
Dodging Unsafe Update Points in
Java Dynamic Software Updating Systems

Walter Cazzola
Computer Science Department

Università degli Studi di Milano

Email: cazzola@di.unimi.it

Mehdi Jalili
Computer Science Department

Università degli Studi di Milano

Email: mehdi.jalili@unimi.it

Abstract—Dynamic Software Updating (DSU) provides mech-
anisms to update a program without stopping its execution. An
indiscriminate update, that does not consider the current state
of the computation, potentially undermines the stability of the
running application. To automatically determine a safe moment
when to update the running system is still an open problem often
neglected from the existing DSU systems. This paper proposes
a mechanism to support the choice of a safe update point by
marking which point can be considered unsafe and therefore
dodged during the update. The method is based on decorating
the code with some specific meta-data that can be used to find
the right moment to do the update. The proposed approach has
been implemented as an external component that can be plugged
into every DSU system. The approach is demonstrated on the
evolution of the HSQLDB system from two distinct versions to their
next update.

Index Terms—Dynamic software update, DSU, Dynamic up-
date validation, JavAdaptor

I. INTRODUCTION

Every program needs to evolve in order to fix the bugs or to

add new functionality. The typical way to update a program is

to stop the running program, modify its code and then restart

its updated version. This approach is not always acceptable.

Stopping the execution of some kind of programs could cause

financial losses or life-threatening risks. Online transaction

systems, life-support systems and so on are placed in this

category. These types of programs must continuously update

without disservices. Dynamic Software Updating (DSU) [27]

addresses this problem by changing a program at run-time

without stopping its execution.

A number of dedicated systems have been developed to

support this issue in different aspects [3], [30], [8], [5]. However

to investigate this approach in general-purpose languages
(GPLs) has a special place. Some mechanisms have been

proposed to support dynamic updates on programs which are

developed in GPLs such as C [20], [17] and Java [31], [28],

[26]. These systems provide a code level solution to update

a program at run-time. Along with other parameters such as

type safety, low-disruption, flexibility and so on, one of the

most important concerns with these approaches is when to

deploy the update without introducing any fault or unexpected

behavior.

Given P0, a running program, this can be updated to P1

in two ways: 1) P0 can be either stopped and a new version

P1 with the needed changes is started instead (cold restart)
2) the code of P0 can be dynamically updated to the new

version P0u without stopping (dynamic update). To define

an equivalence between these two approaches the reachability
property introduced by Gupta et al. [14] can be used. A dynamic
update P0u for P0 is equivalent to the update P1 you get

via cold restart if and only if after the update, P0u execution

eventually reaches some states that P1 execution would meet. It

is formally proved that the reachability is generally undecidable.

Even if the automatic validation of any generic dynamic

update is not feasible; it is still possible to bind the update of

a program to only those points of its execution that drive to a

valid dynamic update. Every program has its own semantics and

there is a logical relation between two successive versions of

such a program. The program developer is the best person who

knows the program semantics and the logical relations between

two successive versions of the same as well as which constraints

should be respected in order to proceed with the update. Turning

one version into another is safe only when the changes to apply

respect the imposed constraints. Therefore, for every program

a dedicated collection of constraints should be provided and

the updating process should verify these constraints before the

deployment of the changes. The DSU should be in charge of

verifying these constraints before the updating and to subdue

the update itself to the result of the verification in order to

leave the program stable.

In this paper, we propose an automatic method to determine

some points in the program execution, named as unsafe update
points, that if used to update the running application will

drive to an erroneous situation or a failure. These points are

constraints that the DSU should dodge when it is deploying

the update. To support this idea a collection of meta-data are

introduced that can be used to decorate the program code with

the constraints that should be verified. It is also presented

the algorithm that the updating process should use to validate

the changes against the program constraints. The proposed

approach is independent from existing DSU methods and can

be plugged into any method as a pre-update component called

validator.
Sect. II describes how a program executes at the dynamic

update time and it introduces, through a running example, how

a fatal error in a program can occur due to a wrong update

point choice. In Sect. III, we describe a possible process that

2016 IEEE 27th International Symposium on Software Reliability Engineering

2332-6549/16 $31.00 © 2016 IEEE

DOI 10.1109/ISSRE.2016.17

332

permits to automatically determine the unsafe update points in

the application execution and mark them as points that the DSU

should dodge during the dynamic update. The implementation

of this idea is explained in Sect. III-C. Moreover, in Sect. IV,

we show how the points marked as unsafe are dodged by

the DSU systems with the help of a validator component. To

demonstrate the feasibility of the proposed approach we used it

during the update to their next release of two distinct versions

of the HSQLDB system, the results of the experiment are reported

and discussed in Sect. V. Sect. VI discusses the related work

and finally in Sect. VII, we draw our conclusions.

II. MOTIVATION

Dynamic updating of a running system usually includes two

steps: first the update to the code is deployed then the state is

migrated from the old version to the new one. Neither the code

updating nor the state migration are instantaneous, even if more

and more often the state migration is unnecessary, such as in

JavAdaptor [26]. Since the changed code is deployed during

the system execution, the changes cannot affect the portion of

code while in execution but have to wait its reloading. That

is, the function/method in execution during the updating will

finish its computation with its old implementation; the new

implementation will be used only on the next call. Only when

the full application is using the new code the updating process

can be considered complete.

sp ep

lp

old code
execution path

new code
swinging execution

Fig. 1: Swinging executing

As shown in Fig. 1, the code update starts at the time moment

labeled with lp, but its effects are disclosed only at the moment

labeled with sp. While an application is running the old code,

the DSU system deploys the new version of the code. DSU

systems deploy the new code through several techniques that

range from the use of indirection through type wrapping and

proxy to the direct injection of the new code. In spite of how the

deployment happens, there is always a moment where portions

of the old code and new code are alive together. In particular,

when the new code is initially loaded into the memory, in the

call stack for the current execution there are still portions of the

application’s old code. However, all the new calls from the old

code are directed to the corresponding methods in the new code

if any. Due to this reason, the application execution swings

between the old and the new version. This situation continues

until all of the call frames in the stack pointers refer to the new

code and the update process finishes at the moment labeled with

ep. After this point, the application only uses the new code and

the old code becomes inaccessible. In the period from sp to ep
the application execution can manifest some flaws and its state

File file;

void action() {
initialize();
readFile();

}

void initialize() {
...

}

void readFile() {
file = new File(path);
FileInputStream inFile =

new FileInputStream(file);
...

}

(a) before the update

File file;

void action() {
initialize();
readFile();

}

void initialize() {
file = new File(path);

...
}

void readFile() {
FileInputStream inFile =

new FileInputStream(file);
...

}

(b) after the update

Listing 1: A Sample Program

is potentially inconsistent. This situation does not occur when

either the old code or the new code are run separately. This

transient inconsistency [12] has been disregarded in some DSU

systems [26], [13] because it is considered negligible and in

most cases it is automatically called off when the application

fully switches to the new code. Such a risk is not always

acceptable because the critical application could move to an

illegal state and crash or could emit wrong data that cannot

be rolled back. On the other side, some DSU systems, as

JVolve [28], adopt a conservative policy and start the update

deployment when they are sure that no piece of the changed

code is still in the call stack. Apart that postponing the update

is not always feasible or desirable, this still does not grant the

updating process from inconsistencies.

Therefore, the DSU system has to live together with the

swinging execution or to stop the application execution to

permit a safe update (that by definition is not always possible).

The only thing that DSU systems can manipulate is the start

of the swinging (sp point in Fig. 1). Starting the update in a

safe point, the execution swinging cannot move the system in

a transient inconsistency state. A safe update point [28] can

be defined as a moment during the program execution that

if DSU system starts the updating process in that moment,

the program does not crash nor misbehave. It means that the

program can safely be updated without moving in any transient

inconsistency state.

Finding a safe update point is a challenge in DSU systems [8],

[32] and many DSU approaches neglect this aspect. A safe

update point can be determined when i) the state of the running

application is available ii) the type of changes is known and

iii) it is possible to predict the impact of the change during

the dynamic update. To this respect, every execution of any

application can have multiple safe update points or none at all.

Let us explain the impact of choosing a wrong update point

by an example. Listing 1(a) shows a Java piece of code for

processing a file. The action method calls the initialize

and readFile methods. The file object is created and used

by the readFile method in the old version. Instead in the new

version, Listing 1(b), the file object creation is moved to

the initialize method. Let us consider that the old version

333

of the application finishes the execution of the initialize

method (row 3 in Fig. 1(a)) when the new code is replaced. In

this case, the call to the readFile (row 4 in Fig. 1(a)) method

will call the new code where the file object is used without

a previous initialization; therefore its attempt to access the

object will raise an exception and the application will crash.

To avoid this situation, the update should be postponed until the

execution of the action method is completed. In this example

the initialize and the readFile methods are changed in the

new version whereas the action method is unchanged. In a

similar case, also a conservative approach, as the one used in

JVolve, would fail since at the moment of the update none

of the methods in the call stack are directly involved in the

update (the initialize has been just popped from the stack

and readFile has still to be pushed on it) but the inconsistency

would occur and it will be due to an unchanged method on

the stack at the moment of the update. This situation can only

be detected by predicting the impact of a change.

III. TOWARDS A VALID UPDATE

The example of the previous section demonstrates that to

update a running application is a delicate matter. The way

the update occurs in many DSUs forces some delays in the

completion of the effective deployment of the new code and

the application temporary runs with a mix of old and new code.

A situation that can bring to wrong results and failures.

A valid update occurs when the execution with a mix of old

and new code cannot drive to a transient inconsistency [12].

To automatically determine a point in the application execution

that drives to a valid update for any computation without

external hints is basically impossible [14]. As discussed in [27],

[21], it is instead possible to express constraints about the

execution, to mark some points in the execution as unsafe—

that is, if the update starts in that point it will drive to a

transient inconsistency or to a crash—and to coordinate the

update deployment according to this extra information.

The developer knows the application logic and he/she can

use some meta-data (in Java parlance: annotations) to provide

both the constraints to be validated and the known safe/unsafe

update points. These meta-data can be used when the system

urges to be updated to both determine a safe moment in time

where the update can start and to dodge the points known as

unsafe. A component—named validator—external to the DSU

system will coordinate the update according to the meta-data

(details on the process in Sect. IV).

A. Automatic Annotating

The annotating process is not difficult but it is time-

consuming and potentially error-prone when manually done.

Moreover, since the code by definition is in a continuous evolu-

tion also the related annotations should be updated accordingly

at every change. These two aspects render preferable to have the

code automatically annotated and the annotations automatically

maintained. Even if it is unavoidable to have the constraints

on the behavior manually specified by the developer, it should

be at least possible to determine the unsafe update points that

the validator should avoid. This work will focus on this last

aspect.

The key idea to automatically determine an unsafe update

point and then annotate it in the code consists of forecasting

how the application would behave if the changes were deployed

in a certain moment. Relevant to each simulation scenario are i)

the point in code where the update deployment starts, ii) which

portion of the old code is active when the update deployment

starts (that is, the code that temporarily cannot be updated)

and iii) how this code would interact with the new code. If

one of the simulations introduces a transient inconsistency or

worst it breaks the application execution, the code related to

the used scenario is marked accordingly.

Let us consider that an application is executing the method

m when the DSU system deploys the changes to the application.

Since the method m is still in execution this will continue to

use the old code version but every call it would perform will

use the updated code instead. When the new code is deployed

the change gradually takes place starting from the methods

not in use and keeping those on the call stack unaltered up to

when they are popped out from the call stack. So, for example,

if the method m still in the call stack calls a method which is

not in the call stack and that has been removed in the new

version, the application will crash. A similar situation could be

prevented by analyzing the running code (in our case the new

version of the application code plus the old code stuck on the

call stack) looking for problems. In this particular case, the

problem could also be found by the Java compiler that cannot

compile the code with a all to an unimplemented method.

Several tools have been developed that look at an application

code for syntactical errors, potential logical errors and warnings.

To cite a few, we have FindBugs [16], PMD1 and JLint [4]2. All

these tools are static analyzer tools that need the full source
code available in order to perform their analysis. In our case

the code is the result of a partial update where some portions of

the new code live together with the old and still running code.

So the code to be analyzed is not available and in particular

the portion of old code still running varies according to when

the update starts.

B. Calculation of the Unsafe Points

When a change is ready to be deployed, several scenarios

can be calculated depending on the current active portion of

code—that is, code in the call stack—and by simulating and

analyzing the application execution it is possible to determine

when it is unsafe to deploy the changes. Each scenario should

be composed of the new application code plus the old code

still active. Unfortunately, from the moment when the new

code is ready to be deployed to the moment when the update

really starts the application is still in execution and the content

of the call stack changes. This renders complicate and time

consuming to consider the real content of the call stack in

order to calculate the various scenarios and the unsafe update

1http://pmd.sourceforge.net
2http://artho.com/jlint

334

points. Rather, it is preferable to widen what can represent a

potential risk from the code still in the call stack and cannot be

updated to the old code that uses code that has been modified or

removed in the new version that if still active could bring to a

transient inconsistency. This has the benefit of being dependent

only on the old and new version of the code and not on the

current execution and on how it evolves; basically making

static a dynamic decision process.

A new version of the application code (new), is derived from

the old version (old) by adding some new code (Δnew), by

removing some old code now useless (Δold) and by replacing

some portion of the old code (Δold′) with a new variant

(Δnew′); (Δnew′) and (Δold′) shares the same names (methods,

classes, . . .) but not the same behavior. As in

new = old + Δnew - Δold + Δnew′ - Δold′.

During the deployment, two more factors enter in the equation:

the old code that should be replaced (Δold+) or removed

(Δold′+) but that cannot be replaced/removed because still

active; these are subset respectively of Δold and Δold′. A

particular note should be made for the code that should replace

the code still active (Δnew′+), this is indeed deployed waiting

for a full replacement but any new call to one of its operations

will use the new version instead of the one still active.3 So

during the deployment the new code is represented by:

new = old + Δnew - Δold + Δnew′ - Δold′ +
Δold+ + Δold′+.

Assuming that the new code is correct—that is, it compiles

without errors—the code in Δnew do not call code unavailable

after the deployment. Therefore the code in Δnew does not

represent a potential issue and can be neglected. Similar

considerations can be done for the replacement code (Δnew′)
and obviously for the removed code (Δold′ and Δold). A

potential problem is instead represented by the old code

(Δold+ and Δold′+) still in the system but intended to be

replaced/removed instead. This could use some removed code—

e.g., a method or a constructor—or another version of the code

that has a different behavior than the expected one and that

can bring forth to an inconsistency. In formulas:

Δold+ ∨ Δold′+ refers Δold ∨Δold′.

The refers4 relationship is the one, the execution simulations

has to verify in order to find an execution point that could be

considered an unsafe starting point where to deploy the update.

As for the initial considerations we cannot easily access to

the code still active and the calculation of the unsafe points is

done statically. To this respect, what we know is the source code

of the application before and after the change and consequently

the extent of the change itself. The described refers relationship

therefore must be relaxed to:

3Note that here we are speaking about the deployed code and not the source
code used to do the validation check.

4Where with the verb “to refer” we means any use of an element of the
set, such as invocation of a method in the set or of a method out of the set
but that has an argument of a class in the set.

Δold ∨Δold′ refers Δold ∨Δold′.

Basically, the relationship looks for pieces of code that should

not be there if they refer to other pieces of code that should

not be there. Please note that not all the old code must be

checked because the portion that remains unchanged cannot

introduce inconsistencies (reductio ad absurdum, if a piece of

code marked as unchanged should refer to a method that does

not exist anymore in the new code, this would not compile and

would break the initial correctness assumption and it should

have been marked as modified instead). A similar consideration

can be done for the new code. Moreover, it is possible to limit

the check to only the first call of the modified/removed code

instead of the whole chain of calls because the next call will

use the new code and the risk for a transient error is avoided.

The verification of the relaxed refers relationship is pretty

straightforward. For every element (classes, methods, construc-

tors, . . .) e ∈ Δold ∪Δold′ the code to be checked will be:

newe = old + Δnew - Δold + Δnew′ - Δold′ + e.

Note that, e is also present in Δnew′ if it belongs to Δold′

and it should be removed from Δnew′ to avoid a compilation

error due to a name clash. The various versions of newe are

then checked for problems (details in Sect. III-C) and when

a problem is found the execution of the corresponding e is

marked as an unsafe update point.

C. Techinical Details

First of all, the old source code is compared against the

new source code to extract the changes. Under the initial

assumption that the new code is correct, the novel elements

cannot introduce references to removed code and the references

to modified code will activate the new version of it. Therefore,

the only changes we are considering are the removed code

(Δold) and the modified code (Δold′) from the old code. In

particular, the considered changes are:

• removed classes and interfaces;

• changed class and interface declarations;

• removed fields;

• changed field declarations;

• removed methods and constructors;

• any change to the method and constructor signatures apart

the operation name (that it is considered as a removal

plus an addition for a new operation);

• any change to the method and constructor body such as

the addition and the removal of statements;

Comparing two source codes is challenging. To have an accept-

able result, two abstract syntax trees (ASTs) must be compared.

Several tools have been developed to extract the differences

between two ASTs such as Change Distiller [11], Gum

Tree [10] and Dependency Finder [29]. We used Dependency

Finder because it provides the results in an XML format that

we can easily work on in the next steps. Moreover, Dependency

Finder permits also to correlate the modification in the old
source with the change in the new version and to find any

dependency from the changed code to other changed code (the

335

refers relationship previously introduced). The first kind of

correlation is used to calculate the correct variant of the newe
that would consider eventual name clashes. The second kind

of correlation permits to limit the number of considered newe
variants to those that effectively could introduce a transient

inconsistency.

Once that the set Δold ∪ Δold′ has been extracted and

the refers relationship calculated, the variants of the new code

(newe) can be calculated. Several tools have been developed

to analyze and transform a source code, such as RASCAL [19]

and Spoon [22]. In particular, Spoon has been developed to

work on Java source code and therefore better fits our needs.

Spoon permits to build an in-memory meta-model out of the

application source code and provides an API for directly

analyzing and modifying a Java application code. From the old
and the new source code, Spoon generates two distinct meta-

models. Then every element e ∈ Δold ∪ Δold′ belonging also

to the domain of the refers relationship is added to the meta-

model for the new version with all the cares about the name

clashes. The just built meta-model represents one variant of the

new code (newe) that can be compiled in order to determine

if it generates an error or some warnings (that still represent

potential problems).

To let Spoon generates a meta-model and then to variate such

a meta-model is faster than generating a temporary source code

on the hard disk, compile it and manually check for compilation

errors, as reported in [22]. All the generated variants are stored

in a database with the corresponding errors and warnings for

further analysis. Spoon reports the found problems grouped

by degrees of importance. Some of them are critical such as

correctness and security errors but other problems like bad

practices and performance warnings can be ignored since they

do not represent an immediate problem. Based on these data,

the related elements can be annotated. Spoon also supports the

annotating of the interested elements and the generation of the

new annotated source code. The pseudo-code in Algorithm 1

recaps the whole process.

By using this approach all the critical parts of the application

can be extracted. Moreover some warnings can be shown to the

developer about the risk of dynamically updating application

in some points. However, this is not always sufficient because

some changes affect the involved resources instead of the

code and the dynamic updating may still fail when these

resources are used by the application. Consider, for example,

the Listing 1(a), in this case the change could interest the used

file instead of the code. In this case, even the presented analysis

cannot detect the potential problem but the risk can be limited

by the developer which could annotate the use of the file with

some constraints, e.g., the check for the file existence, that

the validator component can consider during the deployment

process (details in Sect. IV).

IV. ANNOTATION DRIVEN VALIDATION PROCESS

Once processed the application source code and determined

its unsafe update points, this information must be passed to

the DSU system and used to coordinate the update. The easiest

Algorithm 1: Determining and annotating the unsafe update points.

{Δold ∪ Δold′} = Dep.Finder extracts changed/removed elements
foreach Ii in {Δold ∪ Δold′} do

{ei} = {ei}+ refers Ii

foreach ei in {ei} do
newi = old + Δnew - Δold + Δnew′ - Δold′ + ei
ΔPSi = analyze newi with SPOON
if ΔPSi contains a problem then

mark ei as unsafe

way is to add meta-data (Java annotations) to the source code

and let the DSU system process them. Java annotations can be

processed at compile time to generate some other information

as well as they can be accessed at run-time through the Java

reflection library. This second possibility is particularly useful

in the case of DSU systems where the whole validation should

occur at run-time. We use Java annotation because it is a

standard facility of Java as well as developers are more familiar

with it. Limits and advantages of the Java annotation facility

can be read in [7].

Annotations can be easily used to mark automatically

determined unsafe update points as explained in Sect. III but

they can also be used to provide the developer with a way to

manually express constraints on the semantic of the application.

For example, let us consider the scenario where the code in

Listing 1(a) is left unchanged but the used resource (a file) is

changed after the application starts to read it. In this case, the

dynamic update should be postponed until the lock on the file

is released. Constraints can either express static properties or

depend on the application’s state and therefore being checkable

only at run-time. As an instance of this second case, let us

suppose that there is a field in a program used to count the

number of connections to the application and that according to

some safety policies, the application updating can take place

only when the number of connections is zero.

The proposed approach relies on the following set of

annotations. All of them are run-time annotations (that is,

RetentionPolicy.RUNTIME should be set) and the validator
will use them during the application execution. Details of these

annotations are as follows.

@DSUAtomic. This annotation can be used to decorate both

method and class declarations. In the former case, the method

is marked as atomic and all the methods called from its code

should belong to the same code version. That is, the updater

should take care about active code and has to wait that marked

method is removed from the call stack before proceeding with

the update. In the latter case, all methods of the marked class

are defined as atomic; this is equivalent to annotate every

method with the @DSUAtomic annotation. This annotation is

used for annotating those methods that manifest a potential

unsafe update point in their execution.

@DSUPoint. This annotation explicitly defines an update

point. The updater can proceed with the update without any

risk for the application stability when the annotated point is

336

validator

updater

running
program

� update request

validation
request�

� safe update points

calculation

returning
safe update

points
�

� update deployment

Fig. 2: Dynamic Updating with Validation

reached.

@DSUConstraint. This annotation permits to specify a con-

straint which should be evaluated at run-time. This annotation

decorates a class with a constraint that should be respected in

order to proceed with the update. The constraint is a boolean

expression on the class fields.

All of the annotations have a parameter to support multi

threading. By default, all threads of the program are affected

by these annotations but developer can change this behavior

and specify which threads should be affected.

A. The Validator Component

Existing DSU systems have a direct approach to software

updating. The DSU system, identified by the term updater in

Fig. 2, gets the requested updates (step 1 in Fig. 2) and directly

deploys them on the running software (step 5 in Fig. 2) with

little or no consideration for the best moment when to do the

update. The validator component intercepts the requests for

an update (step 2 in Fig. 2), calculates the safe update point

thanks to the annotations in the code (step 3 in Fig. 2), if the

safe update point is determined in a certain amount of time

it asks the updater for deploying the changes otherwise the

updater is notified that no valid point can be found and the

changes discarded (step 4 in Fig. 2). The validator component

is external to and independent of the adopted DSU system and

can be used with any of them.

Algorithm 2: Main algorithm to find a safe update point

connect to the target JVM
foreach program threads do

suspend it
if there is a @DSUPoint annotation then

wait to reach to the annotated point
else

repeat
wait the atomic methods and statements have finished
their execution

check for all the provided constraints any time a
candidate update point is found

until an update point is found or the timeout is reached

if not timeout then
command the DSU to do the update

else
notify the DSU to discard the changes

Algorithm 2 reports the pseudo code describing the behavior

of the validator component. Before starting the validation

process, the validator reflectively extracts from the application

all the meta-data about atomic methods and classes. A particular

treatment is reserved to the @DSUConstraint annotations. A

boolean expression is passed to this annotation as a string. Out

of this string a new method that simply returns the evaluation

of the boolean expression is automatically built and injected

in the class annotated with the @DSUConstraint annotation by

using Javassist [9]. To avoid name clashes the new methods

are all named after the annotation name and progressively

numbered. The Java reflection library allows the validator to

retrieve the methods when needed.

The validator communicates with the other components via

the Java Debugger Interface (JDI). JDI provides some APIs to

connect to a running JVM launched in debugging mode and to

control the execution of the program threads. When an update

to the running program is ready, the validator reads the JVM

threads list and finds target program threads and suspend one

of them. The validator looks for @DSUPoint annotations in the

program classes. If it finds such an annotation, a breakpoint

is set on the annotated expression/statement and the program

execution is resumed until it reaches the breakpoint. Such a

point has been explicitly marked as a safe update point by

the programmer and, now, when the execution reaches the

breakpoint the program is stopped again and the updater is

asked for deploying the changes. If there is not any @DSUPoint

annotation the validator tries to find a safe update point by

using the other available meta-data. In particular, the validator

analyzes the call stack looking for the first frame related to a

method either defined as atomic or belonging to a class defined

as atomic. If it finds a frame about one of these cases, the

analysis is stopped, an event request for this frame is set and the

program thread is resumed. The program continues its execution

until the marked frame is removed from the call stack. After this

method is removed from the call stack the thread is suspended

again and we are sure that no other atomic method is in the

call stack because the frames still in the stacks have already

been checked. At this point, all the active objects are examined

to check if their classes have @DSUConstraint annotations. In

this case, the correspondent methods are invoked to check if the

system passes the constraints. If not all constraints are satisfied,

the validator put a watch point on the fields involved by the

constraint. The thread is resumed again and suspended when the

watch point is triggered by a change to the monitored fields. At

this point the check starts again from the beginning. Only when

the requirements on atomicity and the imposed constraints are

satisfied the updater is informed and the changes are deployed

on the running application. This process is repeated for every

program threads. The search for a safe update point could take

too long to be satisfied and therefore a timeout is set; in this

case the validator informs the updater that the update cannot

be deployed and the changes are discarded.

337

TABLE I: Details about the two versions of HSQLDB.

Version 1.8.0.9 2.3.2
Number of Classes 363 675

Number of Methods 4700 10037

Number of Constructors 490 965

Number of Fields 3861 7937

V. DEMONSTRATION STUDY

In order to demonstrate the presented approach, we con-

sidered two versions (1.8.0.9 and 2.3.2) of the Hyper SQL

Database (HSQLDB)5 and their dynamic evolution to the next

version; similarly to what has been done in [26]. In this

experiment the presented approach is used to find the unsafe

update points and improve the possibility of the DSU system of

dodging these critical points during the update deployment. The

experiment has been replicated on two versions of the HSQLDB

application to widen the variance in the update situations and

to analyze how our approach behaves when the application

size grows. Table I reports some data about the two considered

versions.

Dependency Finder has been used to extract the changes

from one of the considered versions to the next version. Table II

reports the found changes for the shift from version 1.8.0.9

to 1.8.0.10 and from 2.3.2 to 2.3.3 in the second and fifth

column respectively. As previously discussed, our analysis

focused only on the modification and removal of elements;

new items cannot access to the old code nor be accessed from

the old code. So the elements introduced in the new version are

irrelevant from the standpoint of the calculation of the unsafe

update points and not extracted by Dependency Finder. Then

for every extracted element, the elements (mainly methods and

constructors) that refer to it are extracted as well. The number

of reference to each kind of change is reported in the column

labeled with «References» of Table II (the third column for

version 1.8.0.9 and the sixth column for the 2.3.2). Please

note that an element can use more than one changed element

and the reported references reflect this fact. The number of

distinct elements referring to the modified portion of the code

is reported in the last row of the table.

Then all the elements (methods and constructors) that refer

to a changed element are checked. According to the approach

presented in Sect. III this implies the construction of several

variants of the new code each of them enriched with one of

these elements. In the case of methods, the old version is

picked up from the source code and added to the new code

within the corresponding class. To avoid duplicate name error
at compile time, there are two possibilities either the name

of the introduced method is changed or the corresponding

method is removed from the new source code. But if we would

remove the new version of the method, any recursive calls

should not activate the new version of the code violating the

principle that every new calls should refer to the new code

version. So the new version of the method must be kept and

5http://hsqldb.org/

we changed the name of the added method. The new name

is irrelevant since it cannot be called by the new code and

it can be changed to any arbitrary name not already in the

target class. A different situation arises for the constructors

since their name cannot differ from the name of the host class

but on the other side a constructor is never recursively called.

So, the old version of a constructor simply replaces the new

version in the corresponding class.

Spoon permits to modify the application meta-model ac-

cording to needed changes and then it can generate the

corresponding temporary code ready for the analysis. Spoon

can detect 626 different kinds of potential problems divided in

16 categories. Five of these categories represents the code

situations that drive forth to a run-time fatal errors when

executed; they are labeled as: IMPORT, INTERNAL, MEMBER,

SYNTAX, and TYPE. We used Spoon to analyze the temporary

versions of the new code generated as described to look for

potential problems bound to the added element (as a reminder,

the rationale is that the added element represents an old element

active during the deployment that remains unaffected by the

change). The results of the analysis are reported in Table II in

the fourth and seventh columns.

The analysis in our demonstration study is limited to

the fatal errors. In our results there are no IMPORT error

because changes to the code never involve the import section.

Similarly, we do not have any SYNTAX error because both

versions of the source code can be compiled without errors

and our addition cannot change this. The TYPE kind of

errors instead occur when there is a type mismatch. For

example, in our study, it occurred when the constructor

of the org.hsqldb.server.OdbcPacketOutputStream class

has been changed so that instead of an object of type

HsqlByteArrayOutputStream it requires an object of type

byteArrayOutputStream. When the new version of the con-

structor is replaced with the old one it hits a compilation

error with the message: «Type mismatch: cannot convert from

HsqlByteArrayOutputStream to ByteArrayOutputStream»

due to the attempt of invoking the constructor of the parent

class with the wrong kind of objects. Compare the old code

in Listing 2(a) with the new in Listing 2(b).

The MEMBER kind of errors usually occurs when an element

tries to access to a removed or modified element. For example,

in our study, it occurred when in the new version of the

org.hsqldb.persist.RAFile class, the database field has

been removed and the old constructor tried to access it

and the error «database cannot be resolved or is not a

field» occurred. Another example, related to the case of a

modified element occurred when the initParams method in the

org.hsqldb.persist.Log class tried to access a field which

is not visible in the new code. The visibility of propLogSize

is changed from public to package and raised the error: «The

field Logger.propLogSize is not visible».

The INTERNAL kind of errors is related to fatal prob-

lems which could not be addressed by external changes

and requires an edit to be addressed. This kind of er-

rors rarely occurred in our study. An occurrence of

338

TABLE II: Changes, references and errors in the HSQLDB demonstration study.

Kind of Changes
HSQLDB 1.8.0.9 HSQLDB 2.3.2

Changes to 1.8.0.10 References Compile errors Changes to 2.3.3 References Compile errors

Modified classes and interfaces 1 0 0 4 695 148

Removed classes and interfaces 1 0 0 0 0 0

Changes to the method bodies 53 93 6 779 748 113

Changes to the method signatures 23 38 12 183 127 22

Removed methods 9 22 22 113 153 109

Changes to the constructor bodies 4 9 0 47 22 0

Changes to the constructor signatures 2 0 0 3 0 0

Removed constructors 0 0 0 18 1 1

Modified fields 10 30 12 156 237 38

Removed fields 6 19 19 44 131 116

Sum 163 33 1462 261

class OdbcPacketOutputStream extends DataOutputStream {
private HsqlByteArrayOutputStream byteArrayOutputStream;

...
protected OdbcPacketOutputStream(

HsqlByteArrayOutputStream byteArrayOutputStream)
throws IOException {

super(byteArrayOutputStream);
this.byteArrayOutputStream = byteArrayOutputStream;
reset();

}
...

}

(a) old code

class OdbcPacketOutputStream extends DataOutputStream {
private ByteArrayOutputStream byteArrayOutputStream;

...
protected OdbcPacketOutputStream(

ByteArrayOutputStream byteArrayOutputStream)
throws IOException {

super(byteArrayOutputStream);
this.byteArrayOutputStream = byteArrayOutputStream;
reset();

}
...

}

(b) new code

Listing 2: Example for the TYPE problem

this kind occurred in the method getTableSpace in

the org.hsqldb.persist.DataSpaceManagerBlocks class. It

raised the error message: «The operator >= is undefined

for the argument type(s) int, AtomicInteger» due to the

fact that originally the field spaceIdSequence was of type

int and it could originally be compared with the integer

argument spaceId but in the new version its type is changed

to AtomicInteger that cannot be compared with an integer

through the >= anymore. Compare the old code in Listing 3(a)

with the new in Listing 3(b).

As it is reported in Table II, in the study for HSQLDB 1.8.0.9,

all the elements (22) that refers to removed methods (9) and

constructors (0) raise an error when introduced in the new ver-

sion. This is not a surprise because these elements do not exist

in the new version and if an element try to access these items

it will provoke a compilation error. Did not happen the same

public TableSpaceManager getTableSpace(int spaceId) {
....

if (spaceId >= spaceIdSequence) {
spaceIdSequence = spaceId + 1;

}
...

}

(a) old code

public TableSpaceManager getTableSpace(int spaceId) {
...

if (spaceId >= spaceIdSequence.get()) {
spaceIdSequence.set((spaceId + 2) & -2);

}
...

}

(b) new code

Listing 3: Example for the INTERNAL problem

in the case for HSQLDB 2.3.2. By inspecting the new version

of the code, we discovered that some of the methods marked

as removed were instead moved up in the inheritance hierarchy.

In these cases, any call to this methods from the old code is

still valid since the method is inherited by the class that before

declared it and the generated temporary code can be compiled

without error. For instance, the method addForeignKey in

class org.hsqldb.ParserDDL has been moved to the parent-

parent class org.hsqldb.ParserTable. So all the calls to

this method are valid for both old and new code. Similarly,

we also found 11 fields in the class org.hsqldb.navi-

gator.RowSetNavigatorDataTable that moved up into the

super class org.hsqldb.navigator.RowSetNavigator. In the

program, there are 15 methods which refer to these moved

fields; you can find confirmation of this situation from the

difference between the references (131) and the detected errors

(115) in the removed fields row in Table II. When Dependency

Finder compares two versions of a class, if the arguments of

a method are changed, the method is marked as a removed

method and a new method is detected on the new code. This

depends on the overriding capability and in some cases such a

change does not affect old calls. For instance method getStore

in class org.hsqldb.persist.PersistentStoreCollection-

339

TABLE III: Summary of the results
Program Version 1.8.0.9 2.3.2

Modified code executable 9 186

Modified declaration executable 16 14

Removed executable 6 38

Unchanged executable 2 23

Total number of annotated items 33 261

All the checked executable 163 1460

Percentage of annotated items 20.2% 17.8%

Database has a parameter of type java.lang.Object which

has been changed to org.hsqldb.TableBase in the new

version. All of the 11 callers of this method in the old

source code calls it by an argument of type org.hsqldb.Ta-

bleBase. So the new version of the method is valid also

for the old calls. A similar situation occurred for the me-

thod moveDataToSpace in class org.hsqldb.persist.Row-

StoreAVLDisk. The second parameter of this method has

changed from org.hsqldb.lib.LongLookup to org.hsqldb.-

lib.DoubleIntIndex. This change cannot affect old calls be-

cause LongLookup implements the DoubleIntIndex interface.

A similar situation occurs also for the modified elements.

In Table II is reported that the number of references which

represent a problem is less than the total number of changed

elements. This is due to the fact that sometimes the change

does not affect the general behavior/structure of the application.

Several cases can be imagined. For example when the visibility

of a field passes from public to package and it is never used

out of the package scope or when a method body is changed but

its signature remains unchanged. As shown in the Table II the

percentage of referenced elements which represent a problem

is lower than the percentage of declaration and removed items.

This difference is more sensible in version 1.8.0.9. However it

cannot be generalized since it depends to the type of changes.

The summary of the results is shown in Table III. A most

important result is related to the unchanged elements. Our

experiments shows that the dynamic update of a program can

be broken even from inside an unchanged method. Another

point is that if a DSU system follows a conservative policy

(do not update until there is a modified item or a reference to

a modified elements on the stack) the update deployment can

be uselessly delayed. In our demonstration study about 163

and 1460 elements should be considered at the update time.

Whereas with our analysis it has been reduced to 33 and 261

elements (20.2% and 17.8% of the all checked elements). This

represents also the number of unsafe update points we have to

annotate with the @DSUAtomic annotation and to dodge during

the update deployment: a lower number of unsafe update points

implies also a more agile update process with less constraint

to satisfy.

VI. RELATED WORK

Some of the existing DSU systems in Java do not take

care about the safe update points, e.g., JavAdaptor [25], [26],

Javeleon [13], FiGA [5], [6] and JRebel [18]. These DSU

systems have the edit and continue purpose and they are heavily

integrated with an IDE such as Eclipse or NetBeans. They

are used as a support to development and in these cases to

deploy a faultiness update is not as critical as in general since,

in the worst situation, the developer can stop the debugging

process and start the application again. In this application

of DSU systems, the most important parameter is the wait
time [27]. Developer usually makes a small change on the code

and expects to immediately apply it to the running application

whereas all the possible validation solutions are time consuming

and therefore neglected. In spite of this, some attempts [1],

[2] to validate the update have been done in the case of the

FiGA DSU framework that tries to verify the logic of the

change before the real update; anyway it is still problematic

the validation of the update process itself.

Subramanian et al. [28], in their JVolve DSU system, impose

constraints on the update moment. They do not update deleted

or modified methods and some other methods that have been

black listed by the users. They prepare a list of modified

methods that cannot be updated until they are active. As it

has been showed in Sect. V, not all the changed elements

represent a problem at update time but the problem can also

arise when an unchanged method accesses to modified elements.

So limiting the approach to only active changed elements, as

seen, is not the right choice.

In the Rubah [24] DSU system, the updates are only deployed

at a predefined point of code execution. This point is located

in the main loop of the program. The authors assume that the

nonstopping systems have an infinite main loop and the best

point to deploy the changes is either at the beginning or at

the end of one of the stages of such a loop. Reached such a

point, Rubah calls a predefined method to check if an update is

ready for deployment and when it is the program is suspended

to permit the deployment of the update. In a multi-thread

application all the threads should reach this quiescent point

before starting the update phase. Although the authors suggest

some mechanisms to prevent the application from blocking, it

is difficult to achieve this quiescent situation for all the threads

at the same time. Also calling the update function at every

stage causes a drop in performance as reported in [24].

Zhao et al. [32] performed an exploratory study to find a

safe update point. They statically extracted unchanged methods

from the classes and initially marked all their lines of code

as a candidate update points. Then they reduced the number

of these points by sifting them according to three parameters:

timeliness, success-rate and operability. They exercise test

cases for the old and the new versions of the application and

compare execution snapshots. Their mechanism is very time

consuming and even their evaluation samples (including only

26 classes) takes more than a week to finish, as reported in the

evaluation section of [32]. In spite of that, at the end of the

process the safe update point set is still large. Furthermore they

suppose the existence of the test cases and that the new version

of the application is consistent with its original specification.

All constraints quite unrealistic in a real world application.

Hayden et al. [15] tries to find a safe update point by

340

systematic testing. They put the candidate update points before

every method calling and test every update point with the

program test cases. In this way an enormous numbers of test

cases are produced for the program and it takes a long time to

exercise all of them. Even if they use a minimization algorithm

to reduce the number of test cases.

Tedsuto [23] has been developed to test a program before

doing dynamic update. This method uses system-level tests

which are provided for both old and new programs to find bugs

or misbehaviors that can be induced by the update process. It

explores update opportunities during the execution of each test

case. This method emphasizes on passing the test cases at the

update time while as we demonstrated some fatal errors can

still occur regardless of the test cases.

VII. CONCLUSIONS

This paper presents an automatic way to determine the unsafe

update points to be used in combination with DSU systems,

i.e., those points in the application execution that if used as

an update starting point will drive forth to a problem in the

running application.

The proposed approach is based on the analysis of the new

code plus an element from the old version of the code. The

idea is that of understanding what would happen if the selected

old piece of code is active during the update (and therefore

unaffected by the change). If the analysis find out that such a

combination could drive to an anomalous situation the piece of

code is marked through Java annotations as an unsafe update

point. Not all the possible combinations are checked but only

those that in some way are interested by the change (either

they are part of the change or they uses something that is

changed). This significantly reduced the size of the analysis

and improves the quality of the results with respect to the other

approaches in the literature [15], [28], [32].

A component named validator external to and independent

of the DSU systems uses the introduced annotations to dodge

the unsafe update points during the deployment of the update.

Although this method is time consuming in some cases, we

believe that it has some potentiality and can avoid erroneous

situations and crashes. The proposed approach is independent

of the DSU system and can be easily used with any of the

existing DSU systems as discussed.

We demonstrated this approach with the use of the JavAdap-

tor DSU system [26] on the dynamic evolution of two distinct

versions of the HSQLDB application. In the future, we plan

to analyze the added overhead and to look for more situations

that would need different meta-data to be validated.

REFERENCES

[1] M.Al-Refai, W.Cazzola, S. Ghosh, and R. France. Using Models to
Validate Unanticipated, Fine-Grained Adaptations at Runtime. In Proc. of
HASE’16, pages 23–30, Orlando, FL, USA, Jan. 2016. IEEE.

[2] M.Al-Refai, S. Ghosh, and W.Cazzola. Model-based Regression Test
Selection for Validating Runtime Adaptation of Software Systems. In
Proc. of ICST’16, pages 288–298, Chicago, IL, USA, Apr. 2016. IEEE.

[3] J. Arnold and M. F.Kaashoek. Ksplice: Automatic Rebootless Kernel
Updates. EuroSys’09, pp. 187–198, Nuremberg, Germany, Apr. 2009.

[4] C.Artho and A. Biere. Applying Static Analysis to Large-Scale, Multi-
Threaded Java Programs. ASWEC’01, pp. 68–75, Canberra, Aug. 2001.

[5] W.Cazzola, N.A. Rossini, M.Al-Refai, and R. B. France. Fine-Grained
Software Evolution using UML Activity and Class Models. In Proc. of
MoDELS’13, LNCS 8107, pp. 271–286, Miami, USA, Oct. 2013. Springer.

[6] W.Cazzola, N.A. Rossini, P. Bennett, S. Pradeep Mandalaparty, and
R. B. France. Fine-Grained Semi-Automated Runtime Evolution. In
MoDELS@Run-Time, LNCS 8378, pages 237–258. Springer, Aug. 2014.

[7] W. Cazzola and E. Vacchi. @Java: Bringing a Richer Annotation Model to
Java. Computer Languages, Systems & Structures, 40(1):2–18, Apr. 2014.

[8] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C.Yew. POLUS: A POwerful
Live Updating System. In Proc. of ICSE’07, pages 271–281, Minneapolis,
MN, USA, May 2007. IEEE.

[9] S. Chiba. Load-Time Structural Reflection in Java. In Proc. of ECOOP’00,
LNCS 1850, pages 313–336, Cannes, France, June 2000. Springer-Verlag.

[10] J.-R. Falleri, F.Morandat, X. Blanc, M.Martinez, and M.Monperrus. Fine-
Grained and Accurate Source Code Differencing. In Proc. of ASE’14,
pages 313–324, Västerås, Sweden, Sept. 2014. IEEE.

[11] H. C. Gall, B. Fluri, and M. Pinzger. Change Analysis with Evolizer and
ChangeDistiller. IEEE Software, 26(1):26–33, Jan.-Feb. 2009.

[12] A. R. Gregersen and B.N. Jørgensen. Run-Time Phenomena in Dynamic
Software Updating. IWPSE-EVOL’11, pp. 6–15, Szeged, Sept. 2011.

[13] A. R.Gregersen, B.N. Jørgensen, Hadaytullah, and K.Koskimies.
Javeleon: An Integrated Platform for Dynamic Software Updating and
Its Application in Self-* Systems. S-CET’12, pp. 1–9, Xian, May 2012.

[14] D.Gupta, P. Jalote, and G. Barua. A Formal Framework for On-Line
Software Version Change. IEEE Trans. Softw. Eng., 22(2):120–131, 1996.

[15] C.M.Hayden, E.A.Hardisty, M.Hicks, and J. S. Foster. Efficient
Systematic Testing for Dynamically Updatable Software. In Proc. of
HotSWUp’09, Orlando, FL, USA, Oct. 2009.

[16] D. Hovemeyer and W. Pugh. Finding Bugs Is Easy. ACM Sigplan Notices,
39(12):92–106, Dec. 2004.

[17] M. Jalili, S. Parsa, and H. Seifzadeh. A Hybrid Model in Dynamic
Software Updating for C. ASEA’09, pp. 151–159, Jeju Island, Dec. 2009.

[18] J. Kabanov and V.Vene. A Thousand Years of Productivity: The JRebel
Story. Software: Practice and Experience, 44(1):105–127, Jan. 2014.

[19] P. Klint, T. van der Storm, and J. Vinju. EASY Meta-Programming with
Rascal. In Proc. of GTTSE’09, LNCS 6491, pages 222–289, Braga,
Portugal, July 2009. Springer.

[20] I. Neamtiu and M.Hicks. Safe and Timely Updates to Multi-Threaded
Programs. In Proc. of PLDI’09, pages 13–24, Dublin, Ireland, June 2009.

[21] A. C. Noubissi, J. Iguchi-Cartigny, and J.-L. Lanet. Hot Updates for Java
Based Smart Cards. In Proc. of HotSWUp’11, pages 168–173, Hannover,
Germany, Apr. 2011. IEEE.

[22] R. Pawlak, M.Monperrus, N. Petitprez, C.Noguera, and L. Seinturier.
SPOON: A Library for Implementing Analyses and Transformations of
Java Source Code. Software—Practice and Experience, 2015.

[23] L. Pina and M.Hicks. Tedsuto: A General Framework for Testing
Dynamic Software Updates. ICST’16, Chicago, IL, USA, Apr. 2016.

[24] L. Pina, L. Veiga, and M.Hicks. Rubah: DSU for Java on a Stock JVM.
OOPSLA’14, pp. 103–119, Portland, OR, USA, Oct. 2014. ACM.

[25] M. Pukall, A. Grebhahn, R. Schröter, C. Kästner, W. Cazzola, and S. Götz.
JavAdaptor: Unrestricted Dynamic Software Updates for Java. In Proc. of
ICSE’11, pages 989–991, Waikiki, Honolulu, Hawaii, May 2011. IEEE.

[26] M. Pukall, C. Kästner, W. Cazzola, S. Götz, A. Grebhahn, R. Schöter, and
G. Saake. JavAdaptor — Flexible Runtime Updates of Java Applications.
Software—Practice and Experience, 43(2):153–185, Feb. 2013.

[27] H. Seifzadeh, H.Abolhassani, and M. S.Moshkenani. A Survey of
Dynamic Software Updating. Journal of Software: Evolution and Process,
25(5):535–568, May 2013.

[28] S. Subramanian, M.Hicks, and K. S.McKinley. Dynamic Software
Updates: A VM-centric Approach. In Proc. of PLDI’09, pages 1–12,
Dublin, Ireland, June 2009.

[29] J. Tessier. The Dependency Finder User Manual. Directly, San Fransisco,
CA, USA, 1.2.1-β4 edition, 2010.

[30] Y. Vandewoude, P. Rigole, D. Urting, and Y. Berbers. Draco: An Adaptive
Runtime Environment for Components. Report CW372, Department of
Computer Science, K.U.Leuven, Leuven, Belgium, 2003.

[31] T.Würthinger, C.Wimmer, and L. Stadler. Dynamic Code Evolution for
Java. In Proc. of PPPJ’10, pages 10–19, Vienna, Austria, Sept. 2010.

[32] Z. Zhao, X.Ma, C.Xu, and W.Yang. Automated Recommandation of
Dynamic Software Update Points: An Exploratory Study. In Proc. of
INTERNETWARE’14, pages 136–144, Hong Kong, China, Nov. 2014.
ACM.

341

