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Abstract—The paper presents a new reflective model, called Channel
Reification, which can be used in distributed computations to overcome
difficulties experienced by other models in the literature when monitor-
ing communication among objects.
The channel is an extension of the message reification model. A Channel
is a communication manager incarning successive messages exchanges
by two objects: its application range between those of message reification
and those of meta-object model.
After a brief review of existing reflective models and how reflections can
be used in distributed systems, channel reification is presented and com-
pared to the widely used meta-object model. Applications of channel reifi-
cation to protocol implementation, and to fault tolerant object systems are
shown. Future extensions to this model are also summarized.

Keyword: Object-Oriented, Computational Reflection, Reflective Distributed
Systems.

I. Introduction

In the development of complex distributed applications, two concerns
must simultaneously be kept into account: the problem which the ap-
plication is intended to solve as well as how it shall be implemented.
Among the latter types of concerns, portability, efficiency and fault
tolerance may significantly impact on problem solution architecture.
In some cases, the underlying operating systems may support fully ap-
plication transparent distribution and error processing facilities, or it
is possible to integrate similar features as library modules. Unfortu-
nately such support may be insufficient or unavailable on the selected
platform. Then, specific tools must be developed at the same time as
the application itself.
Object-oriented programming paradigms have been proposed as
means intended to solve the above problems, and among object-
oriented paradigms special attention should be given to that of com-
putational reflection. A reflective object-oriented system is capable of
monitoring its own behavior, a more precise definition is given below.
What makes reflection especially attractive in the design of complex

systems is that it allows a clear separation between the application
(problem dependent) and meta (dealing with implementation) func-
tionalities, using a meta-level to hide complex implementation details
from the application programmer. Such a feature improves reusability
and extendibility of a system.
In a reflective system it is possible to modify application behavior in
a transparent way, for instance by replicating objects for fault toler-
ance, without concerning the application designer with too much de-
tails about implementation of replication: choice of desired behavior is
as simple as, say, object selection and instantiation from a given class.
Models for reflective systems appearing in the literature are: messages
reification, meta-objects and meta-classes. A complete presentation is
given in [1]. Meta-objects have been studied, for instance in [2], where
an example of object replication for fault tolerance is detailed: the use-
fulness and ease of implementation are clearly shown. However there
are other problems arising in the implementation of fault tolerant dis-
tributed communication for which none of the above models provides
simple and clear solutions.
For this reason we have defined a new model for reflective object sys-
tems, which we have called channel reification: its main use is that of
encapsulating and possibly redefining communication protocols in a
distributed environment.
The channel reification model supports creation of a library of channel
classes, each instance of them being a communication channel. Possi-
bilities include reliable and atomic communication, distributed trans-
actions, name service and load balancing. Different implementations
with different semantics or performance may be made available within
a channel library. Thus channel reification provides a unified and ap-
plication transparent view of the underlying communication subsys-
tem.
The rest of the paper contains an overview of computational reflection
(section II), a short discussion on the use of reflection in distributed en-
vironments (section III), a presentation of channel reification (section
IV) and, in section V, some applications of the new model are pre-
sented. Finally, section VI is devoted to conclusions and future work in
this area.

II. Computational Reflections

Computational reflection or simply reflection is defined as the activity
performed by an agent when doing computations about its own com-
putation [3].
An object-oriented reflective system is logically structured in two or
more levels, constituting a reflective tower. Entities (objects) working
in the base level, called base-entities, define the system basic behavior.
Entities working in the other levels (meta-levels), called meta-entities,
perform the reflective actions and define further characteristics be-
yond the application dependent system behavior.
Each level is causally connected to adjacent levels, i.e. entities working
into a level have data structures representing (or, using a reflection-like
term, reifying) the activities of the entities working into the underly-
ing level and their actions are reflected into such data structures. Any
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change to such data structures modifies entity behavior.
Meta-entities supervise the base-entities activity. The concept of trap
could be used to explain how supervision takes place. Each base-
entity action is trapped by a meta-entity, which performs a meta-
computation, then it allows such base-entity to perform the action.
We observed, going beyond the reflective tower of compilersjinterpre-
ters, that each reflective computation can be separated into two logical
aspects: computational flow context switching and meta-behavior. A
computation starts with the computational flow in the base level; when
the base-entity begins an action, such action is trapped by the meta-
entity and the computational flow raises at meta-level (shift-up opera-
tion). Then the meta-entity completes its meta-computation, and when
it allows the base-entity to perform the action, the computational flow
goes back to the base level (shift-down operation).
The use of meta-level programming permits transparent separation of
application components from those providing additional properties to
the application (separation of concerns). To this respect, it is useful to
consider also reflections granularity [4], that is the minimal entity in a
software system for which a reflective model defines a different meta-
behavior. A finer granularity allows more flexibility and modularity in
the software system at the cost of meta-entity proliferation.
We now briefly describe different models for reflection, highlighting
their advantages and limits.

A. Meta-Object Model (MOM)

In this model, meta-entities (called meta-objects) are objects, instances
of a proper class. Each base-entity, called also referent, can be bound
to a meta-object. Such a meta-object supervises the work of the linked
referent. The model makes few assumptions about relationships be-
tween base and meta-entities: in principles, each meta-object can be
connected to many referents, and each referent can be linked to sev-
eral meta-objects (one at a time) during its lifecycle. However most
implementations, for reason of efficiency, restrict this freedom: in
OpenC++ [5] and ABCL-R [6] a meta-object is linked to one refer-
ent only, and each referent can have only one meta-object during its
lifecycle. As a consequence, reflection granularity is at object level.
Referent actions trapped by meta-objects are method calls. When the
meta-object has completed the meta-computation, it returns the com-
putational flow to its referent, which actually calls the method.

B. Message Reification Model (MRM)

In this model, meta-entities are special objects, called messages, which
embody the actions that should be performed by the base-entities. The
kind of a message defines the meta-behavior performed by the mes-
sage; different messages may have different kinds. Every method call,
is reified into an object (named message) which provides to its own
management (e.g., delivery) in agreement with the kind of the meta-
computation required, and when the meta-computation terminates,
such a message is destroyed.
Then, granularity is at method level, since it is possible to define differ-
ent behaviors for method calls performed by each object. Messages are
not linked to the base-entity originating them and cannot access their
structural information. Message lifecycle is the duration of the em-
bodied action. Thus it is impossible to store information among meta-
computations (lack of information continuity). On the other hand, ev-
ery method call creates and then destroys an object (the message). The
reflective tower in this model consists only of two levels: the base and
the meta-level.

III. REFLECTION AND DISTRIBUTION

Distributed architectures let users of individual, networked comput-
ers share programs and data resources. Distribution can also enhance
availability, reliability and performance (through techniques such as
replication of programs or data and parallel computation). In achiev-
ing these benefits, distributed systems incur design costs that are not
present in unitary systems.
Critical design issues to be solved in distributed systems include:

� locating programs and data resources across the network,

� establishing and maintaining inter-program communication on
the network,

� coordinating the execution of distributed application.
Coordination models [7] represent one way to handle these diverse de-
sign issues coherently and uniformly. A coordination model establishes
logical rules for executing distributed interactions. Rules specify who
can initiate interactions, who can respond, how to retrieve results, how
to handle errors, and so on.
Clientjserver architecture represents a widely used coordination model:
an object, the client, requests an operation or service that another ob-
ject, the server, is able to provide. Upon receiving a client request, the
server performs the requested service and returns the result.
The clientjserver coordination model offers simplicity in closely match-
ing data with control flow. Such a coordination model, typically, pro-
vides a high-level application programming interface (API) to handle
the interactions.
To achieve a better and clear separation of the application code from
the interaction code, a different model, employing agents and brokers
is increasingly used.
While an agent is a distinct, architectural component that mediates
interactions between an application and the communications kernel,
a broker is a dedicated control mechanism that mediates interactions
between client applications needing services and server applications
providing them. Status of services is maintained and recovered by the
broker, so clients no longer need keep track about where and how to
obtain particular services. A broker can handle clientjserver interac-
tions following one among several design models, the most used models
are:

� A forwarding or routing broker relays a client’s request to the rel-
evant server application, retrieves the answers, and relays them
back to the client.

� A handle-driven or introduction broker returns a service handle
back to the client, containing information to interact with the
server for the given service (such as its name and its network
address); the clients uses such information to issue its request
directly to the server, which then replies back to the client.

A. Reflective Distributed Systems

As remarked in [8], today’s distributed systems either include coor-
dination code very tightly coupled with the application code or com-
pletely separated from it, working transparently and out of designer’s
control.
Using computational reflection, the coordination model can be imple-
mented at meta-level. Meta-entities use objects to encapsulate coor-
dination model entities (brokers or agents). In this way, coordination
code is clearly separated from application code (within base-entities)
and the programmer may customize the coordination model without
affecting application code (one such example is the Object Communi-
ties described in [9]). As a consequence, many coordination models
may simultaneously be present in a system (one for each meta-entity),
and meta-entities implementing such models, once implemented, can
be easily changed and reused in different applications.
In order to achieve the desired goals, reflective distributed systems de-
sign should solve new problems, such as how to interface entities and
meta-entities at the same time preserving transparency, and how to im-
plement causality without sacrificing system efficiency. Such topics are
examined in [10] and [6].

IV. Channel Reification Model (CRM)

We propose this model as an extension to the message reification model,
aimed at solving some of its drawbacks, while keeping its advantages.
Channel reification is based on the following idea: a method call is
considered as a message sent through a logical channel established be-
tween an object requiring a service, and another object providing such
a service. This logical channel is reified into an object called channel
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(as shown in figure 1). A channel is characterized by a triple composed
by the objects it connects and by the kind of the meta-computation it
performs.

channel � (sender, receiver, channel kind)

A channel kind identifies the meta-behavior provided by the channel.
In a typed object-oriented language the kind is also the type of the
channel class. The kind is used to distinguish the reflective activity to
be performed: several channels (distinguishable by the kind) can be
established between the same pair of objects at the same moment.
The lack of information continuity of message reification is eliminated
by making channels persist after each meta-computation. A channel is
reused when a communication characterized by the same triple is gen-
erated. In this way, meta-level objects are created only once (when they
are activated for the first time), and reused whenever possible. When
an object is destroyed, all channels established fromjto it are destroyed
too. This lifecycle limits channel proliferation, since a garbage collec-
tor erases pending channels.
The features of the model are:

? Method-level granularity, as for message reification: different
method calls can be handled by different channels, thus special-
izing a reflective behavior for each method.

? Monitored channel proliferation with pending channels elimina-
tion.

? Possibility to keep information among meta-computations (infor-
mation continuity).

? Each channel completely supervises a communication, from the
beginning to the end, sender and receiver’s work inclusive.

Each service request is trapped (shift-up action) by the channel of the
specified kind connecting client and server objects, if it exists. Oth-
erwise, such a channel is created; in either case, it then performs its
meta-computation and transmits the service request to the supplier.
The server’s answer is collected and returned to the requiring object
(shift-down action).
A channel behaves like a reflective forwarding broker. Each channel
kind specializes the behavior of a broker to specific requirements, and
this specialization is transparent from the underlying application.

A. CRM, MOM: How Do Their Features Compare?

Channel Reification has been presented in the previous section as an
extension to the message reification model. However channel persis-
tence makes the new model more similar to the meta-object model. The

difference between meta-objects and channels lies in their intended
use, that is, a channel reifies and monitors communication between
two objects, while a meta-object controls the behavior of one specific
object (as shown in figure 2). Meta-objects may be used to monitor
communication as well, but only by means of cooperative actions with
other meta-objects. Figure 2.a shows a service request from referent
A to referent B . The request is trapped by A’s meta-object (M A) and
the reply is trapped by the server meta-object (M B). The two meta-
objects may also coordinate their meta-actions after additional com-
munication at meta level.
Figure 2.b shows what happens in the channel reification model: the
service request is reified into channel C , so only one meta-entity is re-
sponsible for that.
In a distributed environment, the channel is a reflective abstraction of
the forwarding broker model, mediating interactions between client
applications needing services and server applications providing them.
On the other hand, a meta-object plays a role closer to an agent, me-
diating interactions between applications and the communication ker-
nel.
Thus the basic difference consists in the meta-communication proto-
col: in the meta-object model, in order to monitor interactions among
several base objects, we must reify as many meta-objects as there are
base objects. Such meta-objects interact via a communication graph
which duplicates (or includes as subgraph) the communication graph
at base level (see figure 2.a). In the channel reification model, at the
meta-level, we reify object interactions (instead of single objects) that
need not communicate between themselves (see figure 2.b). The chan-
nel communication graph, if any, is usually different from that at base
level. This simplifies the reflective tower communication model at the
expense of a larger number of reified meta-entities.
We believe that each application should make use of the reflection
model better suited to its needs, the meta-object, the channel, or even
both, as will be shown in the examples, in correspondence with the kind
of support required by useful abstractions.

V. EXAMPLES OF CHANNEL REIFICATION USE

Channel reification is designed for distributed communication. Chan-
nels are well suited wrappers for several communication abstractions
that can thus be layered over application software:

� reliable messaging – obtained by encapsulating into channels all
mechanisms to achieve the degree of communication reliability
required by each application, instead of letting each applicative
process provide its own mechanisms;

� extendibility – we may build a reliable protocol over an unreli-
able one (eg., UDP), without affecting the client and server code;

� implementing binding methods (eg., those supported by CORBA
or by OSF DCE name service), thus relieving applications of
the error prone task of retrieving and connecting to a compati-
ble server;

� usual channel services such as: data marshalingjunmarshaling,
communication error handling, multi-packed message manage-
ment.

We now detail two examples of use of channels: protocol substitution
and reliable communication.

A. Implementing Protocols with Channels

Channels can be used to replace object communication protocols. For
example, using channels, it is possible to transparently discriminate the
service request formality. Taking advantages of channel granularity,
within the same object some services can be synchronous, others asyn-
chronous, or conditionally synchronous. The application programmer
need not worry about synchronizing client with server and how to do
it, the application need only specify a protocol to be used at each ser-
vice request.
Such a behavior is achieved by developing several channels classes
(making a channel class library), one for each service protocol (for
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example, synch channel and asynch channel) and specifying for
each service which protocol must be used.
Each channel class defines the kind of its own instances. In order to dis-
criminate the protocol service it is necessary to bind each service to a
channel kind. If the implementation language allows it, dynamic bind-
ing can be used to perform run-time selection of channel kind among
available channel implementations.
For example, a server is offering services a, b, c, and d, where a and
c are synchronous services, d is asynchronous, and b is handled in a
system-dependent default manner. Consider then the following speci-
fications:

synch channel � fa, cg
asynch channel � fdg

they may be interpreted, at run-time, as dynamic binding requests
that all channels connecting any client to services a, c should be of
kind synch channel, those connecting to service d should be of kind
asynch channel, and those connecting to b should be as the client
selects.

B. Reliable Communication for Critical Objects

In [2] meta-objects are used to endow a system with fault tolerant be-
havior: each critical referent is replicated, and all base objects (includ-
ing replicas) are equipped with meta-objects (as in Figure 3.a). Meta-
objects take care of checkpointing, detecting and recovering a fault.
The meta-object linked to a critical object is tightly coupled to meta-
objects of the corresponding replicas, exchanging information to keep
replica states consistent with that of the critical object.
Each action performed by a critical object is trapped by its meta-object
which builds the checkpoint and sends it to meta-objects of replicas,
which are responsible for updating their referents. This approach
works well only if communication among critical objects is reliable,
and fails if the underlying transmission protocol is not. In case this is
a problem, a solution which uses meta-objects to implement reliable
communication is of course feasible, but it would end up with rather
obscure meta-object code, since each meta-object would manage intra-
replicas communication as well as interaction with a replicated client
or server.
Again, interactions are better monitored by channels as fault tolerant
message routers established among critical objects (as in figure 3.b).
Meta-objects and channels play a different role: meta-objects, as in
Fabre’s example, are used to keep the state of each replica coherent
with the corresponding critical object, while channels guarantee a bet-
ter control over service request routing.
The kind of channel used in this example is a double-linked channel:

the double link means that it can be activated by both the client and
the server, a feature that becomes useful when two critical objects in-
teract. Such a channel traps service requests and routes them to an
available server; similarly, it traps service results and returns them to
the client.
A double-linked channel should implement the following actions:

� carbon-copy requests filtering,

� carbon-copy replies filtering,

� requestjreplies reliable delivery
All these actions are possible with the help of a log-file. Each request
and its progress state (ie. to send, sent, to reply or replied tag and
requestjreplies information) are checkpointed in a log-file stored in sta-
ble storage, identified by client and server ids and channel kind.
In case channel fault occurs, information contained in the log-file is
sufficient for channel as well as communication recovery, and no chan-
nel replica is needed (the double-linked channel has no other status
information). Either the client or the server may activate a double-
linked channel if it does not exist or it does not answer. At startup, new
double-linked channels collect interaction status information from as-
sociated log-files.
So a double-linked channel behaves like the mythical Phoenix rising
from its ashes when it is needed to handle a new interaction. Thanks
to its reincarnation semantic, this approach takes the phoenix effect
name.

VI. CONCLUSION, RELATED AND FUTURE WORKS

The paper has illustrated channel reification, a new model for dis-
tributed reflective systems. As the name suggests, this model is espe-
cially suited for reflecting on communication among objects. Other
reflective models have been compared to Channel Reification, and spe-
cial attention has been devoted to the widely used meta-object model.
Applications of channel reification to protocols implementation, and to
fault tolerant object systems show the benefits of this new approach,
which can be used to implement communication abstractions in order
to extend communication features of existing systems.
The definition of a channel class library, where channel properties are
selected by channel kind, would provide a significant simplification in
application objects code.
Similar idea have been introduced in the GARF system [11] by means
of the mailer concept, and in [12] with connectors; both systems do not
support a concept like the kind which gives to channel reification an
increased flexibility.
We discussed only one aspect of channels, that is their use in point-to-
point communications. However the most challenging extensions are
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those towards multi-point communications, where significant applica-
tions are:

� multiple-RPC;

� broadcasts and object group communication;

� request serialization;

� load balancing among a group of servers;

� synchronization barriers;

� intra-replicas and inter-replicas communication.
An extension of channel reification model to multi-point communica-
tion is under development.
The possibilities offered by channel reification are exploitable only by
means of an efficient implementation of a channel library on widely
available systems. A study of object-oriented and object based lan-
guages which would be suitable to support efficient channel implemen-
tation is presented in [13], where a prototype C++ implementation on
top of PVM is also illustrated. Modeling and implementation of ex-
tensions such as the above ones, towards multi-point communication is
planned for the next future, at the same time keeping into account the
implementation costs of these models.
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