
Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. RAMSES: a Reflective Middleware for
Software Evolution. In Proceedings of the 1st ECOOP Workshop on Reflection, AOP and
Meta-Data for Software Evolution (RAM-SE’04), pages 21–26, Oslo, Norway, June 2004.

RAMSES: a Reflective Middleware for Software
Evolution

Walter Cazzola1, Ahmed Ghoneim2, and Gunter Saake2

1 Department of Informatics and Communication,
Università degli Studi di Milano, Italy

cazzola@dico.unimi.it
2 Institute für Technische und Betriebliche Informationssysteme,

Otto-von-Guericke-Universität Magdeburg, Germany
fghoneimjsaakeg@iti.cs.uni-magdeburg.de

Abstract. Software systems today need to dynamically self-adapt against dy-
namic requirement changes. In this paper we describe RAMSES a reflective mid-
dleware whose aim consists of consistently evolving software systems against
runtime changes. This middleware provides the ability to change both structure
and behavior for the base-level system at run-time by using its design information.
The meta-level is composed of cooperating objects, and has been specified by us-
ing a design pattern language. The base objects are controlled by meta-objects
that drive their evolution. The essence of RAMSES is the ability of extracting the
design data from the base application, and of constraining the dynamic evolution
to stable and consistent systems.

Keywords: Software Evolution, XMI, UML, Reflection, Meta-Objects.

1 Introduction

Many object-oriented information systems today need to dynamically adapt themselves
against runtime changes. Some of the changes such as modify its structure and behav-
ior may cause the base-systems to behave in an unexpected way. Therefore, software
systems need to be capable of dynamically adapting their structure and behavior at run-
time and of checking their consistency to face sudden changes. Software development
asked for the way to modify the base objects at runtime without going to rebuild the
application again. It requires a new approach, which adapts the base application as well
as on advances in software technology. This new perspective reifies the design data of
the base application and by modifying such reification it adapts the base application
against runtime changes.

A topical issue in the software engineering research area consists of producing soft-
ware systems able to adapt themselves to environment changes by adding new and/or
modifying existing functionalities. There are a number of mechanisms for obtaining
adaptability. One of these mechanisms is reflection [2, 6]. A non-stoppable software
systems provide an excellent way to dynamically adapt itself against runtime changes
at its environment. A non-stoppable systems are characterized by long life cycle. Usu-
ally, these systems are deployed to be continuously online for several years. During this



����������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������

reflect

reify reify

System
Base−Level

Categories
Reification

Consistency Checker
Meta−ObjectMeta−Object

Evolutionary

MOP

MOP

Meta−Level

Base−Level

engineengine

Evolutionary
Rules

Validation 
Rules

Fig. 1. RAMSES architecture.

lifetime we want to be able to dynamically maintain and adapt these systems against
runtime events without bring the whole system to a halt.

We propose an infrastructure to dynamic adapt software systems. In our approach,we
adopt a reflective system [4,5], that allows to render self-adaptable at runtime the base-
level system. The meta-level systems is composed of an interpreter engine for managing
the evolution and validating consistency processes for runtime changes.

The meta-level behavior is described by a family of patterns [3], the meta-level
manages both the evolution and consistency of the base-level system. The cooperative
meta-objects at the meta-level consult the engines (see figure 1), and adapting the reified
objects for dynamic behavior. Changes to the reified system can be made at runtime and
are immediately reflected to its base-components. The evolution and consistency are not
hard-coded, neither are they generated. Instead, we build a reflective framework of the
base-systems that can be automatically self-adapted for any changes to be active long-
life span. Our reflective architecture define two cooperative meta-objects (evolutionary
and consistency) both of them refer to the engine to evolve the system and validate the
consistency of its semantics at runtime.

2 RAMSES Overview

RAMSES (Reflective and Adaptive Middleware for Software Evolution of Systems)
performs two phases to carry our self-adaption. In the first phase, the RAMSES’s meta-
level extracts the design information as XMI schemas from the base application and
it reifies them in the meta-level to constitute the meta-data. Whereas, in the second

22



phase, RAMSES’s meta-level plans the dynamic adaptation of the base-level system,
gets the runtime events, evolves the meta-data against the detected event, checks the
consistency, and finally reflects the modified data to the base-level. This infrastructure
is considered to be dynamically adaptive because changes in the execution environment
cause objects, attributes and collaborations to be created and modified at runtime to
achieve new behaviors not previously foreseen by the original application. This goal is
achieved by:

– adopting a reflective architecture which reifies system design information and re-
flects back the changes on the system design;

– manipulating the design information and checking the system consistency against
evolution in the meta-level;

– using configurable rules to govern the system evolution through its design informa-
tion.

Adaptation and validation are respectively driven by a set of rules which define
how to adapt the system according to the detected event and the meaning of system
consistency.

2.1 The Reflective Architecture

To render a system self-adapting3, we encapsulate it in a two-layers reflective architec-
ture as shown in Fig. 1. The base-level is the system that we want to render self-adapting
whereas the meta-level is a second software system which reifies the base-level design
information and plans its evolution when particular events occur. By using a reflective
architecture, thanks to the transparency and separation of concerns properties of reflec-
tion, we can render self-adapting every software system without changing its code.

At the moment, this approach allows two kinds of dynamic evolution: structural
and behavioral evolution. This limitation is due to the fact that we just consider the
following design information related to the base-level system:

– object model, which describes objects and their relationships; this model represents
the structural part of the system;

– sequence diagrams, which trace system operations between objects (inter-object
connection); and

– statecharts, which represent the evolution of the state of each object (intra-object
connection) in the system.

The meta-level is responsible of dynamically adapting the base-level and it is com-
posed of some special meta-objects, called evolutionary meta-objects. There are two
types of evolutionary meta-objects: the evolutionary and the consistency checker meta-
objects (see Fig. 1). Their goal consists of consistently evolving the base-level system.
The former is directly responsible for planning the evolution of the base-level through
adding, changing or removing objects, methods, and relations. The latter is directly re-
sponsible for checking the consistency of the planned evolution and of really carrying
out the evolution through the causal connection typical of each reflective system.

3 By the sentence to render a system self-adapting we mean that such a system is able to change
its behavior and structure in according with external events by itself.

23



2.2 Design Information as Meta-Data

Through the causal connection, the base-level system and its design information are rei-
fied into reification categories in the meta-level. Classic reflection takes care of reifying
the state and every other dynamic aspect of the base-level system, whereas the design
information provides a reification of each design aspect of the base-level system such
as the collaborations among its components. The reification categories content is the
main difference of RAMSES with respect to standard reflective architectures. Usually,
reifications represent the base-level system behavior and structure not its design infor-
mation. Reification categories are meta-data that represent the base-level system design
information in the meta-level. Both evolutionary and consistency checker meta-objects
directly work on such representatives and not on the real system, this allows a safe
approach to evolution postponing every change after validation checks. As described
in [3] when an external events occur as a reaction, the evolutionary meta-object pro-
poses an evolution to the consistency checker meta-object which validates the proposal
and schedules the adaptation of the base-level system if the proposal is accepted.

2.3 Evolution Planning and Validation

Adaptation and validation are respectively driven by a set of rules which define how
to adapt the system in accordance with the detected event and the meaning of system
consistency.

To give more flexibility to the approach, these rules are not hardwired in the cor-
responding meta-object rather they are passed to a sub-component of the meta-objects
themselves, respectively called evolutionary and validation engines, which interpret
them. Therefore, each meta-object has two main components: (i) the core which in-
teracts with the rest of the system (e.g., detecting external events/adaptation propos-
als, or manipulating the reification categories/applying the adaptation on the base-level
system) and implementing the meta-object’s basic behavior, and (ii) the engine which
interprets the rules driving the meta-object’s decisions.

The evolutionary meta-object plans the evolution of the base-level system when
an event that requires its adaptation occurs. The evolutionary meta-object passes to its
engine all the data about the occurred event and the entities that could be involved by
the evolution. On this basis, the engine chooses and applies a group of evolutionary
rules that serve to build the plan for evolving the base-level exploiting the reified meta-
data. The evolutionary meta-object proposes the planned evolution to the consistency
checker meta-object which validates its soundness. Similarly to the planning phase, the
consistency checker meta-object demands the validation to its engine that exploits the
validation rules and the base-level’s meta-data. The plan for the evolution is concretized
on the base-level if and only if the consistency checker considers its application sound
otherwise a new plan has to be designed.

3 Benefits and Drawbacks

Our approach to software evolution has the following benefits:

24



– evolution is not tailored on a specific software system but depends on its design
information;

– evolution is managed as a nonfunctional features, therefore, can be added to every
kind of software system without modifying it;

– evolution strategy is not hardcoded in the system but it can dynamically change by
substituting the evolutionary and validation rules; and

– RAMSES decreases the complexity of evolution and validation by defining only
one meta-level. That represent the meta-processes of maintaining and evolving the
meta-data.

Unfortunately there are also some drawbacks: i) we need a mechanism for convert-
ing UML diagrams in the corresponding XMI schemas (problem partially overcome by
using Poseidon for UML [1]); ii) decomposing the evolution process in evolution and
consistency validation could be inadequate for evolving systems with tight time con-
straints.

4 Conclusion

We have presented the RAMSES (Reflective and Adaptive Middleware for Software
Evolution of Systems) middleware whose aim consists of self-adapting object-oriented
systems against environmental changes. In this paper we have given an overview of the
whole reflective architecture for dynamically evolving and validating consistency of a
software system. The main features of our infrastructure can be highlighted as follows:
1) it allows to extract the system design information as XMI schemas from base ob-
jects; 2) by using MOP capability the XMI schemas will be reified to constitute the
meta-data used in the meta-level; 3) both evolution and consistency are managed by the
collaborations between meta-objects. Finally, 4) by using reflection we reflect the mod-
ified design information to the base-level. We are currently working on implementing a
prototype of RAMSES.

References

1. Marko Boger, Thorsten Sturm, and Erich Schildhauer. Poseidon for UML Users Guide. Gen-
tleware AG, Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany, 2000.

2. Walter Cazzola. Evaluation of Object-Oriented Reflective Models. In Proceedings of ECOOP
Workshop on Reflective Object-Oriented Programming and Systems (EWROOPS’98), in 12th
European Conference on Object-Oriented Programming (ECOOP’98), Brussels, Belgium, on
20th-24th July 1998. Extended Abstract also published on ECOOP’98 Workshop Readers, S.
Demeyer and J. Bosch editors, LNCS 1543, ISBN 3-540-65460-7 pages 386-387.

3. Walter Cazzola, James O. Coplien, Ahmed Ghoneim, and Gunter Saake. Framework Pat-
terns for the Evolution of Nonstoppable Software Systems. In Pavel Hruby and Kristian Elof
Søresen, editors, Proceedings of the 1st Nordic Conference on Pattern Languages of Pro-
grams (VikingPLoP’02), pages 35–54, Højstrupgård, Helsingør, Denmark, on 20th-22nd of
September 2002. Microsoft Business Solutions.

4. Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Reflective Analysis and Design for
Adapting Object Run-time Behavior. In Zohra Bellahsène, Dilip Patel, and Colette Rol-
land, editors, Proceedings of the 8th International Conference on Object-Oriented Information

25



Systems (OOIS’02), Lecture Notes in Computer Science 2425, pages 242–254, Montpellier,
France, on 2nd-5th of September 2002. Springer-Verlag. ISBN: 3-540-44087-9.

5. Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Software Evolution through Dynamic
Adaptation of Its OO Design. In Hans-Dieter Ehrich, John-Jules Meyer, and Mark D. Ryan,
editors, Objects, Agents and Features: Structuring Mechanisms for Contemporary Software,
Lecture Notes in Computer Science 2975, pages 69–84. Springer-Verlag, Heidelberg, Ger-
many, July 2004.

6. Pattie Maes. Concepts and Experiments in Computational Reflection. In Norman K. Mey-
rowitz, editor, Proceedings of the 2nd Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’87), volume 22 of Sigplan Notices, pages 147–156,
Orlando, Florida, USA, October 1987. ACM.

26


	1 Introduction
	2 RAMSES Overview
	2.1 The Reflective Architecture
	2.2 Design Information as Meta-Data
	2.3 Evolution Planning and Validation

	3 Benefits and Drawbacks 
	4 Conclusion

