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Abstract

One of the main goals in optimizing communication net-
works is to enhance performances by minimizing the
number of message hops, i.e. the number of graph nodes
traversed by a message. Most of the optimization tech-
niques are based on clustering, i.e., the network layout
is reconfigured in sub-networks. Network clustering has
been largely studied in the literature but most of the
available algorithms are application dependent.
In this paper we restrict our attention to algorithms
based on the location of the median points, in order
to build clusters with a balanced number of elements
and to minimize communication time. We present two
algorithms and relative experimental results about the
quality of the computed clusterizations, in terms of the
minimum number of computed hops. One algorithm is
based on the well-known multi-median heuristic algo-
rithm, while the other adopts a greedy approach, i.e., at
each step the algorithm computes clusters farther and
farther from each central node.
To the achieved clusterization we apply a further step,
which consists in finding a virtual path layout according
to Gerstel’s (VPPL) algorithm. The adopted criterium
for our experimental comparisons is the optimality, in
terms of the number of signal hops, of the achieved vir-
tual path layout. The experiments are carried out upon a
set of networks representing real environments.

Introduction

The management of signal routing in a large communi-
cation network could become a very hard task due to the
complexity of the treated networks. The communication
cost between a pair of nodes depends on several factors,
such as distance between them, link reliability, traffic
demands, and so on. To reduce signal latency between
a pair of nodes, it is obviously necessary to reduce the
number of nodes which the signal has to traverse. This
fact requires to design the physical topology of the net-
work minimizing this number. The physical topology of
a network is the set of routing nodes and the links con-
necting them; the logical topology consists of a new set

of connections among each pair of physical nodes.
The network topology may be either hierarchical or non-
hierarchical. In non-hierarchical networks all nodes are
considered to be identical from the point of view of rout-
ing, i.e., a path between two nodes can include any other
intermediate node. In hierarchical networks nodes are
classified in levels, usually two or three, according to
their geographical position, number of users, and so on.
Usually, a virtual graph is often constructed, where each
node represents a sub-graph of the original graph and
edges represent relationship among these sets of nodes.
The problem consists then in finding a good method
to organize the nodes of the network so that the num-
ber of hops performed by the signal is minimal. The
choice of the logical topology is an important task in
network planning and optimization because if the net-
work is large (or it is becoming large in planning sec-
tion) a completely non-hierarchical topology often be-
comes difficult to administer due to the large size and
complexity of routing tables. The hierarchical topolo-
gies tries to simplify the administration task by organiz-
ing nodes into different levels. However pure hierarchi-
cal topologies may not be desirable because they lead to
higher link costs [7].
Several approaches have been proposed in literature,
most of them based on the creation of a set of directed
virtual paths (VP) satisfying some constraints in terms
of link load (the number of virtual paths sharing the link)
and hop count (the number of VP necessary to establish
a connection). In particular, the sum of the capacities
of virtual paths that share a physical link is the load of
the link; obviously the load cannot exceed the link ca-
pacity. Moreover the maximum number of VP to estab-
lish a connection cannot grow excessively because the
transmission times could increase as well. In general
terms the virtual path layout optimization is a problem
in which, given a communication demand between pairs
of nodes and some constraints on the maximum load and
hop count it is required to minimize some function of the
load and hop count.
To improve the management of a communication net-
work we should optimize the connections among all
possible pair of nodes, which it means to find the min-
imum number of hops needed to connect a source to a
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destination.

1 The Model and Some Definitions
A communication network, consisting in switches and
weighted links, is modeled by a connected undirected
weighted graph G = (V;E;c), where:

� V is the set of vertices of G,

� E is the set of edges of G (e2E � (u;v)2V�V ),

� c : E ! N associates a capacity to each edge of G.

The problem of graph clustering consists in finding
a proper partition of the set of vertices V in subsets

V1; : : : ;Vn, called clusters of G, such that:
n[

k=1

Vk =V ,

Vk
T

Vj = /0 for i 6= j.

Definition 1.1 d : ℘(G)�V �V ! N; d(p;u;v) =
#fxi 2V j p = (u;x1; : : : ;xn = v)g is a function measur-
ing the number of intermediate vertices along a given
path p, between a pair of vertices.

A path between a pair of nodes is a set of one or more
concatenated links connecting the nodes.
For a general path this function is not a distance because
the triangular inequality fails; but if we consider as p
the shortest path between u and v we obtain a metric
distance.

Definition 1.2 Let ℘(G) the set of all paths in G �
(V;E). Given E =V �V �E, a virtual path layout is a
pair (G0

; I) , where G0 = (V;E 0) is a virtual graph where
E 0 = E

S
E 0 , with E 0 � E and I : E 0 !℘(G0) is a func-

tion mapping a virtual edge to its corresponding route
in G.

The above definition can be extended to paths p 2
℘(G0), p = (p1; p2; : : : ; pn); pi 2 E 0

;8i = 1; : : : ;n :
I(p)=

Sn
i=1 I(pi) obtained by concatenating the induced

paths I(pi). Definition 2. Let µ 2 R be a real number
called the stretch factor. The hop count H : V �V ! R

for a pair of vertices (u;v) is the minimum k such that:

� 9p = (p1; p2; : : : ; pn) 2℘(G0), s.t. pi 2 E 0
;8i =

1; : : : ;n

� 9x;y 2V , s.t. p1 = (u;x); pn = (y;v) and

� I(p) is at most µ times longer than the shortest path
between u and v in G.

The number of hops in a path is the number of concate-
nated links that constitute the path. Usually a path is
required to be loopless , i.e. a node cannot be visited
twice in a path. A route between a pair of nodes is a
set of path, not necessarily disjoint, connecting the two
nodes.

Definition 1.3 The function N : V !N, N (v) = #fp2
E 0 j v 2 I(p)g is the Load of a node v, while
L : E !N, L(e) = #fp 2 E 0 j e 2 I(p)g is the Load of a
physical edge e.

Definition 1.4 A diameter D of a connected graph G
is the maximum length of the shortest paths connecting
two arbitrary vertices u;v 2V .

Definition 1.5 A median of a graph is a vertex such that
the sum of its distance from all other vertices is mini-
mized;

a k-set of medians W, is a set of k vertices of V such that
the sum of distances between all other vertices and W is
the minimum among all the possible sets of k vertices of
G.

2 Clusterization Algorithms
The problem of finding an optimal connection among
all possible pairs of nodes of a network has been proven
to be NP-complete [4]. So we consider a simpler case:
the optimization of the connection between each node
with a single one. Following the method described in [5]
we try to partition the network in a proper number of
subnetworks, also called clusters; then we connect each
of them to the nearest and to the global center of the
network. Then, the new problem consists in connecting
each pair of nodes belonging to each cluster to k hops at
most. Hence the maximum number of hops needed to
connect two generic nodes is:

h = 2k+n;

where n is the number of clusters we have to traverse in
order to connect the cluster containing the source node
to the cluster containing the target node. We have exper-
imentally determined that a good value for n is 2.
If we want to use the same parameter k for all subnet-
works, it is important to have clusters containing, more
or less, the same number of nodes. In fact in a cluster
with many nodes it might be difficult to connect each of
them with k hops, while in a cluster with few nodes k
hops could be excessive.
Unfortunately there are no universally accepted criteria
to define what is a good cluster, but only some intu-
itive understandings: the intuitive idea behind cluster-
ing consists in condensing a subgraph into a single node,
where the choice of the cluster is application-dependent.
The problem of finding a proper set of nodes or a set
of edges partitioning the network into clusters has been
studied in literature and several approaches have been
proposed [3, 6, 8].
In the sequel of this section, we will introduce two al-
gorithms for clusterization. The former is based on the
well-known median approach whereas the latter is based
on a greedy approach. These algorithms have been used
to carry out our experiments.
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Figure 1: Processing a Test Network through the Median-Based Algorithm.

2.1 The Median-Based Algorithm
Our goal consists in partitioning a graph G into a set
of subgraphs such that the size of each subset does not
overcome a given lower bound, i.e. each cluster has
to contain k nodes at least (k is fixed before the execu-
tion), and the maximum difference between subset sizes
is lower than a given threshold ε.
The first step consists in finding the center of G; to this
goal we build the minimum diameter spanning tree of
G and locate its root as the center of G (in figure 1.a
the center is represented by a red rhombus). A greedy
algorithm, described in [9] computes the requested tree
in polynomial time.
The next step consists in locating the set of medians (in
figure 1.b medians are represented by green squares).
The algorithm is a variation of the multi-median heuris-
tic algorithm proposed in [2]. In particular we consider
that each node has unitary weight and that the cost of an
edge is defined by

c0 : E ! N; c0(e) = M� c(e)+1;

where M =maxe2E c(e). In such way, when we evaluate
the shortest path between two nodes we can take into
account the edge capacities and to give more relevance
to edges with larger capacity.
To satisfy the constraint on the maximum difference be-
tween cluster sizes, it is necessary to iterate the multi-
median algorithm, increasing the number of medians to
search, until the condition is satisfied.
Once the set of medians is located we construct the clus-
ters by assigning each node to the closest median (as in
figure 1.c). If a node can be assigned to two or more
medians, it is labeled as ambiguous and not processed
during this step. Ambiguous nodes are then assigned to
a cluster, among the clusters related to its closest medi-
ans whose size is the smallest. If a cluster has less than k
elements, it is deleted and its nodes are assigned to other
clusters as we did in previous steps. Once clusters are
made, their center is computed again in order to mini-
mize the diameter. The final step consists in designing

the final logical topology (as in figure 1.d): we connect
each cluster center with the nearest ones and with the
graph center. The resulting structure should be a ring
with a center. Inside each cluster we connect elements to
the center using the V PL1�m algorithm described in [4].
Now we give a description of the algorithm in pseu-
docode.

INPUT: A graph G
h: Maximum number of hops to join each vertex with the center
b: Lower bound on cluster size

OUTPUT: G0 � G : the logical graph

Compute ε:maximum difference among cluster sizes;
Find the minimum diameter spanning tree T of G;
Center of the graph C := Root of T;
repeat

Setup the set of medians (by computing or by reading them);
Compute clusters;
Assign ambiguous vertices to each cluster;

until maximum difference between cluster sizes is � ε;

Recompute the center of clusters whose size changed;
Connect medians in pairs and medians with C;
Perform local optimization inside each cluster;
Evaluate the quality of clusterization.

2.2 The Spreading Algorithm
We propose a new approach based on the construction
of clusters of fixed ray. The goal of such a method con-
sists in building clusters whose depth is fixed, so that
the V PL1�m algorithm could be carried out faster. As in
the previous algorithm a lower bound on cluster sizes is
given.
To decide the ray value we first evaluate the ray R of the
graph G, by constructing the minimum diameter span-
ning tree and locating its root as the center of G. Then
we fix the ray r for computing the remaining clusters by
choosing the best pair (r;n) of integers such that the ray
R can be rewritten as:

R = r+2r+ � � �+2r = r(1+2n):

Starting from the center of G (in figure 2.a the center
is represented by a red rhombus), we collect in a sin-
gle cluster the nodes whose distance is less than r and
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Figure 2: Processing a Test Network through the Spreading Algorithm.

create the set of leaves, i.e. the set of nodes whose
distance from the center is equal to r (in figure 2.b,
we consider r = 2, and leaves are represented by green
squares). The method iterates starting from each leaf
and finding nodes whose distance is less than 2r. For
each leaf a cluster and a new set of leaves are created
(as in figure 2.c). If a node can be assigned to two or
more leaves, it is labeled as ambiguous and processed
later. Ambiguous nodes are then assigned to a cluster,
among the clusters related to its closest leaves whose
size is the smallest. Finally, the center of each cluster is
computed (as in figure 2.d).
The reason for doubling the value of the ray r is that
after the first step the starting nodes are expected to be-
come diameter terminators in their, respective, clusters,
so their expected distance from other cluster nodes is
twice the ray.
The algorithm iterates starting from the new sets of
leaves, until all nodes are assigned. If a cluster has too
few elements it is deleted and its nodes are assigned to
nearest clusters. The center of the modified clusters are
then computed again. The final step is the connection
of cluster centers in pairs and with the center of G; the
resulting structure is n concentric rings with one cen-
ter (see figure 2.e). Inside each cluster we connect the
elements with the center via the V PL1�m algorithm.
Here is a pseudocode description of the algorithm:

INPUT: A graph G
h: Maximum number of hops to join each vertex with the center
R: Ray of each cluster
b: Lower bound on cluster size

OUTPUT: G0 � G : the logical graph

Find the minimum diameter spanning tree T of G;
r := R;
Center of the graph: C := Root of T;

for each vertex v not yet assigned
if d(v,C) � r

Assign v to cluster(C)
Setup the set S of vertices w such that d(w,C) = r;
r := 2�R;

repeat
for each vertex w in S do

Find all vertices v such that d(v,w) � r;
Setup the set X of vertices x such that d(x,w) = r;

end for
Assign ambiguous vertices to the nearest cluster whose size is the smallest;
S := X;

until all vertices are assigned

Compute the center of each cluster;
Connect centers in pairs and centers with C;
Perform local optimization inside each cluster.
Evaluate the quality of clusterization.

3 Experimental Results
This research is part of a project relative to network
optimization, which involves both the Marconi Comms
and the Rumanian Ministry of Defense. The goal of the
project consists in designing a logical topology over the
physical topology of the network, enhancing its trans-
mission performance. This result is achieved by reduc-
ing the number of nodes which a signal has to traverse,
along the route from source to destination.

Figure 3: Case Study Based on the Rumanian
Network
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Figure 4: Molecular Network

We performed several experiments, testing networks
representing realistic environments. By the collabora-
tion of an engineer of Rumanian army, we could also
use, as case study, networks directly extracted from the
existing Rumanian communication network, the one not
covered by military secret.

� Romania. It is a case study based on the Ruma-
nian communication network; Our sample consists
of 184 nodes and 269 edges (Figure 3);

� Molecular. It is composed of adjacent hexagonal
cells; such a network is usually employed in cellu-
lar communication. Our sample has 160 nodes and
240 edges (Figure 4);

� Circular. It is composed by four concentric rings,
each of them connected with the adjacent ones.
This topology is largely used in military commu-
nications. Our sample consists of 120 nodes and
214 edges (Figure 5);

� Arborescent. It has a structure similar to a tree,
but it also contains some edges which connect each
branch of the tree to its siblings. This kind of net-
work is used for small environments, mostly a sub-
section of a larger network. Our sample has 81
nodes and 99 edges (Figure 6).

To compare the quality of the computed clusterization
we used the following measures:

� maximum path length: we compare the length of
the longest path connecting a pair of nodes in the
original network with the longest one in the new
logical layout. This measure describes how much
the diameter of the network is reduced by reconfig-
uring its topology via clustering.

Figure 5: Circular Network

� Number of clusters and their sizes: we also adopt
these measures because, in according to [4], a bet-
ter clusterization is achieved if cluster sizes are bal-
anced and if their number is not too elevate.

� Percentage of shortest connections: for all pairs of
nodes we compare the length of their connection in
the original network with the corresponding length
in the clusterized networks then we calculate the
percentage of paths whose length has been reduced
with respect to the original network.

In table 1 we show the values of the longest paths in
original and in computed networks; the longest path in
the original network might not be the longest in cluster-
ized ones, too. These values can only point out if clus-
terization gives a global reduction of the diameter of the
network, without taking into account if the diameter ter-
minators are the same both in original and in clusterized
networks. As expected, in all cases the diameter has
been reduced, besides, as larger the network is as more
relevant the difference becomes.
In table 2 we compare the number of computed clusters
and their sizes. As we can easily see the median-based
algorithm generates clusters whose sizes are more bal-
anced than that of the spreading algorithm. We can also

Method Romania Molecular Circular Arborescent
Original 35 17 12 12
Median 14 10 8 6
Ray = 2 23 10 8 6
Ray = 3 14 6 6 6
Ray = 4 14
Ray = 5 10

Table 1: Summary of the experiments related to net-
works 3, 4, 5, and 6. For each network is reported the
diameter of the achieved graph, i.e., the length of the
longest path in the new layout.
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Figure 6: Arborescent Network

notice that if network size is very large and its struc-
ture is rectilinear (such as the network in figure 3) the
spreading algorithm gives better balanced clusters but as
a counterpart there is an high number of clusters which
forces connections between distant nodes to still take a
high number of hops.
Table 3 gives a comparison among the percentage of
connections whose length has been reduced by clusteri-
zation, with respect to the original network.
The number of connections which are improved by clus-
terization is elevate; we can stress out that unbalanced
clusters leads to worse situations. This is mostly due to
the different value of hops required to connect the ele-
ment of cluster to their center: if a cluster has a big size,
there would need many hops to connect elements, so
there will be more connections inside the cluster which
will not be improved.
Moreover, we noticed that the spreading approach
works fine with a low value for the ray, typically two or
three, whereas it results quite inadequate when the value
of the ray grows. Our test networks have too few nodes,
hence with a big ray the spreading approach will find a
big cluster and many very little clusters. Of course, if

Method Romania Molecular Circular Arborescent

Median 10 10-26 8 15-21 13 5-10 9 5-10
Median 17 7-20 12 8-15 5 18-27 10 5-11
Ray = 2 34 5-9 9 5-34 11 5-16 8 6-12
Ray = 3 26 5-11 16 5-25 11 5-22 9 5-30
Ray = 4 9 5-28
Ray = 5 9 5-37

Table 2: Summary of the experiments related to net-
works 3, 4, 5, and 6. For each network are reported
the number of achieved clusters, and their minimum and
maximum size.

Method Romania Molecular Circular Arborescent

Median 10 83 8 88 13 86 9 90
Median 17 86 12 86 5 82 10 90
Ray = 2 9 77 9 85 11 89 8 91
Ray = 3 9 81 16 79 11 82 9 84

Table 3: Summary of the experiments related to net-
works 3, 4, 5, and 6. For each network are reported
the number of achieved clusters, and the percentage of
improved paths.

applied to networks with a large number of nodes the
results will become more significant also for rays larger
than three. In the tables, we did not report values that
we consider non interesting.
From a theoretical point of view it is possible to con-
nect all the elements of a cluster to the center with the
same number of hops, independently from the cluster
size. This fact would lead to connect several vertices
to one vertex; so there would be several edges insisting
on the same vertex, strongly increasing the vertex load.
In physical terms it is impossible to a node to support
so many edges; then there is a physical upper bound on
vertex load that avoid such a situation.

4 Conclusions and Future Works

We have presented two clustering algorithms and dis-
cussed their merits in terms of the reduction of path
length between pairs of nodes of a network. Preliminary
results related to this work have been presented in [1].
In order to evaluate the improvements due to the cluster-
ization we have applied to each cluster a greedy iterative
algorithm described in [4]. The methods build a static
layout of VP for a network, in such a way that there
is an efficient route, with low VP hop count, between
any pair of switches. Some experiments have been com-
puted and the results show that clusterization lead to a
great improvement in both cases, reducing the length of
routes between pairs of switches.
There is not a deep difference between the results ob-
tained by the two methods. The spreading algorithm
seems to be more efficient in circular networks while the
median-based algorithm gives better results with linear
networks. In arborescent networks both of them gives
good improvements. Further experiments will be per-
formed, both on small network with a particular struc-
ture and on larger networks taken from real environ-
ments.
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