
FOCUS: CONTEXTUAL-VARIABILITY MODELING

074 0 -74 5 9 /17/ $ 3 3 . 0 0 © 2 017 I E E E NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE 83

Context-Aware
Software
Variability
through
Adaptable
Interpreters
Walter Cazzola and Albert Shaqiri, Università degli Studi di Milano

// A proposed approach moves variability

support from the programming language

to the language implementation level.

This enables contextual variability in any

application independently of whether the

underlying language supports context-oriented

programming. A Neverlang-based prototype

implementation illustrates this approach. //

SUPPORT FOR CONTEXTUAL
variability is increasingly in demand
for software development tools, es-
pecially for ubiquitous and mobile
computing. The poor or nonexis-
tent behavioral-variability support

provided by traditional software
development tools gave rise to ap-
proaches that support contextual
variability.

In particular, context-oriented
programming (COP) addresses

contextual variability from a
programming-language perspective.
Typically, COP languages provide
abstractions to implement behavioral
variations and the variation activa-
tion logic. Behavioral variations are
modularization units, typically de-
fined as partial-method definitions,1
that implement the desired context-
dependent behavior. Variations are
then grouped into layers that the de-
veloper explicitly triggers through
a layer activation or deactivation
mechanism. (Throughout this article,
we refer to this widespread model of
grouping and activating or deactivat-
ing behavior. However, alternatives
to layers exist—for example, con-
text objects2 and predicates.3 Also,
layer context management can be
event-driven.4)

Traditional COP languages are
suitable when behavioral variability
is designed a priori and implemented
from scratch. On the other hand, if
behavioral variability is introduced a
posteriori or is implicit in a language
construct, the application code will
require extensive reorganization.

To help programmers avoid such
labor, we’ve developed an approach
that moves variability support
from the programming language to
the language implementation level.
This enables contextual variability
in any application independently of
whether the underlying language
supports COP.

Our prototype implementation
is based on the Neverlang language
development framework,5 whose
support for modularity greatly eases
the development of context-aware
programming-language interpreters.
Never lang has a multiple-semantic-action
dispatcher6 and supports dynamic
adaptation of interpreters.7 On top
of these features, we developed sup-
port for interpreter-level layers.

84 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: CONTEXTUAL-VARIABILITY MODELING

Moving to the Language
Implementation Level
Consider the escape-time algorithm
for calculating a Mandelbrot set;
Figure 1 shows a possible JavaScript
implementation. The details don’t
matter; we focus only on the two
loops in lines 4 and 5, which are re-
sponsible for the whole set calcula-
tion. They account for most of the
execution time, which heavily in-
creases with the calculated set’s size.

It’s well known that you can
speed up this algorithm by unroll-
ing these loops and executing each of
their stages in parallel (for example,
on different cores). Parallel execu-
tion is faster than sequential execu-
tion but consumes more energy and
could more quickly drain the bat-
tery of a laptop executing the code.
Owing to this tradeoff, we’d like to
switch between sequential and paral-
lel execution, depending on whether
the laptop is plugged into the electri-
cal grid or running on a battery.

This example is deliberately
simple to avoid obscuring basic
ideas with unnecessary algorithmic

details. At the same time, it’s rep-
resentative of a range of context-
aware applications whose execution
depends on the resource-saving
context.

With a traditional COP approach,
we’d have to introduce several modi-
fications to our code. For example, if
the original code is in a language
with no COP extension, we’d have
to adopt a new COP language and
largely rewrite the original code.
We’d have to reorganize the code
to explicitly modularize behavioral
variations and add the activation
logic to switch between sequential
and parallel mode according to the
context information.

Although in this specific case,
this process might not present a se-
rious problem, it’s generally invasive
and potentially error-prone, and we’d
prefer to avoid it. Indeed, we might
achieve the desired behavior without
changing a single line of code if we
take into account that the sequential
and parallel behavioral variations are
aligned closely with the for constructs
in Figure 1. In other words, the

application’s behavior regarding the
desired goal depends on whether the
for constructs run sequentially or in
parallel. So, if we could change in
the underlying interpreter how these
loops behave, we’d affect the appli-
cation’s behavior without modifying
its code.

This problem emerges in applica-
tions in which behavioral variations
aren’t (or can’t be) explicitly modu-
larized but are implicit in a language
feature. (A language feature is an ab-
stract concept or construct belonging
to a programming language5—for
example, class definition, inheri-
tance, or loop.) The problem also oc-
curs when applications originally
weren’t designed to be context-
dependent or when no COP ex-
tension exists for the language. In-
troducing variability to traditional
approaches in such situations can be
invasive and undesirable.

To overcome these drawbacks,
we move variability support to the
programming-language interpreter.
Instead of providing explicit lan-
guage abstractions for handling the
context, we aim to

• provide interpreter-level semantic
variations of standard, non-COP
language features in terms of the
language in which the running
application is written and

• activate or deactivate them when
the context changes.

This approach completely separates
behavioral variations and their trig-
gering logic from the application
logic, with clear benefits for future
maintenance and evolution.

Clearly, our approach differs sub-
stantially from traditional COP and
isn’t meant to replace well-established
approaches. Instead, it’s useful
when adopting other approaches is

FIGURE 1. A JavaScript implementation of the escape-time algorithm for calculating

a Mandelbrot set. The two loops in lines 4 and 5 are responsible for the whole set

calculation. They account for most of the execution time, which heavily increases with

the calculated set’s size.

 1 var MAX_ITER=50, ZOOM=450, HEIGHT=300, WIDTH=300;
 2 var I = create2DArray(WIDTH,HEIGHT);
 3 var zx=0, zy=0, cX=0, cY=0, tmp=0, iter=0;
 4 for(var y=0; y<HEIGHT; ++y) {
 5 for(var x=0; x<WIDTH; ++x) {
 6 zx=0; zy=0; cX = (x - 400) / ZOOM;
 7 cY=(y-300)/ZOOM; iter=MAX_ITER;
 8 while ((((zx*zx)+(zy*zy))<4) && (iter>0)) {
 9 var tmp=(zx*zx)-(zy*zy)+cX;
10 zy = (2.0*(zx*zy))+cY; zx=tmp; iter=iter-1;
11 };
12 I[x][y]=iter | (iter << 8);
13 };
14 };

 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE 85

impossible or would lead to onerous
rewriting of the original code.

Contextual Variability
through Adaptable
Interpreters
A programming language is basi-
cally a set of language features devel-
opers use to implement applications.
To implement an interpreter for such
a programming language, language
developers must specify how the
language features behave. Before in-
terpretation, the application source
code is typically transformed into
a tree representation in which each
node corresponds to a language fea-
ture used in the source code. For ex-
ample, the expression 1 1 2 could be
represented by a subtree whose root
node represents the addition opera-
tion and whose child nodes represent
the operands (see Figure 2a).

A language feature is associated
with a semantic action that deter-
mines how the feature behaves. For
example, the addition operation, rep-
resented by the 1 node in Figure 2a,
could be associated with a seman-
tic action that adds the operands
whose values are stored in the node’s
children. The rectangle in Figure 2a
shows the pseudocode describing the
addition construct’s behavior.

So, interpreting a program is as
simple as traversing the tree and ex-
ecuting the defined semantic actions
when nodes are visited. Hence, an
application’s behavior strongly de-
pends on the behavior of the under-
lying language features. We can thus
affect how the application behaves
by changing the interpreter-level se-
mantic actions associated with the
desired language features.

Behavioral Variations
As we mentioned before, traditional
COP provides behavioral variations

as partial methods grouped into lay-
ers. When no layer is active, a call to
method m triggers the standard be-
havior variation defined in the body
of m. If a particular layer is active,
the variation of m defined in that
layer executes. In a sense, m is asso-
ciated with many behaviors defined
in different method bodies, and the
active layers (the context) determine
the right variation.

We associate interpreter-level be-
havioral variations with a language
feature and dispatch the related se-
mantic actions according to some
context information. In this view,
a language feature and its associ-
ated interpreter-level semantic ac-
tion correspond respectively to a
partial method’s name and body in
COP. Indeed, when the code uses a
language feature, our approach uses

that feature (the “partial method’s
name”) to identify and execute the
associated semantic action (the “par-
tial method’s body”).

In this approach, variations are
implicit in a language feature (be-
cause they’re implemented in the
underlying interpreter) and needn’t
be explicitly implemented in the ap-
plication. In Figure 2b, the addition
operation is associated with many
actions, each of which has a label
that determines to which layer that
action belongs. (For example, in
Figure 2b, the visible action belongs
to layer l1.) When a node is visited,
the dispatcher executes the associ-
ated actions belonging to the active
layers.

It’s a big challenge to identify lan-
guage features whose behavior must
be changed to achieve the desired

+

1 2

...

Construct behavior:

left ← left operand value
right ← right operand value
return left + right

Execute

+

1 2

...

Dispatcher

layer I1

Construct behavior (I1):

left ← left operand value
right ← right operand value
return left + right

Active layers
Context

manager
Update

Context change

(a)

(b)

FIGURE 2. An interpretation model. (a) Application interpretation: the association

between nodes and semantic actions. (b) Multiple behavioral variations dispatched

according to the current context.

86 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: CONTEXTUAL-VARIABILITY MODELING

application-level effects. To address
this problem, Ruzanna Chitchyan
and her colleagues introduced the
concept of micro-languages.8,9 A
micro-language associates an ap-
plication feature with the language
features used to implement it. That
is, it identifies the language features
responsible for the portion of the ap-
plication you want to change. For in-
stance, in the Mandelbrot example,
we’d like to change how the “set cal-
culation” application feature (lines 4
to 14 in Figure 1) behaves. A micro-
language associated with this appli-
cation feature would contain, among
other things, the for feature that we
need to change.

Layer Activation
In our approach, layers aren’t ex-
plicitly activated in the application

code. Instead, an external context
manager notifies the interpreter
about the context change by acti-
vating or deactivating layers (see
Figure 2b). A context manager is
a custom application that handles
the context and interacts with the
interpreter. In our implementa-
tion, the interaction is based on
a command-line tool we describe
later.

The interpreter handles a global
list of active layers whose order
determines the order in which se-
mantic actions execute. Unless
specified otherwise, the order of
layers is determined by the order
in which the context manager acti-
vates or deactivates them. Layer ac-
tivation or deactivation can occur
at any moment of the application
interpretation.

Using the Approach
To illustrate how a practitioner
would use our approach, we refer to
the Mandelbrot example in Figure 1.
In general, there are two steps:

 1. Develop or reuse behavioral
variations.

 2. Define the activation logic.

In this example, the default in-
terpreter implementation already
provides the sequential behavioral
variation. Figure 3a shows this vari-
ation’s pared-to-the-bone Neverlang
implementation. If the application
developer is also a language engi-
neer, he or she could develop the
parallel variation in Figure 3b; oth-
erwise, he or she could reuse one
that other developers have already
implemented. The main difference
between the two variations is that
the first sequentially executes a loop
body, whereas the second spawns a
thread for each loop run. The high-
lighted code shows that the parallel
implementation is grouped into the
performance layer, whereas the sequen-
tial variation is unlabeled, meaning
that it pertains to the standard layer.

The context manager in Figure 4
is a simple Bash script that periodi-
cally checks whether the laptop ex-
ecuting the code is running on the
electrical grid or a battery. When a
change is detected, the script acti-
vates or deactivates the appropriate
layers. mda is a command-line tool
that lets users dynamically modify a
running Neverlang-based interpreter
that’s identified by a name binding—
Mandelbrot in our example. During the
interpretation, the node instances of
the for loops will be visited several
times. If the performance layer is ac-
tive, the execution will be in paral-
lel. This is possible because the loop
stages are independent.

FIGURE 3. Behavioral variations of the for construct implemented in Neverlang.

(a) A sequential variation. (b) A parallel variation. Ellipses replace discussion-irrelevant

code.

 1 module nlg.JS.ForLoop {
 2 reference syntax {
 3 For: Stmâ... /* syntax definition */;
 4 }
 5
 6 role (evaluation) {
 7 For: .{
 8 ...
 9 int start=(int)$For[2].Value;
10 int end=(int)$For[3].Value;
11 int step=(int)$For[4].Value;
12
13 // execute the loop body sequentially
14 for(int i=start;i<end;i=i+step) {
15 ...
16 // execute the loop body
17 eval $For[4];
18 }
19 } .
20 }
21 }

 1 module nlg.JS.ParForLoop {
 2 imports { java.util.concurrent.*; }
 3
 4 reference syntax from nlg.JS.ForLoop;
 5
 6 role (evaluation) {
 7 For (performance): .{
 8 ...
 9 ExecutorService exec=
10 Executors.newFixedThreadPool(4);
11 // execute the loop body in parallel
12 for (int i=start;i<=end;i=i+step) {
13 ...
14 // ThreadVisit implements Runnable
15 ThreadVisit t=new ThreadVisit(...);
16 exec.submit(t);
17 }
18 ...
19 } .
20 }
21 }

(a) (b)

 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE 87

Applicability
Our approach is best for, but isn’t
limited to, situations with these
characteristics:

• The application-level language
doesn’t support COP.

• Behavior activation is asynchro-
nous with the application con-
trol flow and can’t be efficiently
coded with standard COP
abstractions.

• Behavioral variations can’t be
efficiently modularized in the
application-level language
because they’re implicit in a
language feature.

Interpreter-level COP provides
context-handling features to non-COP
languages. Also, behavior activa-
tion is asynchronous with the ap-
plication control flow. Although
explicit layer activation is suitable in
many scenarios, an implicit-activation
mechanism is mandatory when the
context might change anytime dur-
ing program execution.4,10 The third
characteristic is particularly promi-
nent in domain-specific languages
in which context and language con-
structs are aligned with domain con-
cepts. The more they’re aligned, the
easier defining behavioral variations
becomes. In the best-case scenario,
a construct will correspond perfectly
to a domain concept whose behavior
must vary in response to domain con-
text changes.

This approach has three main
possible applications. First, sand-
boxing disables or modifies a spe-
cific language construct’s behavior
in response to a context change.
Second, input sanitization employs
input constructs to additionally
elaborate an input if its origins are
suspicious. Finally, approximate
programming adapts constructs to

consume less energy or time at the
expense of precision.11

O ur approach offers some
advantages over exist-
ing context-oriented ap-

proaches, especially when behavioral
variations are aligned with language
features. The application code re-
mains untouched, which contributes
to clearer understanding and mainte-
nance. You don’t have to adopt a spe-
cific COP language, nor do you have
to rewrite your software.

Ensuring behavioral consistency,
a problem somewhat present in COP
research,12 becomes difficult as the
software grows. Constraint enforce-
ment,13 context dependencies,2 and
other context-switching strategies14
somewhat alleviate this problem.
Neverlang has a type system that
prevents interpreters from being
broken, although it can’t guarantee
that the application will behave as
expected.

Although separating the adap-
tation and the application logic is
beneficial, it limits control of adapta-
tion. Furthermore, the global state of
active layers doesn’t provide means
for fine-grained adaptation. So, the
need exists for further investigation
to provide more control at the inter-
preter level.

Also, it’s unreasonable to ex-
pect application developers to be
language engineers. To bridge this
gap, we’re doing three things. First,
we’re identifying and developing the
most common behavioral variations
for a set of language features that
will be provided as black boxes to
plug into interpreters. Second, we’re
developing a micro-language-based
support framework that should help
developers identify language fea-
tures to adapt to achieve the desired

behavior. Finally, we plan to fur-
ther elaborate our interactive con-
figuration tool for language product
lines15,16 to help users choose from
the available behaviors.

References
1. R. Hirschfeld, P. Costanza, and O.

Nierstrasz, “Context-Oriented Pro-

gramming,” J. Object Technology,

vol. 7, no. 3, 2008, pp. 125–151.

2. S. González et al., “Subjective-C:

Bringing Context to Mobile Platform

Programming,” Software Language

Engineering, LNCS 6563, Springer,

2010, pp. 246–265.

3. J. Vallejos et al., “Predicated Generic

Functions: Enabling Context-Dependent

Method Dispatch,” Software Com-

position, LNCS 6144, Springer, 2010,

pp. 66–81.

4. M. Appeltauer et al., “Event-

Specific Software Composition in

 1 [[$(acpi -a)==*"off"*]]; plugged=$?
 2
 3 while true; do
 4 [[$(acpi -a)==*"off"*]]; now=$?
 5 if ["$plugged"!="$now"]; then
 6 if ["$now"==true]; then
 7 # plugged->battery
 8 mda Mandelbrot deactivate performance
 9 mda Mandelbrot activate standard
10 else
11 # battery->plugged
12 mda Mandelbrot deactivate standard
13 mda Mandelbrot activate performance
14 fi
15 plugged="$now"
16 fi
17 sleep 1
18 done

FIGURE 4. The context manager script,

written in Bash. The script periodically

checks whether the laptop executing the

code is running on the electrical grid or a

battery. The code will execute sequentially

in the former case and in parallel in the

latter case.

88 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: CONTEXTUAL-VARIABILITY MODELING

Context-Oriented Programming,”

Software Composition, LNCS 6144,

Springer, 2010, pp. 50–65.

5. E. Vacchi and W. Cazzola, “Nev-

erlang: A Framework for Feature-

Oriented Language Development,”

Computer Languages, Systems and

Structures, vol. 43, no. 3, 2015, pp.

1–40.

6. W. Cazzola and A. Shaqiri, “Modu-

larity and Optimization in Synergy,”

Proc. 15th Int’l Conf. Modularity

(Modularity 16), 2016, pp. 70–81.

7. W. Cazzola and A. Shaqiri, “Open

Programming Language Interpret-

ers,” The Art, Science, and Engineer-

ing of Programming, vol. 1, no. 2,

2017, article 5.

8. R. Chitchyan, W. Cazzola, and A.

Rashid, “Engineering Sustainability

through Language,” Proc. 37th Int’l

Conf. Software Eng. (ICSE 15), 2015,

pp. 501–504.

9. W. Cazzola et al., “-DSU: A

Micro-language Based Approach to

Dynamic Software Updating,” to be

published in Computer Languages,

Systems and Structures.

10. M. von Löwis, M. Denker, and

O. Nierstrasz, “Context-Oriented

Programming: Beyond Layers,” Proc.

2007 Int’l Conf. Dynamic Languages

(ICDL 07), 2007, pp. 143–156.

11. J. Park et al., “FlexJava: Language

Support for Safe and Modular Ap-

proximate Programming,” Proc.

10th Joint Meeting Foundations of

Software Eng. (ESEC/FSE 15), 2015,

pp. 745–757.

12. G. Salvaneschi, C. Ghezzi, and M.

Pradella, “Context-Oriented Pro-

gramming: A Software Engineer-

ing Perspective,” J. Systems and

Software, vol. 85, no. 8, 2012, pp.

1801–1817.

13. P. Costanza and R. Hirschefeld,

“Reflective Layer Activation in Con-

textL,” Proc. 2007 ACM Symp. Ap-

plied Computing (SAC 07), 2007,

pp. 1280–1285.

14. N. Cardozo et al., “Safer Context

(De)Activation: Through the Prompt-

Loyal Strategy,” Proc. 3rd Int’l

Workshop Context-Oriented

Programming (COP 11), 2011,

article 2.

15. T. Kühn, W. Cazzola, and D.M.

Olivares, “Choosy and Picky: Con-

figuration of Language Product

Lines,” Proc. 19th Int’l Software

Product Line Conf. (SPLC 15), 2015,

pp. 71–80.

16. E. Vacchi et al., “Variability Sup-

port in Domain-Specific Language

Development,” Software Language

Engineering, LNCS 8225, Springer,

2013, pp. 76–95.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

WALTER CAZZOLA is an associate professor in the Depart-

ment of Computer Science at Università degli Studi di Milano

and the chair of the university’s ADAPT Lab. His research

interests include reflection, aspect- and context-oriented

programming, software evolution, and programming languages

and their implementation. Cazzola received a PhD in computer

science from Università degli Studi di Milano. Contact him at

cazzola@di.unimi.it.

ALBERT SHAQIRI is a PhD candidate in computer science at

Università degli Studi di Milano and a member of the univer-

sity’s ADAPT Lab. His research interests include modular

development of programming languages, dynamic interpreter

optimization, and dynamic software updating. Shaqiri received

a master’s in computer science from Università del Piemonte

Orientale. Contact him at shaqiri@di.unimi.it.

