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Abstract—Regression testing is performed to verify that previ-
ously developed functionality of a software system is not broken
when changes are made to the system. Since executing all the
existing test cases can be expensive, regression test selection
(RTS) approaches are used to select a subset of them, thereby
improving the efficiency of regression testing. Model-based RTS
approaches select test cases on the basis of changes made to
the models of a software system. While these approaches are
useful in projects that already use model-driven development
methodologies, a key obstacle is that the models are generally
created at a high level of abstraction. They lack the information
needed to build traceability links between the models and the
coverage-related execution traces from the code-level test cases.

In this paper, we propose a fuzzy logic based approach named
FLiRTS, for UML model-based RTS. FLiRTS automatically
refines abstract UML models to generate multiple detailed UML
models that permit the identification of the traceability links. The
process introduces a degree of uncertainty, which is addressed
by applying fuzzy logic based on the refinements to allow the
classification of the test cases as retestable according to the
probabilistic correctness associated with the used refinement. The
potential of using FLiRTS is demonstrated on a simple case study.
The results are promising and comparable to those obtained from
a model-based approach (MaRTS) that requires detailed design
models, and a code-based approach (DejaVu).

Index Terms—fuzzy logic, model-based testing, regression test
selection, UML models

I. INTRODUCTION

The purpose of regression testing is to test a new version

of a system to ensure that the performed modifications do not

introduce new faults to previously tested code [1]. Regression

testing is one of the most expensive activities performed

during the lifecycle of a software system. Regression test

selection (RTS) approaches are used to improve regression

testing efficiency [1]. RTS is defined as the activity of selecting

a subset of test cases from an existing test set to verify that

the affected functionality of a program is still correct [1], [2].

RTS is performed by analyzing the changes made to a

system at the code or model level. Existing model-based RTS

approaches use design models [2], [3], [4], [5]. The use of

model-based RTS approaches is growing, and will have crucial

importance in the future. For large systems, model-based

approaches can scale up better than code-based approaches [6].

Maintaining traceability between the model and the test cases

is more practical than maintaining traceability between the

code and the test cases because dependencies can be specified

at a higher level of abstraction [2]. The effort required for

regression testing can be estimated at an early phase, i.e.,

at design time, and before propagating the changes to the

code [2]. Test selection is performed at the model level using

standard and widely used modeling notations (e.g., UML),

which can be mapped to multiple programming languages

making the RTS approach more reusable.

Despite the need for model-based RTS approaches, there

is a major obstacle to the application of RTS at the model-

level [2], [3], [4]. Models are generally created at a high

level of abstraction and lack low-level details, such as use-

and call-dependencies, which prevents relating the existing

test cases to the models representing the system under test.

This lack of traceability from requirements or design models

to test cases is a known issue in model-based RTS, and is

likely to severely limit its role [6]. This problem also makes

it difficult to apply RTS in approaches that use design models

to perform adaptation and validation at runtime, such as the

DiVA project [7] that uses component-based models, which

are specified at a high level of abstraction.

As a workaround, the approaches proposed by Briand et

al. [2], Farooq et al. [3], and Al-Refai et al. [5] require

their models to be detailed and complete with respect to

the implementation of the software system, and to contain

enough information to obtain the coverage of model elements

when test cases are executed, which is not always a common

practice [2]. In these cases, the models are simply used as a

different representation of the code. Another possible solution

would be to use incomplete coverage information of the test

cases at the model-level, which will lead to inaccurate results.

To overcome this obstacle, we propose a new approach

called FLiRTS that uses fuzzy logic to perform model-based

RTS. The approach uses UML activity diagrams that model

the behaviors of the system’s methods at a high level of

abstraction, and UML sequence diagrams that model the

system’s use case scenarios. In the activity diagrams, a single

node can represent multiple code-level statements and its label

can rarely be used to trace back to such a piece of code. This

level of abstraction prevents relating the existing test cases to

the activity diagrams as we will show in Section II.

From the provided activity diagrams, FLiRTS automatically
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(b) Refinement.

Fig. 1. Activity Diagram Representing Airline.bookSeat() and One Possible Refinement.

generates more detailed ones called refinements. A refinement

is an activity diagram that contains more flows and nodes

than the one that was refined. For example, consider an

activity diagram that contains an action node representing

multiple call statements. In a refinement, such an action node

can be replaced with multiple call behavior nodes. FLiRTS

generates the refinements according to the provided usage

scenario in the sequence diagram to avoid the generation of

completely inconsistent and unrelated activity diagrams. The

refinements from each activity diagram are combined and

used in the RTS algorithm. This combined set of refinements

contains enough information to permit the identification of

traceability links between the models and the test cases.

However, the obtained traceability links may be correct or

incorrect depending on how compliant the used refinement

is to the corresponding source code. FLiRTS classifies test

cases as retestable or reusable [8] by using fuzzy logic with

a degree of confidence related to the compliance of the used

refinement. The classification is performed with respect to all

possible combinations of refinements. The most trustworthy

combination of refinements is used to get the final result.

II. MOTIVATING EXAMPLE

Using models that are at a high level of abstraction hinders

the building of traceability links between the models of the

system and each test case, which makes it impossible to select

the test cases. We illustrate this problem with an example. The

airline reservation system (ARS), used as a running example

in this paper, is a class project implemented by undergraduate

students in a software engineering course. The portion of ARS

used here consists of eight classes, and supports only basic seat

booking capabilities but not the ability to prioritize flights by

prices, airlines, or other criteria. Fig. 1(a) shows an activity

diagram of the Airline.bookSeat() method, which is at a

high level of abstraction. It lacks low level details, such as

call behavior nodes to other activity diagrams. Fig. 2 shows

AbstractTestCase

Create and Initialize Airport Objects

Create and Initialize Airline Objects

Create and Initialize Flight Objects

Create and Initialize SeatSection Objects

Reserve a Seat

Test Assertions

Fig. 2. Activity Diagram Representing a Test Case.

the activity diagram of a test case that tests a scenario for

booking a seat on a direct flight. The corresponding code view

includes a direct call to SystemManager.bookSeat(), which

calls Airline.bookSeat().

The initial version of Airline.bookSeat() supports book-

ing a seat on a direct flight, but does not consider trips

involving connecting flights. In the next version, the activ-

ity diagram representing Airline.bookSeat() is adapted to

include connecting flights. First, it searches for a direct flight

that matches the inputs, and if such a flight is found, then

a seat is booked on it. If no direct flights are found, then a

trip is formed by finding flights that have the given airports as

departure or destination airports, and combining these flights

in a journey from the departure airport to the destination

airport. This adaptation is performed by adding to the activity

diagram in Fig. 1(a) two new action nodes (bordered in red)

that describe the new functionality.
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Regression test selection must be conducted because

the behavior of Airline.bookSeat() was modified. The

test case shown in Fig. 2 should be selected be-

cause it traverses the adapted Airline.bookSeat() method.

The test case calls SystemManager.bookSeat(), which

calls Airline.bookSeat(). However, building the trace-

ability links between the activity diagram representing

Airline.bookSeat() and the activity diagram of this test

case is not possible, making it difficult to correctly classify

the test case as retestable or reusable. The reason is that

these activity diagrams (including the activity diagram of

SystemManager.bookSeat() not shown here), are at a high

level of abstraction, and lack information regarding the calls

between them. Additionally, the labels of action nodes in

these activity diagrams can refer to the same concept using

different words/terminology, and therefore, we cannot relate

these diagrams to each other based on these labels.

III. FUZZY LOGIC

Fuzzy logic uses a form of logic that is not binary (i.e., true

or false), but relies on multiple truth values that can be between

completely true and completely false [9]. We introduce the

basic concepts by adapting an example taken from [10].

A fuzzy logic approach involves the steps of (1) fuzzifica-

tion, (2) inference, and (3) defuzzification [9]. The approach

uses input variables that take discrete values called input crisp

values. For example, in a temperature control system managed

by fuzzy logic, an input variable is the temperature, and an

input crisp value can be 32◦F or 40◦F.

The fuzzification step maps the input crisp values to input

fuzzy values by using input fuzzy sets. A fuzzy set is one that

allows its members to have different values of membership in

the interval [0,1] based on a membership function that defines

for each fuzzy set how a value within the input space of a

fuzzy set is mapped to a membership value between 0 and 1.

For example, input fuzzy sets for the temperature variable can

be too cold, cold, and warm. An input crisp value of 32◦F fits

in each of these sets with a specific membership value, called

input fuzzy value. For example, if the input crisp value 32◦F

fits in the cold set with a membership value 0.6, then the input

fuzzy value for 32◦F is 0.6 with respect to the cold set.

Inferencing evaluates predefined inference rules using the

input fuzzy values obtained in the fuzzification step. An

inference rule can be “if the temperature is too cold, then turn
on the heater”. Evaluating all the inference rules produces a

set of fuzzy output values. Defuzzification combines the fuzzy

output values and produces a final output crisp value.

IV. FLIRTS: FUZZY LOGIC BASED RTS APPROACH

FLiRTS automatically generates refinements from the pro-

vided activity diagrams subject to some constraints, uses the

refinements to calculate the input values to be provided to a

fuzzy logic-based classifier, and uses the classifier to attach

probabilities to test cases to classify them as retestable or

reusable. FLiRTS does not care how the original tests were

created. Fig. 3 shows the main steps of FLiRTS.

Step (1): Developers adapt system model.

���������������������

Step (3): Calculate correctness value for each refinement.

Step (4): Generate refined system models (RSM), and 
calculate total correctness value for each RSM.

Step (7): Select final classification for each test case.

Shows flow from a data item to a process, and
from a process to a data item. When this
arrow is going from a data item to a process, it
means that the data item is provided as an
input to the process.

Shows relation from
an activity diagram at
a high level of
abstraction to its
generated refinement.

Legend:
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Step (5): Calculate modification-traversing (mt) value for each 
test case, with respect to each RSM.

Step (6):  Fuzzy Logic classifies test cases for each RSM.

Set of retestable test cases: t1

Set of reusable test cases: t2

Modified Modified Added

Modified

Test case activity 
diagrams

t1 t2

Fig. 3. FLiRTS process.

The original version of the system model contains (1) a

UML sequence diagram that describes the usage scenarios

of the application, and (2) activity diagrams that model the

behavior of the system’s methods. The sequence diagram only

uses objects and methods that are specified in the UML class

diagram of the whole system.

Developers adapt the sequence and activity diagrams of

the software system in step 1. In step 2, refinements are
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automatically generated from each activity diagram that exists

in the adapted version of the system model. The generation

process is constrained by the adapted UML sequence diagram.

A refinement generated from an activity diagram, A, can be

more or less correct depending on how much it is compliant

with the expected method implementation represented by A.

A correct refinement is one where (1) each element in the

refinement (i.e., decision, loop, and call behavior) has a cor-

responding element in the expected method implementation,

and (2) the order of the elements in the refinement matches the

order of their corresponding elements in the expected method

implementation. A non-compliant refinement can (1) have

extra elements that do not exist in the expected method

implementation, (2) miss some elements that do exist in the

expected method implementation, and (3) have a mismatch

between the order of some/all of the elements in the refinement

and that of the corresponding elements in the expected method

implementation. The measure of compliance is based on count-

ing the differences with an optional weighting mechanism to

distinguish between different kinds of mismatches, and then

normalizing them on the interval [0, 10]. A value of 10 means

that there are no differences. In step 3, the correctness value

is calculated for each generated refinement.

Each test case is modeled by an activity diagram that

includes call behavior nodes, each of which directly links to an

activity diagram of a system method. The link between activity

diagrams is by name and it holds even when the activity

diagrams are refined since each refinement maintains the name

of the activity diagram it is refining. Each activity diagram

in the system model leads to several possible refinements.

A refined system model is one where each activity diagram

is replaced by one of its refinements. Several combinations

of the refinements are possible, which leads to the creation

of several refined system models (step 4). Depending on the

refinements used in a system model, a test case may or may

not traverse it. The reliability of the traversing information is

directly dependent of the correctness of the used refinements.

Fuzzy logic is used to address the uncertainty introduced by

the process employed to find out the traceability link.

To apply fuzzy logic, we define two input variables, cr and

mt. The crisp value of cr is defined in terms of the extent

to which a test case traverses correct refinements in a refined

system model (step 4). The crisp value of mt is defined in

terms of the extent to which a test case traverses modified

activity diagrams in a refined system model (step 5). Fuzzy

sets are defined for both the input variables.

We define an output variable corresponding to the test case

classification and define fuzzy sets for this output variable.

Step 6 applies the fuzzy logic classifier. The final results

of FLiRTS for each test case T is a set of refined system

models, and the probabilities for Retestable and Reusable
associated with T . In step 7, the final classification for T is

selected based on the probabilities associated with the most

trustworthy refined system model. If such a system model

cannot be determined, then the probabilities from all refined

system models that are above a threshold are used.

Sequence Diagram

sm:SystemManager airline:Airline flight:Flight

1:bookSeat()

1:getName()

1:bookSeat()

1:getOrigName()

3:getDestName()

1:bookSeat()

1:getOrigName()

loop [i<numAirlines && !success; i++]
Frag1

opt [airlineName.equals(name)]

Frag2

loop [j<numFlights && !success; j++]

Frag3

opt [origName.equals(orig) && destName.equals(dest)]

Frag4

loop [k<numFlights && !success; k++]

Frag5

Fig. 4. Partial Sequence Diagram.

A. Generate Refinements of Activity Diagrams

A naive approach randomly generate refinements. For ex-

ample, existing action nodes in the activity diagram can be

refined by or replaced with call behavior nodes for each

operation in the class diagram. This can result in a large

number of refinements, many of which will have a low level

of compliance, adversely affect the reliability of the test clas-

sification results. Therefore, the refinement generation process

must be constrained to favor the generation of refinements

with a higher degree of compliance. FLiRTS uses the adapted

sequence diagram of use case scenarios for this purpose.

To continue our running example, the sequence diagram

shown in Fig. 4 represents two scenarios to reserve a seat on a

direct flight or on connecting flights. Due to space limitations,

this diagram is partial and does not show all the lifelines,

fragments, and messages for these scenarios. We named the

combined fragments in this diagram to make it easy to refer to

them in the text. Combined fragment “Frag3” is responsible

for finding a direct flight and reserving a seat on it.

To refine each high level activity diagram, we start from its

corresponding message in the sequence diagram and navigate

through the elements of the message to refine the elements

of the activity diagram. Algorithm 1 shows how FLiRTS

generates the refinements. It takes as inputs (1) an activity

diagram representing a method behavior, (2) a sequence dia-

gram representing the use case scenarios of the system, and

(3) a message in this sequence diagram to be used to refine the
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Algorithm 1: refineActivityDiagram(ad, msg, sd)

Input :
ad: Activity diagram.
msg: Message in a sequence diagram.
sd: Sequence diagram containing the message msg.

Output:

Re: Set of refined activity diagrams.

1 Re=∅
2 Set Ds = ∅;
3 Se = getElementsFromSequenceDiagram(msg, sd);
4 Ae = getElementsFromActivityDiagram(ad);
5 ActivityDiagram ref = ad;
6 for each combined fragment c ∈ Se do
7 for each decision node d ∈ Ae do
8 if d.nl = c.nl then

/* nl refers to the element nesting level */
9 Ds.add((c, d));

10 end
11 end
12 end
13 Re = createRefinements(ref, Ds);
14 for each refinement rf ∈ Re do
15 for each message m ∈ Se where m.nl=0 do
16 addCallBehaviorNode(rf, 0, m, NULL);
17 end
18 end
19 return Re;

corresponding activity diagram. The algorithm returns a set of

refinements generated from the activity diagram. We illustrate

the algorithm using the activity diagram in Fig. 1(a) that

represents Airline.bookSeat(), the partial sequence diagram

presented in Fig. 4, and the Airline.bookSeat() message that

is sent from the SystemManager lifeline to the Airline lifeline.

Algorithm 1 extracts information about the elements that

start from the execution specification of the input message and

the elements in the input activity diagram. The information

extracted from each element contains its nesting level and

type. The nesting level of an element is defined as the number

of combined fragments that surround the element, where

the outermost combined fragment starts from the execution

specification of the input message, msg. For example, the

nesting level of “Frag3” is zero because it is not surrounded

by any fragment that starts from the execution specification

of Airline.bookSeat(). The nesting level of an element in

the activity diagram is defined with respect to how deep it is

located inside nested decision-merge structures. For example,

the nesting level of the decision node labeled “Flight Matches
dpt and dst?” is one because it is contained inside a decision-

merge that forms a loop structure whose decision node is

labeled “Other Direct Flights?”.

Algorithm 1 navigates through the combined fragments of

the message and the decision nodes of the activity diagram,

and checks for matches between them based on their nesting

levels. If a combined fragment in the sequence diagram

matches a decision node, D, in the activity diagram, then

new nodes and transition flows are created to form a new

structure corresponding to the combined fragment (e.g., loop

structure for loop fragment, and decision-merge structure for

alt fragment). If the combined fragment contains messages,

then for each of these messages, a new call behavior node is

created inside the new structure. Three new refinements are

created by adding the new structure (1) before decision node

D in the first refinement, (2) after D in the second refinement,

and (3) by replacing D in the third refinement.

In our example, combined fragment “Frag5” matches the

decision node labeled “Other Direct Flights?” because both of

them are at the same nesting level. Thus, three new refinements

are created. In one refinement (Fig. 1(b)), a new decision

structure is created and added to the transition flow labeled

"false" that is outgoing from the decision node labeled “Other
Direct Flights?”. The new decision construct replaces the two

action nodes on that transition flow.

Finally, Algorithm 1 iterates through all the messages that

were sent by the lifeline as a result of receiving the message

that was provided as an argument to Algorithm 1. These

messages are at nesting level zero. The algorithm adds call

behavior nodes for these messages on the main transition flow

in each of the refinements.

We defined a set of operators to refine an activity diagram by

adding nodes and structures (AddActionNode, AddCallBehav-
iorNode, AddDecisionStructure, and AddLoopStructure). The

set also contains the corresponding deletion operators. The set

of operators is minimal and covers all the possible unitary

changes that can be performed on an activity diagram (e.g.,

adding or removing a call action, replacing an action node by

a new decision structure, adding a new loop, and adding call

nodes inside the loop).

The activity diagram constructs that the operators support

are action, decision, merge, call behavior, start, and end

nodes. Each operator takes input parameters. For example, the

AddActionNode operator takes as input (1) a new action node

that will be added to an activity diagram, (2) the target activity

diagram, (3) the existing flow to which the new action node

will be added, and (4) the existing node after which the new

action node will be added. The AddDecisionStructure operator

takes extra inputs, such as decision and merge nodes, and flows

between the nodes.

B. Prepare Inputs for Fuzzy Logic classifier

The first input variable mt takes crisp values representing

the extent to which a test case traverses modified activity

diagrams in a refined system model. This value is defined

as the minimum number of call behavior nodes that need to

be traversed by the test case to reach a refinement generated

from a modified activity diagram.

The second variable cr takes crisp values representing the

extent to which the test case traverses correct refinements in

a refined system model. This value is calculated by averaging

the compliance values for the refinements in the model, which,

in turn, are calculated as described earlier.

In our running example, suppose that the detailed activity di-

agram of a test case T1 contains a call behavior node that calls
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TABLE I
FUZZY LOGIC INPUTS AND OUTPUTS FOR TEST CASE T1

Refined
System Model

Input Crisp Values Output Crisp Values
mt cr reusable retestable

{S1, A1} 2 8.5 0 100%

{S1, A2} 2 5.7 35% 65%

{S2, A1} 2 7.5 0 100%

{S2, A2} 2 5.4 35% 65%

the activity diagram representing SystemManager.bookSeat().

Suppose that S1 and S2 are two refinements generated

from this activity diagram, and A1 and A2 are two re-

finements generated from the activity diagram represent-

ing Airline.bookSeat(). The Cartesian product {S1, S2} ×
{A1, A2} represents all the possible refined system models

when SystemManager.bookSeat() and Airline.bookSeat()

are the only activity diagrams in the system model. Both S1

and S2 contain a call behavior node that calls A1 and A2.

The input crisp value of mt for T1 with respect to the refined

system model {S1, A2} is 2 because two call behavior nodes

need to be traversed by T1 to reach A2 (i.e., a call from T1 to

S1 followed by a call from S1 to A2). To calculate the input

crisp value of cr for T1, assume that the correctness value of

S1 is 8 and A2 is 7. The input crisp value of cr for T1 with

respect to the refined system model {S1, A2} is (8+7)/2=7.5.

Table I shows the input crisp values assigned to mt and cr
for each refined system model that is traversed by T1.

C. Apply the Fuzzy Logic Classifier

We first define the input fuzzy sets for the input variables

mt and cr. The sets are High, Medium, and Low. Fig. 5 shows

the input fuzzy sets defined for cr. Each fuzzy set represents

a degree of the correctness of the refinements traversed by a

test case. An input crisp value assigned to cr can fit in each of

these sets with a specific membership value. We also define

an output variable called testClassification that has two output

fuzzy sets called Retestable and Reusable.

0 1 2 3 4 5 6 7 8 9 10

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

cr

m
em

be
rs

hi
p

Low Medium High

Fig. 5. Fuzzy Sets for the Variable cr

The fuzzy logic process used to classify the test cases

involves three steps. In step 1, the input crisp values that are

assigned to the input variables mt and cr are fuzzified based on

the input fuzzy sets defined for each of these input variables.

For example, the input crisp value assigned to cr for T1 with

respect to the refined system model {S2, A1} is 7.5 (from

Table I), and its membership value is 0.7 for the High set and

0.3 for the Medium set (from Fig. 5).

In step 2, inference rules are applied to the fuzzy inputs

obtained in the fuzzification step to produce a set of fuzzy

outputs. We defined a set of inference rules based on the fuzzy

inputs. Here is an example of an inference rule:

if cr is High and mt is Medium

then testClassification is Retestable

In step 3, the defuzzification process combines the fuzzy

output values to produce an output crisp value for the output

variable testClassification. The output fuzzy sets, Retestable
and Reusable, map the output crisp value to the probabilities

of the test case for being Retestable and Reusable. These

probabilities are shown in columns 4 and 5 in Table I. For each

test case, the output of the fuzzy logic system is a set of refined

system models, and the probability values for Retestable and

Reusable that are associated with each refined system model.

We classify each test case by considering the probability

values associated with the refined system model that has

the highest correctness value. For example, in Table I, the

refined system model with the highest correctness value is

{S1, A1}. Test case T1 is classified as retestable because its

probability for being Retestable is 100% with respect to this

refined system model. If such a refined system model cannot

be determined, then we use the probability values from all

refined system models that are above a specific threshold.

V. PILOT STUDY AND DISCUSSION

We conducted a pilot study using the ARS system to

compare the test classification results obtained using FLiRTS

and two other RTS approaches. One is a code-based approach

called DejaVu [11] for Java programs. The other is model-

based [5]; we call the approach MaRTS in this paper. MaRTS

classifies test cases based on changes performed to UML

class and executable activity diagrams. Each activity diagram

models a method of the software system. In contrast to

FLiRTS, the activity diagrams used in MaRTS are at a low

level of abstraction. Each action node is associated with the

corresponding code snippet from the program. When model

execution flow reaches an action node, the code snippet

associated with the action node is executed.

We used nine test cases in this study. We adapted ARS at

both the code and model levels as described in Section II. We

applied FLiRTS to the models and DejaVu to the code. We

applied MaRTS to a different version of the activity diagrams

of the ARS system; these diagrams are executable and we had

previously used them to evaluate MaRTS [12].

a) Test classification results: DejaVu and MaRTS clas-

sified the same 8 test cases out of 9 as retestable and the

remaining one as reusable. With FLiRTS, there were no ties

involved with the correctness values of the refined system

models. Thus, we considered the probabilities associated with

the refined system model with the highest correctness value.

Each of the 8 test cases classified as retestable by the other

approaches was also classified by FLiRTS as retestable with a

probability higher than 95%. The test case that was classified

as reusable by the other approaches was also classified as

reusable by FLiRTS with probability value equal to 80%.
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TABLE II
FUZZY LOGIC OUTPUTS FOR A TEST CASE CLASSIFIED AS RETESTABLE

Normalized
correctness values

Probability
Reusable Retestable

9.2 2% 98%

8.9 4% 96%

8.4 6% 94%

7.8 10% 90%

6.1 24% 76%

For a retestable test case, Table II shows examples of the

correctness values of five refined system models, and the

Retestable and Reusable probabilities obtained for the test case

from these models. In this example, the highest correctness

value is 9.2 out of 10. From this system model, we get a 98%

probability for the test case to be retestable.

b) Generalizability: We cannot generalize the results

from one study that used a small system, only nine test sets,

and simple scenarios.

c) Thresholds: Currently, we do not have a specific

threshold for the probability value that can be used to choose

between reusability and retestability. In this study we con-

sidered a probability value that is at least 80% to be good

enough to classify a test case as reusable. However, we cannot

generalize this probability value to other subjects and test

cases. We plan to evaluate our approach on additional subjects

to define a generalizable threshold as well as a criterion for

tuning our input fuzzy sets.

d) Safety of FLiRTS: As mentioned in Section IV-A,

the refinements are generated by applying a minimal set

of operators that cover all possible unitary changes. Any

possible refinement can be expressed as a combination of these

operators. Since we do not know the expected implementa-

tion, the operators are applied randomly but constrained by

the provided sequence diagram as explained. While this can

generate refinements with a low degree of trustworthiness, the

minimality property ensures that the refinement close to the

expected implementation will also be generated. The fuzzy

logic system selects that one to calculate the RTS result.

VI. RELATED WORK

We summarize related work on (1) model-based RTS, and

(2) fuzzy logic-based RTS and test prioritization.

Model-based RTS approaches. Briand et al. [2] select test cases

based on changes performed to UML use case diagrams, class

diagrams, and sequence diagrams. Farooq et al. [3] identify

changes made to UML class and state machine diagrams, and

use the impacted and changed elements of the state diagrams

to select test cases. Zech et al. [4] presented a generic model-

based RTS platform controlled by OCL queries. The approach

is based on identifying changes made to the models, and

selecting the models representing the test cases based on the

changes. Korel et al. [13], Ural et al. [14], and Lity et al. [15]

proposed model-based RTS approaches that are based on state

machine diagrams.

Al-Refai et al. [5] proposed a model-based RTS approach

(MaRTS) to classify test cases based on changes performed to

UML class and executable activity diagrams.
None of these approaches use fuzzy logic. They are based on

using models that are at a low level of abstraction and contain

enough information that permits building the traceability links

between the system models and the test cases.
Fuzzy logic-based approaches for RTS and test prioritization.
Xu et al. [16] used fuzzy expert systems to select test cases

when the source code and its change history are not avail-

able. The fuzzy expert systems select relevant test cases by

correlating the knowledge represented by one or more items,

such as customer profile, analysis of test case coverage and

results, system failure rate, and change in system architecture.

This approach assumes that the knowledge is available and can

be used to provide inputs to the fuzzy expert system. Malz et

al. [17] use software agents and fuzzy logic for prioritizing test

cases to increase the test effectiveness and fault detection rate.

The software agents perform collaborative work on different

priority values, where the final priority is determined based

on the cooperation between the software agents. Both the

approaches are code-based, and assume that the test coverage

information is available.
Rapos et al. [10] proposed a fuzzy-logic and model-based

approach to prioritize test cases using information available

from the symbolic execution tree obtained from a model. The

inputs to the fuzzy-logic system are test suite size, symbolic

execution tree size, and relative test case size. The fuzzy-logic

system produces a single crisp output called priority for each

test case. The test cases are prioritized based on the crisp

outputs. This approach assumes that the coverage information

from test cases at the model-level is available, and does not

target models that are at a high level of abstraction.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a model-based RTS approach called FLiRTS,

which uses fuzzy logic to classify existing test cases as

retestable and reusable based on changes performed to UML

activity diagrams that represent behaviors of a software system

at a high level of abstraction. The initial results from FLiRTS

were comparable to DejaVu and MaRTS.
We will perform large scale empirical studies to compare

the reduction, fault detection ability, precision, and safety of

FLiRTS with other RTS approaches. A formal argument on

the safety property will be developed. We will improve the

algorithm used in FLiRTS to minimize the number of incorrect

refinements that are generated by taking into account addi-

tional characteristics when performing structural matching,

such as the order of the combined fragments that are within

the same nesting level in the sequence diagram. We will define

appropriate threshold values. We will extend the approach to

support test suite minimization and prioritization, which will

require changes to input variables and the fuzzy logic system.
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