo Ancona?

1 Department of Informatics and Communication,
Universita degli Studi di Milano, Italy
cazzola@dico.unimi.it
2 Department of Informatics and Computer Science
Universita degli Studi di Genova, Italy
{pinilancona}@disi.unige.it

Abstract. Software modeling has received a lot a of attention in the last decade
and now is an important support for the design process.

Actually, the design process is very important to the usability and understand-
ability of the system, for example functional requirements present a complete de-
scription of how the system will function from the user’s perspective, while non-
functional requirements dictate properties and impose constraints on the project
or system.

The design models and implementation code must be strictly connected, i.e. we
must have correlation and consistency between the two previous views, and this
correlation must exist during all the software cycle. Often, the early stages of
development, the specifications and the design of the system, are ignored once the
code has been developed. This practice cause a lot of problems, in particular when
the system must evolve. Nowadays, to maintain a software is a difficult task, since
there is a high coupling degree between the software itself and its environment.
Often, changes in the environment cause changes in the software, in other words,
the system must evolve itself to follow the evolution of its environment.
Typically, a design is created initially, but as the code gets written and modified,
the design is not updated to reflect such changes.

This paper describes and discusses how the design information can be used to
drive the software evolution and consequently to maintain consistency among
design and code.

1 Introduction

In the last few years, methodologies to automate part of the or the whole software life
cycle have been widely studied in software system development. These methodologies
can be used to create and/or maintain software, i.e. they are applicable to all the phases
of the software life cycle.

Evolution and maintenance are phenomena more present in the software develop-
ment area, since an intrinsic property of software in real world environment is its need to
evolve. The laws of software evolution [11] said ’a program that is used in a real-world
environment must change, or became progressively less useful in that environment’.



When a program evolves, it becomes more complex and automatic techniques to sup-
port these phenomena are fundamental to improve the management of unanticipated
software evolution and the software efficiency.

The design process is very important to the usability and understandability of the
system, for example functional requirements present a complete description of how the
system will function from the user’s perspective, while non-functional requirements
dictate properties and impose constraints on the project or system. At the beginning
design view and implementation view are consistent since one is derived and developed
form the other, and we must preserve the correlation between the two view, and this
correlation must exist for all the software life-cycle. But often, during the evolution and
maintenance phase a discrepancy between the two view can occur, because the initial
stages of development (the system specifications and the design) are ignored once the
code has been developed. The main problem is the fact that models are shown like only
an intermediate step in the software development life-cycle. This practice causes several
problems when the system must evolve, because the evolution of only one view of the
system causes a gap between them, that could create confusion, misunderstanding and
mistakes.

The term gap has been stated by Rumbaugh [16], "too often, there is still a gap
between concept and execution’ as a problem area in his retrospective review of O-O
methodology. In the past developers have tried different ways to link design to imple-
mentation, and to tackle this gap problem. One of the noted effort in this endeavor is
by looking at the gap from program viewpoint, describing the mapping from O-O pro-
gramming languages properties to their corresponding UML concepts.

To most people software is the code that is the and result of the software devel-
opment process. When a company starts developing a new product, it typically uses a
clean forward engineering scheme and goes (iteratively or not) through requirements
analysis, high-level design, design and implementation phases. This development pro-
cess changes when a first implementation is finished. From then on, the implementation
receives more and more attention. This restricted view of software is one of the main
causes of the many problems associated with software development and its evolution.
For example, a kind of evolution could require to add new functionality not available in
the earlier version of the system. When the change is not applied also to the design view,
it is hard for the manager, programmer and customer to have the opportunity to plan fu-
ture directions, goals, schedule and the necessary budget, since the design view could
not provide an immediate and understandable global view of the system consistent with
the code. Moreover, it also hinders the integration of new functionality.

This problem, where implementation and design evolve in different directions be-
cause they are no explicitly related, is also know as drift/erosion. It is well-known that
uncontrolled change to software can lead to increasing evolution cost caused by deteri-
orating structure and compromised system quality [10]. For complex systems, the need
to carefully manage system evolution is a critical task. Wide integrated software system
must continuously change to satisfy the evolving requirements. Adapting such software
can be very difficult, because of the software size and complexity and variety of users
with conflicting requirements. When there is a gap between the views it become diffi-
cult or impossible to know all the necessary changes to apply, therefore the evolution

60



link-id
Narrow St.: Road Huﬂusukoad I

Narrow St: Road IM{UEEerSI.:Road l

TL2: Traffic Light link-id Jink-id
link-id link—id link—id link-id
LD Tink-id
\\\\\\\\\ o | LeftSt:Road Iml Church St: Road I lRighlSL:Road l Left St: Road l ght St Road
s link-id Tr k-id
i link—id ik link—id
TLI: Traffic Light ﬁ
Lower St: Road IL% Main St.: Road l Lower St.: Road 4| Main St: Road l
has = tas [1as
[m: Traffic Light Hl TL4: Traffic Light l lm: Traffic Light Hl TL4: Traffic Light l
e kit il N Rt dkivsiintut all prossmser
(a) Standard layout (b) Modified layout

Fig. 1. Object diagrams: a) object diagram for UTCS before the evolution b) modified
object diagram after the evolution.

cannot be planned in-the-large. To simplify the evolution process, it is necessary to have
a global view of the system to apply all the evolutionary steps.

In our point of view, the global view may be well represented by the design infor-
mation, because it is usually graphic, and more intuitive and understandable than the
code.

The paper describes and discusses how the design information can be used to drive
the software evolution and consequently to preserve the consistency among design and
code views.

2 System Evolution through Design Information

With the help of an example, we describe how the design information, in our case
UML [2] specifications, can be used to evolve a software system.

The Urban Traffic Control System (UCTS) is a typical example of system subject to
unpredictable evolution, since the requirements can dynamically change and the system
should adapt itself, as soon as possible, to such changes. Unanticipated software evolu-
tion is not something for which one can prepare during the design of a software system.
Examples of unanticipated and hard to plan problems may be: road maintenance, traffic
lights disruptions, car crashes, traffic jam and so on.

In the design phase, software engineers produce a lot of diagrams to identify do-
main concepts, to describe the business processes, and the physical structure of the
environment, and so on.

The design information we consider can be divided in two categories: system struc-
ture and behavior.

— Structural Design Information is an explicit description of the structure of the sys-
tem.

— Behavioral Design Information describe the computations and the communications
carried out by the application objects, e.g. we consider object behavior, collabora-
tion between objects, state of the object, and so on.

61



Structure and behavior of the system are modeled by class/object diagrams, sequence
or collaboration diagrams and state diagrams.

The UTCS for our simple city, can be described by the object diagram showed in
Fig. 1a, that defines the interconnections among roads and crossroads and a statechart
that express the dependencies among traffic lights.

These diagrams well describe the system structure and behavior and its evolution
should pass through these data to be well planned and integrated with the existing code.

We suppose that the system evolves because of a car accident that temporarily
blocks the traffic flow in Church Street. To face a similar event forces several small
changes in the whole city structure and, consequently, to the traffic flow. Several streets
must be followed in a different direction to allow cars of reaching every place in the
city. Traffic lights governing the traffic in and out of the blocked street must be turned
off.

All the changes required must be applied both in design and implementation view
to maintain the consistency between the views of the system.

The evolved system, as well as the original system, can be or better should be mod-
eled by using, for example, UML diagrams. If this is the context of the evolution, then
the original diagrams can determine the code to be adapted, the evolved diagrams spec-
ify how the code has to be adapted, and moreover the difference between such diagrams
before and after the evolution represent the evolution itself.

Applying evolution at high level of abstraction, like at UML level has the advantage
that software designers don’t have to worry about the syntax of all possible program-
ming language, and have a global view of the system. And as Blaha et al. [1] had said
“Models allow a developer to focus on the essential aspects of an application and defer
details”.

The Fig. 1b show how the object model changes after this event. By comparing the
diagrams in Fig. 1 it is possible to understand how the UCTS is configured after the
evolution.

When the models are evolved it is necessary to map this evolution into the imple-
mentation code. To realize this issues, in our opinion, we must have got the design
information available not only at design time, but also at compile and run time, to ob-
tain this result our idea is to maintain this design information inside the system and
to link every component of the UML diagrams to the respective portion of code using
meta-data facility.

In this way, using the two object diagrams, before and after the evolution, and the
meta-data inside the code it is possible to propagate the evolution to the code.

With the increased interest in evolution and maintenance, UML vendors seek ways
to support software developers in applying maintenance. The problem with such tools is
that the UML meta-model is inadequate to maintain the consistency between the model
and the code while one of them gets evolved [17].

In the past developers have tried different ways to link design to implementation,
and to tackle this problem, to date, no existing, general purpose methodology for this
issue. We propose an infrastructure to dynamic adapt software system, called RAMSES
[4]. Our project involves a reflective middleware whose aim consists of consistently
evolving software systems, both design information and implementation code, against

62



run-time changes. This middleware provides the ability to change the system at run-time
without stopping it, by using its design information. Many important applications must
run continuously and without interruption. This is especially true of mission critical
applications, such as telephone traffic control system, and air traffic control system.
Our goal is to show that dynamic software evolution can be achieved in a practical
manner that is flexible, efficient, robust, and easy to use.

RAMSES (Reflective and Adaptive Middleware for Software Evolution of Systems)
performs two phases to carry out our dynamic self-adaptation. In the first phase, the
RAMSES’s meta-level extracts the design information as XMI| (XML Meta-data Inter-
change [13]) schema from the base application and it reifies them in the meta-level to
constitute the meta-data. Whereas, in the second phase, RAMSES’s meta-level plans the
dynamic adaptation of the base-level system, get the run-time events, evolves the meta-
data against the detected event, checks the consistency, and finally reflects the modified
data to the base-level.

In this paper, we treat only the role of the design information in software evolution.

3 Defining Meta-Data

In our opinion, a simple way for maintaining consistency is that design information are
linked with the source code. To synchronize design and implementation, our proposal
consists of using a mechanism that permits to express design as a set of meta-data over
the implementation. To back our idea we have this definition: Software design is an
abstraction of implementation. This definition is consistent with descriptions of design
that can be found in software engineering literature [7], and moreover this definition
said that design is explicitly related to the implementation. To express design infor-
mation into the code of the system as meta-data, it is necessary to analyze what is a
meta-data and how it can be used.

Meta-data literally data about data, or also information about information is a term
used in several communities in different ways.

We can say that meta-data are structured information that describes, explains, lo-
cates or otherwise makes it easier to retrieve, use, or manage an information resource.

There are three main type of meta-data:

— Descriptive meta-data describes a resource for purposes such as discovery and
identification, e.g., documentation.

— Structural meta-data indicates how compound objects are put together, e.g.,. they
are used to describe the structure, layout and contents of an artifact.

— Administrative meta-data provides information to help manage an artifact, e.g.,
version control, location information, acquisition information.

An important reason to create descriptive meta-data is to facilitate the discovery of rele-
vant information by describing an artifact with meta-data simplify its understandability
by a program, promoting the interoperability. For our scope, we need to identify an
artifact and to link up it with its design information. These meta-data could be automat-
ically derived (extracted) from the design models of the system, and then automatically
inserted into the code in the right places. To interleave the design information with the

63



related code, is the better way of rendering the code well documented and of granting
the consistency and a prompt update of the design and implementation views. There
are two ways to obtain a high coupling between design information and system code,
the first consists of deriving the design information from the system code, e.g. by using
tools for reverse engineering it is possible to obtain the UML diagrams from code, the
second consists of deriving the skeleton of the program from the design information,
e.g. tools as Rational Rose, and Poseidon permits of generating the code directly from
the UML diagrams.

An implementing mechanism to link up design information and system code could
be the meta-data facility present in a lot of programming languages. In general, meta-
data describe the implemented code, by storing information regarding classes, methods,
and types.

Several modern programming languages provide the programmers with a facility
for annotating the code with meta-data. In the case of the JOva programming lan-
guage, for example, this facility allows developers to define custom annotation types
and to annotate fields, methods, classes, and other program elements with annotations
corresponding to these types. Development and deployment tools can read these annota-
tions and process them producing additional JOVQ programming language source files,
XML document, or other artifacts to be used in conjunction with the program containing
the annotations.

Our idea consists of using the JOVQ meta-data facility to express design information
over the implementation. In particular, we think to use as design information the UML
diagrams, or more just to use the textual representation of the UML diagrams.

4 UML as Meta-Data

The UML is de facto the standard (graphical) language used during the design process,
therefore our project considers its diagrams as a good representation of the system de-
sign information.

Our scope is to simplify the evolution/maintenance mechanism. That is, to render
the changes required by the evolution immediately available both to the design models
and to the implementation, all that we will have as direct consequence the maintenance
of the consistency among the design and the code.

In our view, the UML diagrams and the code are seen as different views (design
view and implementation view) on a software system, so that consistency between the
views is preserved by modeling a coherent refactoring of these views. To realize our
project, in particular we need to identify which diagrams are affected by the evolution
and also which pieces of software these diagrams describe, in other words, we need
a precise mapping between the two views mentioned above. The UML diagrams are,
typically, available at design time, to maintain the mapping between the design and im-
plementation view and then the consistency among design models and implementation
model during the evolution phase, all this information must be available also at loading
and run-time.

Our proposal consists of decorating the system code with the design information.
In this way, we obtain a twofold advantage: to render the design information available

64



at run-time; and, to create a mapping between the design and the implementation view.
The decoration will be realized by using Java annotations. Since UML is a graphical
language it is difficult to deal automatically with its diagrams, therefore, we have to
convert them into a textual representation to use them as meta-data.

We adopt, as most of the UML tools, the XML Meta-data Interchange (XMI [13]) as
handling form for the design information. XMI provides a translation of UML diagrams
in a text-based form more suitable for run-time manipulation. The XMI standard gives
a guideline for translating each UML diagram in XML. Each diagram is assimilated to
a graph whose nodes are the diagram’s components (e.g., classes, states, actions and
so on), and arcs represents the relation among the components. The graph is decorated
with XML tag describing the properties of the corresponding UML component.

An example of the translation between UML diagram and XML is showed in the
following listing.

<UML:0bject xmi.id = ’Im169f2c98m10436£02a32mm7cfb’
name = ’TL2’ visibility = ’public’ isSpecification = ’false’>
<UML:Instance.classifier>
<UML:Class xmi.idref = ’Im13db344bmi041dfafcbemm7ech’/>
</UML:Instance.classifier>
<UML:Instance.linkEnd>
<UML:LinkEnd xmi.idref = ’Im169f£2c98m10436f02a32mm7cdb’/>
</UML: Instance . linkEnd>
</UML:0bject>

<UML:0bject xmi.id = ’Im169£2c98m10436£02a32mm7cec’
name = ’Left St’ visibility = ’public’ isSpecification = ’false’>
<UML:Instance.classifier>
<UML:Class xmi.idref = ’Im13db344bm1041dfafcbemm7cOa’/>
</UML:Instance.classifier>
<UML:Instance.linkEnd>
<UML:LinkEnd xmi.idref = ’Im169£2c98m10436f02a32mm7cdc’/>
</UML: Instance .1linkEnd>
<UML: Instance.ownedLink>
<UML:Link xmi.id=’Im169f2c98m10436f02a32mm7cdd’ name=’has’ isSpecification=’false’>
<UML:Link.connection>
<UML:LinkEnd xmi.id = ’Im169f2c98m10436£02a32mm7cdc’ isSpecification = ’false’>
<UML:LinkEnd.instance>
<UML:0bject xmi.idref = ’>Im169f2c98m10436f02a32mm7cec’/>
</UML:LinkEnd.instance>
</UML: LinkEnd>
<UML:LinkEnd xmi.id = ’Im169f2c98m10436£02a32mm7cdb’ isSpecification = ’false’>
<UML:LinkEnd.instance>
<UML:0bject xmi.idref = ’>Im169f2c98m10436f02a32mm7cfb’/>
</UML:LinkEnd.instance>
</UML: LinkEnd>
</UML:Link.connection>
</UML:Link>
</UML:Instance.ownedLink>
</UML:0bject>

The above portion of XMI code translates part of the object diagram showed in
Fig. 1a. In particular, it describes the object named TL2 and Left St and their inter-
connection. The instances description of a class is grouped into the XMI tag UML.. Object.
The two occurrences showed in the above snippet describe respectively the object TL2
and Left St in Fig. la. The name of the instance is contained in the attribute name,

65



whereas the type of the instance is contained in the sub-tag Class. The xmi.idref
refers to description of the corresponding class into the class diagram. The has as-
sociation is described through the tags UML: Instance.linkEnd that specify which
instances are involved into the association and the tag UML: Instance. ownedLink that
describes the nature of the association.

S How maintain consistency between design and implementation

Our goal, consists of transform system models and code to implement required mod-
ifications, and propagate the transformation effect across the views, this can be faced
using model-driven approach [9], i.e. to tackle the problem of evolving complex soft-
ware systems by raising the level of abstraction from source code to models, and then
maintain the consistency between model and code.

Since software designers think about evolution at the design level, and since design
information provide an immediate and understandable global view of the system, it is
quite natural to exploit the UML and its unified meta-model for expressing evolution.

Model-driven engineering is a software engineering approach that promotes the us-
age of models and transformations as primary artifacts. In our context, we can said
design information is a model and implementation code is a model; and following this
reasoning evolution and consistency between design and code is simply a model trans-
formation.

We could use, in first phase of the evolution, horizontal transformation [6] on design
models to describe the evolution of the system, and vertical transformation [6] in last
phase of evolution to propagate the evolution at the implementation in order to main-
tain consistency among the models. A crucial aspect of model transformation is model
consistency, since UML model is typically composed of many different diagrams, the
consistency between all these diagrams need to maintained when any of them evolves.

Graph transformation seems to be a suitable technology and associated formalism
to specify and apply model transformations for the following reasons: first graphs are
a natural representation of models that are intrinsically graph-based; last graphs trans-
formation theory provides a formal foundation for the automatic application of model
transformations. Table 1 show a direct correspondence between software evolution and
graph transformation.

Evolution Graph transformation
Software Artifact column Graph
Evolution Graph Production

Composite Evolution |Composition of Graph Production
Evolution Application|Graph Transformation

Table 1. Correspondence between evolution and graph transformation.

66



6 How to Use Meta-Data for Evolution

To annotate the code with design information we have to extract from each UML dia-
gram its XM description that represents the perfect reification of the design information
at run-time.

The meta-data provided by a single UML diagram are many and, above all, refer
to different part of code, e.g., a class diagram describes every class in the system and
their relations, and this information encode both the class definitions and the defini-
tion of some of their attributes, that have to be annotated. Since the main elements of a
sequence diagram are objects and messages, from them it is possible to extract informa-
tion regarding the instances of a class, and the interactions among them, e.g., creation,
invocation of methods, destruction and so on. All this information is inserted into the
body of methods as annotations.

The right positioning of the annotations (i.e., from UML design information to Java
meta-data) is possible by mapping the UML model components to the OMG Interface
Description Language (IDL) and achieved by applying the meta-object facility (MOF)-
IDL mapping. The existence of this IDL representation of UML means that each UML
element, such as associations, classes, actions, operations and so on, has an |DL de-
scription. The last step to complete the mapping consists of applying an IDL to Java
mapping (e.g., Java _IDL).

To realize the insertion of the XMI code into the right code place, we use Java
annotation facility. An annotation is a tag that we insert into the source code. It does not
alter the semantics of the code, but instead allows an external application of recognizing
and interpreting the tag for its purpose.

We go to explain how to use the annotations for our scope. Java allows the pro-
grammer to define and use user-defined annotation types. The facility consists of a syn-
tax for declaring annotation types, a syntax for annotating declarations, APIs for read-
ing annotations, and a class file representation for annotations. To create an annotation
we need to define an annotation type first. Annotation types are defined like interfaces
with an ’ @’ (at) sign before the interface definition, and annotations are specified in the
program source by using the @’ sign, followed by the annotation name.

The following listing shows the JOVQ annotation type CLASS declaration, this kind
of annotation will decorate the classes of the system, and the values of the attributes of
each annotation derives by the corresponding class diagram.

import java.lang.annotation.*;

Q@Retention(RetentionPolicy.RUNTIME)
Q@Target (ElementType.CLASS)
public @interface CLASS{

String XMI_IDQ);

String XMI_name();

ATTRIBUTE[] attributes(); /array of annotation type ATTRIBUTE
ASSOCIATION[] associations(); /array of annotation type ASSOCIATION
METHOD[] methods () ; //array of annotation type METHOD

67



Note that the annotation type declaration is itself annotated. Such annotations are
called meta-annotations. The first (GRetention(RetentionPolicy.RUNTIME)) indi-
cates that annotations with this type are to be retained by the virtual machine so they
can be reflectively read at run-time. The second (@Target (ElementType.CLASS)) in-
dicates that this annotation type can be used to annotate only class (type) declarations.

QRetention(RetentionPolicy.RUNTIME)

linkaid] public Q@interface MESSAGE{
Traffic Light String XMI_ID();
o N —sem_id:String String XMI_name();

Road s ~color:String OBJECT Link-start();

—road_id:String —corner—id:String OBJECT Link-end() ;
Hurn—off ywvoid 3}
+tick():v0id
+turn—on()

asssyncid

Fig. 3. declaration of annotation type MES-
Fig. 2. An UTCS class diagram fragment SAGE

The following annotation is derived from the class diagram showed in Fig. 2.

Q@CLASS (XMI_ID="Im13db344bm1041dfafc5emm7cOa",

XMI_name="Road",

attributes={@ATTRIBUTE (XMI_ID="Im13db344bm1041dfafc5emm7bf6",
XMI_name="road_id"),

QATTRIBUTE (XMI_ID="Im13db344bm1041dfafc5emm7be4",

XMI_name="road_link")},

associations={@ASSOCIATION (XMI_ID="Im13db344bm1041dfafc5emm7bba",
XMI_name="has",
multiplicity="Im13db344bm1041dfafcbemm7bbe",
associationEnd="Im13db344bm1041dfafcbemm7ec5")},

)

public class Road{
private String road_id;
private String road_link;
private Traffic_Light[] hastrafficlights;

The declaration of the annotation type MESSAGE showed Fig. 3 will be used to deco-
rate the pieces of code, statements and so on, which map the message exchanged among
objects, the values of the attributes of each annotation derives by the corresponding se-
quence and collaboration diagrams.

The Java annotation mechanism is not completely adequate for our purposes, be-
cause it permits annotating only the declarations whereas the UML diagrams have a
finer granularity. The sequence diagrams have information about blocks of statement,

68



and then the linked annotations would to be inserted inside the bodies, the the present
mechanism of JOvA does not allow this.

To overcome this problem, we are extending the JOVQ annotation mechanism and
therefore the JOvA language to support custom annotations on arbitrary code blocks
or statements. This new Java dialect, called @JOva extends the syntax of the Ja-
VA language to allow a more general form of annotation. To carry out this job we are
benefiting of our experience on [a]C# [5].

Obviously, the mechanism to insert the annotations into the application code is com-
pletely transparent to the developer because it is realized as a preprocessor that analyzes
the design information and annotates on-the-fly the code by byte-code instrumentation.

In this way any kind of evolution could be developed at the design level (i.e. at the
design view of the system), simply modifying all the necessary diagrams and dynami-
cally realized by retrieving the related annotations and instrumenting the code according
to the planned evolution.

7 Conclusions

This paper presented an approach to use the design information for the dynamic soft-
ware evolution. This approach is based on some key concepts. The first concept is to
maintain a strict correlation between the design information and the application code,
in an automatic way. The second is to map all the evolutionary steps both in the design
view and in the application code, so that the previous requirement is always satisfied.
Into our work, we have used as design information UML diagram, and as programming
language JOva. The correlation between the two views of the system is realized thanks
to the XMI description extracted by the UML diagrams, and thanks to the annotation
facility of JOva programming language.

References

1. Michael R. Blaha and William J. Premerlani. A Catalog of Object Model Transformations. In
Proceedings of 3'® Working Conference on Reverse Engineering (WCRE’96), pages 87-96,
Montrey, CA, USA, November 1996. IEEE Computer Society Press.

2. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User
Guide. Object Technology Series. Addison-Wesley, Reading, Massachusetts, third edition,
February 1999.

3. Walter Cazzola, Antonio Cisternino, and Diego Colombo. [a]C#: C# with a Customizable
Code Annotation Mechanism. In Proceedings of the 10th Annual ACM Symposium on Ap-
plied Computing (SAC’05), pages 1274-1278, Santa Fe, New Mexico, USA, on 13th-17th of
March 2005. ACM Press.

4. Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. RAMSES: a Reflective Middleware
for Software Evolution. In Proceedings of the 1st ECOOP Workshop on Reflection, AOP and
Meta-Data for Software Evolution (RAM-SE’04), in 18th European Conference on Object-
Oriented Programming (ECOOP’04), pages 21-26, Oslo, Norway, on 15th June 2004.

5. Walter Cazzola, Sonia Pini, and Massimo Ancona. AOP for Software Evolution: A Design
Oriented Approach. In Proceedings of the 10th Annual ACM Symposium on Applied Com-
puting (SAC’05), pages 1356-1360, Santa Fe, New Mexico, USA, on 13th-17th of March
2005. ACM Press.

69



10.

11.

12.

13.

14.

15.

16.

17.

. Robert France and James M. Bieman. Multi-View Software Evolution: a UML-Based Frame-

work for Evolving Object-Oriented Software. In Gerardo Canfora and Anneliese Am-
schler Andrews, editors, Proceedings of 17th IEEE International Conference on Software
Maintenance (ICSM 2001), pages 386-397, Florence, Italy, November 2001. IEEE Com-
puter Society.

. Adele Goldberg and Kenneth S. Rubin. Succeeding With Objects: Decision Frameworks for

Project Management. Addison-Wesley, 1995.

. Timothy J. Grose, Gary C. Doney, and Brodsky Stephan A. Mastering XMI: Java Program-

ming with XM, XML, and UML. John Willy & Sons, Inc., April 2002.

. Stuart Kent. Model Driven Engineering. In Michael J. Butler, Luigia Petre, and Kaisa

Sere, editors, Proceedings of the 3™ International Conference on Integrated Formal Methods
(IFM’02), LNCS 2335, pages 286298, Turku, Finland, May 2002. Springer.

Krzysztof Kowalczykiewicz and Dawid Weiss. Traceability: Taming Uncontrolled Change
in Software Development. In Proceedings of the IV KKIO Conference, Tarnowo Podgérne,
Poland, 2002.

Meir M. Lehman. Laws of Software Evolution Revisited. In Carlo Montangero, editor,
Proceedings of the 5™ European Workshop on Software Process Technology (EWSPT’96),
LNCS 1149, pages 108-124, Nancy, France, October 1996. Springer.

Bennet P. Lientz, E. Burton Swanson, and Gail E. Tompkins. Characteristics of Application
Software Maintenance. Communications of the ACM, 21(6):466—471, June 1978.

OMG. OMG-XML Metadata Interchange (XMI) Specification, v1.2. OMG Modeling and
Metadata Specifications available at http://www. omg.org, January 2002.

Jim Pierce, Michael D. Smith, and Trevor Mudge. Instrumentation Tools. In Anthony Finkel-
stein, editor, Fast Simulation of Computer Architectures, chapter 4. Kluwer Academic Pub-
lishers, Boston, MA, USA, 1995.

James Rumbaugh, Michael R. Blaha, William J. Premerlani, Frederick Eddy, and William
Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ,
1991.

James E. Rumbaugh. Modeling through the years. Journal of Object-Oriented Programming,
10(4):16-19, July-August 1997.

Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Enabling and Using UML
for Model Driven Refactoring. In Serge Demeyer, Stéphane Ducasse, and Kim Mens, ed-
itors, Proceedings of the 4th International Workshop on OO Reengineering, pages 3740,
Darmastadt, Germany, July 2003. Universiteit Antwerpen.

70


http://www.omg.org

	1 Introduction
	2 System Evolution through Design Information
	3 Defining Meta-Data
	4 UML as Meta-Data
	5 How maintain consistency between design and implementation
	6 How to Use Meta-Data for Evolution
	7 Conclusions

