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Abstract

Rectangular dualization is an effective, hierarchically
oriented visualization method for network topologies and
can be used in many other problems having in common with
networks the condition that objects and their interoccurring
relations are represented by means of a planar graph. How-
ever, only 4-connected triangulated planar graphs admit a
rectangular dual. In this paper we present a linear time
algorithm to optimally construct a rectangular layout for
a general class of graphs and we discuss a variety of ap-
plication fields where this approach represents an helpful
support for visualization tools.

1. Introduction

The reengineering of a large communication network
is a complex problem, which consists of different aspects
that can be strongly affected by the way of describing data.
The plainest way to describe a communication network is
to model the relationship among sites and links by means
of a weighted undirected graph. An issue is encountered
when network analysis and visualization have to be real-
ized: practical networks include hundreds or often thou-
sands of nodes and links, so that even a simple descrip-
tion and documentation of their structure is hard to maintain
and update. In this case the network is usually described in
form of a hierarchy of sub-networks that are represented by
collapsing some sub-networks into single nodes or single
links to be described in separate documents. Such a hier-
archical approach to network (and graph) description can

be formalized into a complex but flexible graph structure
called structured graph [8]. This representation is useful
not only for documenting and drawing a large network but
also for making computations on it without reconstructing
the whole graph plan every time some computation has to
be performed on it.
Rectangular dualization was originally introduced to gen-
erate rectangular topologies for floorplanning of integrated
circuits: by a floorplan, we partition a rectangular chip area
into rectilinear polygons corresponding to the relative lo-
cation of functional entities of the circuit. In spite of the
specialized problems that motivated its origin, rectangular
dualization contributes to the resolution of many other vi-
sualization problems, such as network configuration issues,
when human interventions of design or topology adjustment
are needed and a physical or logical layout representation
becomes essential for the human operator. In fact, a very
serious problem to cope with in graph drawing is how to
represent edges in such a way that they do not appear too
close together. The aim is to enhance the readability of the
drawing, making easier to find out which nodes are con-
nected by an edge. The very first solution to this problem
is to avoid edge crossings, and this motivates the interest
for planar graphs, that are precisely those graphs that can
be drawn in the plane with no edge crossings. The choice
for planar graphs is not only a representation facility but is
primarily validated by real-world examples where the pres-
ence of crossing links may produce technical drawbacks.
Further on, since a major optical effort is encountered in the
proximity of vertices, where adjacent edges need to meet in
a point, several studies have been spent in devising drawing
algorithms capable of maximizing angular resolution, i.e.



the smallest angle between adjacent edges, in such a way
that lines representing connections are kept as separate as
possible. Orthogonal graph drawing solves the angular res-
olution issue by forcing all angles between adjacent edges
to be π

2 and in drawing edges as polylines whose consti-
tuting segments are axis-parallel. A further important is-
sue is the layout space compaction. In fact, minimizing the
drawing area is not only an aesthetics concern: a represen-
tation where nodes and edges fill the space homogeneously
is not only more pleasant and readable, but also more adap-
tive to the requirements of different visualization media. In
the particular case of orthogonal graph drawing, techniques
to optimally find a grid embedding are matter of interest.
Attention has recently been paid to the dynamic drawing
of hierarchically structured graphs [12] or the possibility of
incrementing the layout visualization at subsequent steps of
the graph visit; since many visualization supports such as
screens, windows or paper sheets have a rectangular topol-
ogy, rectangular dualization, with its multiscale capability
of containing nested rectangles, has a predisposition for
representing structured graphs and hierarchically organized
networks.

In the rest of the paper, we will give an overview of the
state of the art (section 3), we will show our algorithm to
build a rectangular dualization in linear time (section 4) and
draw a network (section 5). Finally we will show some
other applications of the rectangular dualization (section 6),
examine some related works (section 2) and draw our con-
clusions

2 Related Works

Thomassen proved that every planar graph is the inter-
section graph of a collection of three-dimensional boxes,
with intersections occurring only in the boundaries of the
boxes. Furthermore, he characterized the graphs that
have such representations (called strict representations) in
the plane. These are precisely the proper sub-graphs of
4-connected planar triangulations. Together with earlier
work [21], his work yields an algorithm for testing a graph
G to see if it admits a rectangular dual and, if so, construct-
ing such a representation. His proof does not look to lead
to an efficient algorithm, however: a straightforward imple-
mentation of his method requires at least O( n3 ) time and
he does not bound the layout area. Bhasker and Sahni [5]
developed linear-time algorithms to find a rectangular dual
for 4-connected planar triangulation. In [14] Kant and He
explain how to construct a rectangular dual from a regular
edge labeling (REL, for short) and present two algorithms
to compute such labeling, one based on an edge contraction
technique and the other on a canonical ordering. A later
work of Saidur presents a linear time algorithm which finds
a rectangular grid drawing using a depth first search [17].

In [9] it is shown how the works above may be combined
to produce an efficient algorithm for constructing rectangu-
lar duals with asymptotically bounded area. A large scale
application of the aforecited linear methods is strongly lim-
ited by the fact that not all graphs admit a rectangular dual,
especially those containing separating triangles (see sec-
tion 3 for details). Lai and Leinwand [16] first presented
the idea of forcing rectangular dual admissibility by intro-
ducing crossover vertices breaking all separating triangles.
They conjectured that finding a minimal set of crossover
vertices was a NP-complete problem and performed non
optimal introduction of crossover vertices in linear time.
Our method performs an optimal introduction of crossover
vertices and extends the class of graphs treatable by the rect-
angular dualization linear methods discussed in the first part
of this section, such as the one of [14] (see the schema of
fig 3 for a visual comparison between our method and ex-
isting approaches).

3 Definitions

In this section we present the graph-theory terminology
necessary for the comprehension of the rest of the paper. A
rectangular dual of a planar graph G = (V;E) is a rectan-
gle R with a partition of R into a set Γ = R1; :::;Rn of non
overlapping rectangles such that:

� no four rectangles meet at the same point;

� there is a one-to-one correspondence f : V �! Γ such
that two vertices u and v are adjacent in G if and only
if their corresponding rectangles f (u) and f (v) share a
common boundary.

It is easy to see that if a graph admits a rectangular dual, it
may not be unique (see fig 1).
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Figure 1. A planar triangulated graph and two
possible rectangular layouts.

On the other side, some graphs do not admit rectangu-
lar dual. The most important point for the existence of a
rectangular dual is the absence of separating triangles, (that
is, 3-vertex cycles with at least one vertex in their interior)
a condition that in planar triangulations is equivalent to 4-
connectivity whose meaning is that the removal of any set
of 3 vertices leaves the remainder of G connected [14]. One
of the most critical point of our algorithm is the separating
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triangles removal. This involves a well-known concept in
graph theory: the edge covering problem. An edge cover-
ing for a graph G is a set of edges C so that every vertex of
G is adjacent to at least one edge in C. We solve this prob-
lem by reducing it to a matching problem. A matching in
G is a subset M of edges such that for every vertex v, at
most one edge e covers v, that is v is an endvertex of e. In
our procedure the edges of the graph are weighted and we
compute a maximum weighted matching, that is a match-
ing where the sum of the matched edges is maximum with
respect to the other possible matchings. Matching is a very
challenging problem in general graphs. Fortunately we have
to solve it only for the 3-regular bridgeless graphs. A graph
is k-regular if every vertex has degree k, that is k incident
edges. A bridge is an edge whose removal disconnects G. If
the graph has not bridges, it is called bridgeless. Whenever
we speak of a planar graph, we assume that some planar
embedding has been fixed, which corresponds to the idea
of depicting an existent physical network (in this perspec-
tive, it would be more accurate to speak of plane graphs,
i.e. planar graphs with a fixed embedding in the plane).

In the following section we give an O(n ) time algorithm
that transforms planar graphs that do not admit rectangu-
lar duals into graphs admitting one by adding the minimum
number of new vertices.

4 All Separating Triangles in a Plane Graph
can be Optimally Broken in Linear Time

In the practice of network representation not all the cases
of interest satisfy 4-connectivity, but it is always possible to
turn a planar input graph into a 4-connected planar trian-
gular graph by breaking all the separating triangles. In [1],
Ancona et al. showed that all separating triangles can be op-
timally broken in polynomial time and presented an asymp-
totical bound of O( n3 ), which some discussion can refine
up to O(mn lgn). This method performs this transformation
in three steps:

¶ the geometrical dual of a biconnected graph is com-
puted and faces belonging to a separating triangle are
detected and clustered in a single macro-vertex;

· a covering affecting macro-vertices is computed; the
effect is that all separating triangles are optimally bro-
ken by inserting new vertices in some strategic places
along some of their constituting edges;

¸ the resulting graph is triangulated with the algorithm
described in [7].

We have so far obtained a graph satisfying triangularity and
four-connectivity. In the modification perspective, the input
graph is not even required to satisfy biconnection: there is

a preliminary method to provide this degree of connectiv-
ity [19]. The complexity of the whole method is affected by
the largest complexity among its intermediate steps, that is
due to the deletion of separating triangles. We have to break
all the separating triangles by adding a minimum number of
crossover vertices. To this aim, we assign to each edge e of
the geometrical dual graph a weight, which is the number of
separating triangles shared by the dual edge of e. Then we
compute a minimum weighted macro-covering, obtaining
the edges on which crossover vertices are to be added. The
minimum weighted covering can be computed by resolv-
ing a sequence of minimum weighted covering problems
on each simple graph of the structured dual. In [18], Parekh
showed how to reduce a minimum weighted edge cover of a
specified subset of the vertices of G to a maximum weighted
b-matching, a well solved problem [10] that is tackled by
implementing the O(mn lgn ) algorithm presented in [13].
Breaking separating triangles has some computational cost,
but the proposed divide and conquer approach due to the
macro-covering step makes the method effectively usable
on very large graphs, as resulted from the implementation
of the method [4]. However, the main reason of such a cost
is that the aforecited matching algorithm holds for general
graphs, a much wider class of graphs than the one we deal
with by assuming planar networks. Instead, a matching in
a 3-regular bridgeless graph can be found in linear time [6].
Since the collection of all planar 3-regular bridgeless graphs
is exactly the collection of duals of planar triangulations
where the outside face is a triangle, we may tighten the
bound by solving the matching problem on the dual of a
planar triangulation and we obtain this by anticipating the
application of the algorithm [7], which triangulates without
adding new separating triangles.

5 From the Rectangular Dual of a Graph to
its Orthogonal Drawing

The graph resulting from the sequence of steps described
in the previous section satisfies the condition for the algo-
rithm of visibility representation based on canonical order-
ing [14]. Once a visibility representation has been com-
puted, an orthogonal embedding can be constructed by ap-
plying Tamassia and Tollis algorithms [20]. Alternatively,
we can produce an orthogonal drawing directly from a rect-
angular dual representation of the input graph. Figure 2
is an example of automatically created orthogonal drawing,
shaded rectangles correspond to breaking points completing
the graph up to 4-connectivity.

In both orthogonal grid embedding methods, augment-
ing vertices introduced by the separating triangles breaking
method and augmenting edges introduced by the triangu-
lation step need to be removed from the final orthogonal
grid embedding. The orthogonal drawing definition we pre-
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Figure 2. An orthogonal drawing derived from a rectangular dual representation (dashed lines, to be
removed in the final drawing). Shaded rectangles are due to breaking points.

viously referred to has practical importance only for graphs
with maximum degree 4; when considering graphs of higher
degree, it is not any longer possible to draw vertices as
points while maintaining an angular resolution of π

2 in every
meeting point. In [15] are discussed a number of accredited
solutions (such as to draw vertices as boxes with a sufficient
number of grid lines for adjacent edges) to overcome this
issue. In our approach, we weakened the orthogonal draw-
ing definition by accepting a different angular resolution
around vertices and found that, for medium vertex degree
cases, this relaxation does not compromise readability (see
Fig. 4(a)). An alternative approach consists in limiting the
number of drawn lines by grouping several edges sharing
the same direction in hyper-edges and by labeling merging
points with the target name (Fig. 4(b)). Whatever orthog-
onal embedding technique is adopted, a final optimization
step is needed to reduce the number of bends; this is ob-
tained by using the bend-stretching transformations intro-
duced in [20].

6 Put Rectangular Dualizations at Work

Using a rectangular dual for graph drawing offers several
advantages:

� its complexity is linear (O( n ) time, where n is the
number of nodes),

� the class of tractable graphs can be widened without
penalizing the layout area of the best cases; in the
worst case, the area of the layout is O( n2 ), like the
other most efficient drawing methods,

� it provides symmetrical drawing with respect to x and
y coordinates,

� it leads to an alternative approach to orthogonal graph
drawing, that has revealed to be usable in many real
world examples (see fig. 5(a))

� to construct a 2-visibility drawing from a rectangular
dual is immediate (see figure 5(b)),

� a 1-band rectilinear drawing can be obtained from a
rectangular dual in linear time by easily transforming
the 2-visibility algorithm [14] (figure 5(b)).

� hierarchical dualization (and drawing) is naturally em-
beddable into a hierarchy of rectangular dual graphs,

A 2-visibility drawing [14] is a drawing in which each ver-
tex is represented by a rectangle and the adjacency relations
are expressed by horizontal and vertical lines drawn be-
tween the rectangles. Figure 5(b) shows a 2-visibility draw-
ing of the astro-graph of [11] obtained from the rectangular
dual (outlined in red) of the astro-graph.

In figure 5(b) you can see the dual rectangle (the yellow
dashed one) of a broken separating triangle and how the cor-
responding rectangle is used for drawing. In fact each sep-
arating triangle is broken by a new vertex that disappears in
the final drawing: the corresponding rectangle is traversed
by a single horizontal (or vertical) line representing the bro-
ken edge. Figure 5(b) shows also how the 2-visibility draw-
ing can be transformed into a 1-bend rectilinear drawing
of the same graph. The algorithm squeezes the rectangles
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(a) A real case medium-sized example. (b) 1-bend drawing of astro-graph and 2-visibility representation

Figure 5.

representing vertices until a 1-bend drawing becomes im-
possible. Here again the property of the rectangular dual
guarantees the existence of the solution.

Structured graphs (also called clustered graphs [2,3]) are
graphs with a recursive clustering structures over the ver-
tices (or edges). Drawing clustered Graphs on an orthogo-
nal grid has been performed by the output drawing has order
O(n2 ) and the algorithm is O(n ). We obtain the same op-
timal figures by using the rectangular dual of the graph for
drawing the graph. The construction of the structured dual
of a structured graph can be constructed in two ways:

¶ recursively applying the construction to each graph of
the hierarchy

· by forcing the rectangles representing a cluster in the
plain graph (they must be adjacent) to form a single
rectangle.

Attention has recently been paid to the dynamic drawing
of hierarchically structured graphs [12] or the possibility of
incrementing the layout visualization at subsequent steps of
the graph visit; since many visualization supports such as
screens, windows or paper sheets have a rectangular topol-
ogy, rectangular dualization, with its multi-scale capabil-
ity of containing nested rectangles, has a predisposition for
representing structured graphs and hierarchically organized
networks. In our case, as seen in the next section, the hier-
archical structure is part of the network architecture (graph)
in the sense it is used for optimizing communications and
building the network itself. In this case, being our networks
almost planar, a rectangular dual representation is an Eu-
clidian view of the graph useful for drawing the network, or

for its physical implementation.

7 Conclusions

We described a method showing how it is possible to op-
timally complete in linear time a generic planar graph up
to 4-connectivity by adding crossover vertices in order to
eliminate separating triangles. This method can be used to
preprocess the input graph in order to apply the visibility
representation algorithm based on canonical ordering. Such
an approach has revealed to be usable in many real world
examples and to be adaptive to practical use relaxations of
the orthogonal drawing concept in case of graphs having
a degree which is greater than 4. Future work is aimed
at shaping up the rectangular dual capability of capturing
nested rectangles to draw hierarchically organized graphs.
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