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// A proposed approach moves variability 

support from the programming language 

to the language implementation level. 

This enables contextual variability in any 

application independently of whether the 

underlying language supports context-oriented 

programming. A Neverlang-based prototype 

implementation illustrates this approach. //

SUPPORT FOR CONTEXTUAL 
variability is increasingly in demand 
for software development tools, es-
pecially for ubiquitous and mobile 
computing. The poor or nonexis-
tent behavioral-variability support 

provided by traditional software 
development tools gave rise to ap-
proaches that support contextual 
variability.

In particular, context-oriented 
programming (COP) addresses  

contextual variability from a  
programming-language perspective. 
Typically, COP languages provide 
abstractions to implement behavioral 
variations and the variation activa-
tion logic. Behavioral variations are 
modularization units, typically de-
fined as partial-method definitions,1 
that implement the desired context-
dependent behavior. Variations are 
then grouped into layers that the de-
veloper explicitly triggers through 
a layer activation or deactivation 
mechanism. (Throughout this article, 
we refer to this widespread model of 
grouping and activating or deactivat-
ing behavior. However, alternatives 
to layers exist—for example, con-
text objects2 and predicates.3 Also, 
layer context management can be 
event-driven.4)

Traditional COP languages are 
suitable when behavioral variability 
is designed a priori and implemented 
from scratch. On the other hand, if 
behavioral variability is introduced a 
posteriori or is implicit in a language 
construct, the application code will 
require extensive reorganization.

To help programmers avoid such 
labor, we’ve developed an approach 
that moves variability support 
from the programming language to  
the language implementation level. 
This enables contextual variability 
in any application independently of 
whether the underlying language 
supports COP.

Our prototype implementation  
is based on the Neverlang language 
development framework,5 whose 
support for modularity greatly eases 
the development of context-aware  
programming-language interpreters. 
Never lang has a multiple-semantic-action 
dispatcher6 and supports dynamic 
adaptation of interpreters.7 On top 
of these features, we developed sup-
port for interpreter-level layers.
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Moving to the Language 
Implementation Level
Consider the escape-time algorithm 
for calculating a Mandelbrot set; 
Figure 1 shows a possible JavaScript 
implementation. The details don’t 
matter; we focus only on the two 
loops in lines 4 and 5, which are re-
sponsible for the whole set calcula-
tion. They account for most of the 
execution time, which heavily in-
creases with the calculated set’s size.

It’s well known that you can 
speed up this algorithm by unroll-
ing these loops and executing each of 
their stages in parallel (for example, 
on different cores). Parallel execu-
tion is faster than sequential execu-
tion but consumes more energy and 
could more quickly drain the bat-
tery of a laptop executing the code. 
Owing to this tradeoff, we’d like to 
switch between sequential and paral-
lel execution, depending on whether 
the laptop is plugged into the electri-
cal grid or running on a battery.

This example is deliberately 
simple to avoid obscuring basic 
ideas with unnecessary algorithmic 

details. At the same time, it’s rep-
resentative of a range of context-
aware applications whose execution 
depends on the resource-saving 
context.

With a traditional COP approach, 
we’d have to introduce several modi-
fications to our code. For example, if 
the original code is in a language 
with no COP extension, we’d have 
to adopt a new COP language and 
largely rewrite the original code. 
We’d have to reorganize the code 
to explicitly modularize behavioral 
variations and add the activation 
logic to switch between sequential 
and parallel mode according to the 
context information.

Although in this specific case,  
this process might not present a se-
rious problem, it’s generally invasive 
and potentially error-prone, and we’d 
prefer to avoid it. Indeed, we might 
achieve the desired behavior without 
changing a single line of code if we 
take into account that the sequential 
and parallel behavioral variations are 
aligned closely with the for constructs 
in Figure 1. In other words, the 

application’s behavior regarding the  
desired goal depends on whether the 
for constructs run sequentially or in 
parallel. So, if we could change in 
the underlying interpreter how these 
loops behave, we’d affect the appli-
cation’s behavior without modifying 
its code.

This problem emerges in applica-
tions in which behavioral variations 
aren’t (or can’t be) explicitly modu-
larized but are implicit in a language 
feature. (A language feature is an ab-
stract concept or construct belonging 
to a programming language5—for 
example, class definition, inheri-
tance, or loop.) The problem also oc-
curs when applications originally 
weren’t designed to be context- 
dependent or when no COP ex-
tension exists for the language. In-
troducing variability to traditional 
approaches in such situations can be 
invasive and undesirable.

To overcome these drawbacks,  
we move variability support to the 
programming-language interpreter. 
Instead of providing explicit lan-
guage abstractions for handling the 
context, we aim to

• provide interpreter-level semantic 
variations of standard, non-COP 
language features in terms of the 
language in which the running 
application is written and

• activate or deactivate them when 
the context changes.

This approach completely separates 
behavioral variations and their trig-
gering logic from the application 
logic, with clear benefits for future 
maintenance and evolution.

Clearly, our approach differs sub-
stantially from traditional COP and 
isn’t meant to replace well-established  
approaches. Instead, it’s useful 
when adopting other approaches is 

FIGURE 1. A JavaScript implementation of the escape-time algorithm for calculating 

a Mandelbrot set. The two loops in lines 4 and 5 are responsible for the whole set 

calculation. They account for most of the execution time, which heavily increases with 

the calculated set’s size.

 1  var MAX_ITER=50, ZOOM=450, HEIGHT=300, WIDTH=300;
 2  var I = create2DArray(WIDTH,HEIGHT);
 3  var zx=0, zy=0, cX=0, cY=0, tmp=0, iter=0;
 4  for(var y=0; y<HEIGHT; ++y) {
 5         for(var x=0; x<WIDTH; ++x) {
 6               zx=0; zy=0; cX = (x - 400) / ZOOM;
 7               cY=(y-300)/ZOOM; iter=MAX_ITER;
 8               while ((((zx*zx)+(zy*zy))<4) && (iter>0)) {
 9                       var tmp=(zx*zx)-(zy*zy)+cX;
10                       zy = (2.0*(zx*zy))+cY; zx=tmp; iter=iter-1;
11               };
12               I[x][y]=iter | (iter << 8);
13         };
14  };
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impossible or would lead to onerous 
rewriting of the original code.

Contextual Variability 
through Adaptable 
Interpreters
A programming language is basi-
cally a set of language features devel-
opers use to implement applications. 
To implement an interpreter for such 
a programming language, language 
developers must specify how the 
language features behave. Before in-
terpretation, the application source 
code is typically transformed into 
a tree representation in which each 
node corresponds to a language fea-
ture used in the source code. For ex-
ample, the expression 1 1 2 could be 
represented by a subtree whose root 
node represents the addition opera-
tion and whose child nodes represent 
the operands (see Figure 2a).

A language feature is associated 
with a semantic action that deter-
mines how the feature behaves. For 
example, the addition operation, rep-
resented by the 1 node in Figure 2a,  
could be associated with a seman-
tic action that adds the operands 
whose values are stored in the node’s  
children. The rectangle in Figure 2a 
shows the pseudocode describing the 
addition construct’s behavior.

So, interpreting a program is as 
simple as traversing the tree and ex-
ecuting the defined semantic actions 
when nodes are visited. Hence, an 
application’s behavior strongly de-
pends on the behavior of the under-
lying language features. We can thus 
affect how the application behaves 
by changing the interpreter-level se-
mantic actions associated with the 
desired language features.

Behavioral Variations
As we mentioned before, traditional 
COP provides behavioral variations 

as partial methods grouped into lay-
ers. When no layer is active, a call to 
method m triggers the standard be-
havior variation defined in the body 
of m. If a particular layer is active, 
the variation of m defined in that 
layer executes. In a sense, m is asso-
ciated with many behaviors defined 
in different method bodies, and the 
active layers (the context) determine 
the right variation.

We associate interpreter-level be-
havioral variations with a language 
feature and dispatch the related se-
mantic actions according to some 
context information. In this view, 
a language feature and its associ-
ated interpreter-level semantic ac-
tion correspond respectively to a 
partial method’s name and body in 
COP. Indeed, when the code uses a 
language feature, our approach uses 

that feature (the “partial method’s 
name”) to identify and execute the 
associated semantic action (the “par-
tial method’s body”).

In this approach, variations are 
implicit in a language feature (be-
cause they’re implemented in the 
underlying interpreter) and needn’t 
be explicitly implemented in the ap-
plication. In Figure 2b, the addition 
operation is associated with many 
actions, each of which has a label 
that determines to which layer that 
action belongs. (For example, in  
Figure 2b, the visible action belongs 
to layer l1.) When a node is visited, 
the dispatcher executes the associ-
ated actions belonging to the active 
layers.

It’s a big challenge to identify lan-
guage features whose behavior must 
be changed to achieve the desired 

+

1 2

...

Construct behavior:

left ← left operand value
right ← right operand value
return left + right

Execute

+

1 2

...

Dispatcher

layer I1

Construct behavior (I1):

left ← left operand value
right ← right operand value
return left + right

Active layers
Context

manager
Update

Context change

(a)

(b)

FIGURE 2. An interpretation model. (a) Application interpretation: the association 

between nodes and semantic actions. (b) Multiple behavioral variations dispatched 

according to the current context.
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application-level effects. To address 
this problem, Ruzanna Chitchyan 
and her colleagues introduced the 
concept of micro-languages.8,9 A 
micro-language associates an ap-
plication feature with the language 
features used to implement it. That 
is, it identifies the language features 
responsible for the portion of the ap-
plication you want to change. For in-
stance, in the Mandelbrot example, 
we’d like to change how the “set cal-
culation” application feature (lines 4 
to 14 in Figure 1) behaves. A micro-
language associated with this appli-
cation feature would contain, among 
other things, the for feature that we 
need to change.

Layer Activation
In our approach, layers aren’t ex-
plicitly activated in the application 

code. Instead, an external context 
manager notifies the interpreter 
about the context change by acti-
vating or deactivating layers (see 
Figure 2b). A context manager is 
a custom application that handles 
the context and interacts with the 
interpreter. In our implementa-
tion, the interaction is based on 
a command-line tool we describe 
later.

The interpreter handles a global 
list of active layers whose order 
determines the order in which se-
mantic actions execute. Unless 
specified otherwise, the order of 
layers is determined by the order 
in which the context manager acti-
vates or deactivates them. Layer ac-
tivation or deactivation can occur 
at any moment of the application 
interpretation.

Using the Approach
To illustrate how a practitioner 
would use our approach, we refer to 
the Mandelbrot example in Figure 1. 
In general, there are two steps:

 1. Develop or reuse behavioral 
variations.

 2. Define the activation logic.

In this example, the default in-
terpreter implementation already 
provides the sequential behavioral 
variation. Figure 3a shows this vari-
ation’s pared-to-the-bone Neverlang 
implementation. If the application 
developer is also a language engi-
neer, he or she could develop the 
parallel variation in Figure 3b; oth-
erwise, he or she could reuse one 
that other developers have already 
implemented. The main difference 
between the two variations is that 
the first sequentially executes a loop 
body, whereas the second spawns a 
thread for each loop run. The high-
lighted code shows that the parallel 
implementation is grouped into the 
performance layer, whereas the sequen-
tial variation is unlabeled, meaning 
that it pertains to the standard layer.

The context manager in Figure 4 
is a simple Bash script that periodi-
cally checks whether the laptop ex-
ecuting the code is running on the 
electrical grid or a battery. When a 
change is detected, the script acti-
vates or deactivates the appropriate 
layers. mda is a command-line tool 
that lets users dynamically modify a 
running Neverlang-based interpreter 
that’s identified by a name binding—
Mandelbrot in our example. During the 
interpretation, the node instances of 
the for loops will be visited several 
times. If the performance layer is ac-
tive, the execution will be in paral-
lel. This is possible because the loop 
stages are independent.

FIGURE 3. Behavioral variations of the for construct implemented in Neverlang.  

(a) A sequential variation. (b) A parallel variation. Ellipses replace discussion-irrelevant 

code.

  1  module nlg.JS.ForLoop {
 2       reference syntax {
  3           For: Stmâ... /* syntax definition */;
  4        }
  5
  6        role (evaluation) {
  7 For: .{
  8 ...
  9 int start=(int)$For[2].Value;
10 int end=(int)$For[3].Value;
11 int step=(int)$For[4].Value;
12
13 // execute the loop body sequentially
14 for(int i=start;i<end;i=i+step) {
15 ...
16 // execute the loop body
17 eval $For[4];
18 }
19       } .
20     }
21  }

  1 module nlg.JS.ParForLoop {
  2 imports { java.util.concurrent.*; }
  3
  4 reference syntax from nlg.JS.ForLoop;
  5
  6 role (evaluation) {
  7 For (performance): .{
  8 ...
  9 ExecutorService exec=
10 Executors.newFixedThreadPool(4);
11 // execute the loop body in parallel
12 for (int i=start;i<=end;i=i+step) {
13 ...
14 // ThreadVisit implements Runnable
15 ThreadVisit t=new ThreadVisit(...);
16 exec.submit(t);
17 }
18 ...
19 } .
20 }
21  }

(a) (b)
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Applicability
Our approach is best for, but isn’t 
limited to, situations with these 
characteristics:

• The application-level language 
doesn’t support COP.

• Behavior activation is asynchro-
nous with the application con-
trol flow and can’t be efficiently 
coded with standard COP 
abstractions.

• Behavioral variations can’t be  
efficiently modularized in the  
application-level language  
because they’re implicit in a  
language feature.

Interpreter-level COP provides  
context-handling features to non-COP  
languages. Also, behavior activa-
tion is asynchronous with the ap-
plication control flow. Although 
explicit layer activation is suitable in 
many scenarios, an implicit-activation  
mechanism is mandatory when the 
context might change anytime dur-
ing program execution.4,10 The third 
characteristic is particularly promi-
nent in domain-specific languages 
in which context and language con-
structs are aligned with domain con-
cepts. The more they’re aligned, the 
easier defining behavioral variations 
becomes. In the best-case scenario, 
a construct will correspond perfectly 
to a domain concept whose behavior 
must vary in response to domain con-
text changes.

This approach has three main 
possible applications. First, sand-
boxing disables or modifies a spe-
cific language construct’s behavior 
in response to a context change. 
Second, input sanitization employs 
input constructs to additionally 
elaborate an input if its origins are 
suspicious. Finally, approximate 
programming adapts constructs to 

consume less energy or time at the 
expense of precision.11

O ur approach offers some 
advantages over exist-
ing context-oriented ap-

proaches, especially when behavioral 
variations are aligned with language 
features. The application code re-
mains untouched, which contributes 
to clearer understanding and mainte-
nance. You don’t have to adopt a spe-
cific COP language, nor do you have 
to rewrite your software.

Ensuring behavioral consistency, 
a problem somewhat present in COP 
research,12 becomes difficult as the 
software grows. Constraint enforce-
ment,13 context dependencies,2 and 
other context-switching strategies14 
somewhat alleviate this problem. 
Neverlang has a type system that 
prevents interpreters from being 
broken, although it can’t guarantee 
that the application will behave as 
expected.

Although separating the adap-
tation and the application logic is 
beneficial, it limits control of adapta-
tion. Furthermore, the global state of 
active layers doesn’t provide means 
for fine-grained adaptation. So, the 
need exists for further investigation 
to provide more control at the inter-
preter level.

Also, it’s unreasonable to ex-
pect application developers to be 
language engineers. To bridge this 
gap, we’re doing three things. First, 
we’re identifying and developing the 
most common behavioral variations 
for a set of language features that 
will be provided as black boxes to 
plug into interpreters. Second, we’re  
developing a micro-language-based 
support framework that should help 
developers identify language fea-
tures to adapt to achieve the desired 

behavior. Finally, we plan to fur-
ther elaborate our interactive con-
figuration tool for language product 
lines15,16 to help users choose from 
the available behaviors.
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