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Abstract
This paper describes how design information, in our

case UML specifications, can be used to evolve a soft-
ware system and validate the consistency of such an evolu-
tion. This work complements our previous work on reflec-
tive architectures for software evolution describing the role
played by meta-data in the evolution of software systems.
The whole paper focuses on a case study; we show how
the urban traffic control system (UTCS) or part of it must
evolve when unscheduled road maintenance, a car crush or
a traffic jam block normal vehicular flow in a specific road.
The UTCS case study perfectly shows how requirements
can dynamically change and how the design of the system
should adapt to such changes. Both system consistency
and adaptation are governed by rules based on meta-data
representing the system design information. As we show
by an example, such rules represent the core of our evolu-
tionary approach driving the evolutionary and consistency
checker meta-objects and interfacing the meta-level system
(the evolutionary system) with the system that has to be
adapted.

Keywords: Software Adaptation, Meta-Data, UML.

1 Reflective System Evolution

Nowadays, evolving a software system is an hot and
hard topic especially when evolution must take place with-
out stopping the system execution to face sudden and unex-
pected events. Evolution must face several issues, the most
important consist of:

- planning the best strategy for adapting the system evo-
lution against unexpected events; and

- verifying the consistency of the planned strategy with
respects to the original requirements of the system.

In [2, 3] we have described our proposal for system evolu-
tion. Our idea consists of a reflective architecture, the sys-
tem running in the base-level is the one prone to be adapted,
whereas the software evolution is the nonfunctional feature
realized by the meta-level.

Evolution takes place exploiting the design information
of the running systems and it is driven by a set of rules
which define how to adapt the system in accordance with
the detected event and the meaning of system consistency.
These rules are not hardwired in the meta-level system and
depends on the system prone to be adapted, moreover, they
provide the core mechanism for facing the abovementioned
issues.

The meta-level system of our reflective middleware is
composed of at least two cooperating meta-objects: evolu-
tionary and consistency checker meta-objects. Both these
meta-objects have two main components: (i) the core
which interacts with the rest of the system (e.g., detect-
ing external events/adaptation proposals, or manipulating
the reification of the base-level system/applying the adapta-
tion on the base-level system) and implementing the meta-
object’s basic behavior, and (ii) the engine which interprets
the rules driving the meta-object’s decisions.

This paper focuses on rules and their role in the adap-
tation mechanism. The mechanism is explained on a case
study: the dynamic adaptation of urban traffic control sys-
tems (UTCS) on a generic road maintenance event that
forces the modification of the vehicular flow.

2 Case Study Overview

The evolution of complex urban agglomerates has posed
significant challenges to city planners in terms of optimiz-
ing traffic flows in a normally congested traffic network.
When designing urban traffic control systems (UTCS) of a
modern city, the software engineer must model both mobile
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Figure 1: City layout: a) the layout during normal activities b) the layout during road maintenance.

entities (e.g., cars, pedestrians, vehicular flow, and so on)
and fixed entities (e.g., roads, railways, level crossing, traf-
fic lights and so on). They have also to face many design is-
sues such as distribution, complexity of configuration, and
reactivity to the evolution of the environment. In [7] these
issues and many others are illustrated.

Moreover, Software engineers, designing the UTCS,
have to deal with a lot of unexpected and hard to plan
problems of modern cities such as traffic lights disruptions,
roads maintenance, car crashes, traffic jam and so on. On
these considerations rely the need of rendering the UTCS
dynamically adaptable to the external events.

The map in Fig. 1.a could represent a simplification of
a real city map. Notwithstanding that, it can help us in
understanding the problems that a city planner has to face
when plans the UTCS of its city. The city planner must
plan traffic system taking in consideration several issues,
two of them, that we consider in our case study, are:

� cars must be able to reach every road from every-
where; and

� opposite traffic lights at the same crossroad (e.g., traf-
fic lights at the crossway between Church St. and
Main St. in Fig. 1.a) must be synchronized or they
are useless.

A city map can be easily represented by an oriented graph
G � (Crossroads;Roads) whose nodes are crossroads
and whose edges are roads. Therefore, the first require-
ment above can be formalized in:

8c1;c2 2 Crossroads^ c1 6= c2 9p� r1 : : :rn;ri 2 Roads s.t.

8i;1� i < n; 9c; c̄; c̄0
;c0

;c00
;2 Crossroads s.t.

ri � (c̄;c)^ ri+1 � (c; c̄0)^ r1 � (c1;c0)^ rn � (c00
;c2)

That is, all crossroads in the map are connected by a path
of roads. Analogously the second requirement can be for-
malized in:

8r; p 2 Roads s.t. r?p if 9tr; tp 2 TrafficLights =)

red(tr) () green(tp)^green(tr) () red(tp)

Where TrafficLights is the set of all the traffic lights
marked on the map, tr and tp are respectively the traffic
lights in r and in p, and red() and green() are predicates
that state if the traffic light passed as argument is or not of
the homonym color at the invocation1.

An urban traffic control system that respects such crite-
ria is consistent with the basic requirements that a livable
city must have. Therefore, the software engineer that de-
signs an UTCS should guarantee that such criteria will be
respected. These requirements define the consistency of
the system design.

3 The Role of Design Information

The UTCS for the simple city map showed in Fig. 1.a
can be described by the class diagram showed in figure 2,
an object diagram (Fig. 4.a) that defines the interconnec-
tions among roads and crossroads and a statechart that ex-
press the dependencies among traffic lights (see Fig. 3).

UML [1] provide the designer with a flexible mecha-
nism (its diagrams) that allows of specifying the above-

1Note that, traffic light behavior has been simplified removing the yel-
low color and considering that red and green equally last.
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Figure 2: Class diagram of the urban traffic control
system

mentioned requirements. Unfortunately, design informa-
tion expressed through UML are available just at design-
and development-time. Therefore, dynamic events such as
traffic light malfunctioning and car accidents are hard to
be captured at design-time whereas their occurrence surely
involves also design information often asking for a com-
plete redesigning, e.g., introducing new traffic lights and
barrages. Analogous issues can be raised for the dynamic
validation of the system behavior, e.g., to verify whether
synchronized traffic lights are still synchronized. More-
over, the UML graphical representation is not suitable for
an handy automatic manipulation.

As explained in [3] our reflective architecture provides a
dynamic system evolution through the dynamic adaptation
of the design information of the system itself (meta-data).
The XMI [5] description contains all the design informa-
tion necessary for checking the consistency of the system
and for adapting its design at run-time; it represents the per-
fect reification of the UML diagrams at run-time [4]. The
Reification data structure encapsulates the XMI descrip-
tion and provides the meta-level system with an high-level
and simple interface for easily observing and manipulating
the design information.

In our reflective architecture, the work of a specific
meta-object, called consistency checker meta-object, is de-
voted to validate the consistency of the system prone to
be adapted. The consistency checker meta-object uses the
rules that define the consistency of the system (see sec-
tion 2) to validate the system consistency against the sys-
tem reification. To simplify their definition and to better
integrate them with the system reification, rules are not
logical expression but Ruby [8] scripts. Ruby is a Turing-
equivalent scripting language, that provides a powerful and
easy to use tool for describing constraints without the need
of coding an ad-hoc interpreter. The work of the consis-
tency checker meta-object basically consists of applying
the consistency constraints on the system reification. The
following script checks the traffic lights synchronicity at
every crossroad.
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Figure 3: Statechart of the traffic lights in the map

def synchronized?(TL1, TL2)

# Are the behavior of TL1 and TL2 synchronized?
StateChart=Reification.getStateChart()

# S1 and S2 represent the state machine of TL1 and TL2
S1=StateChart.getStateMachine(TL1)

S2=StateChart.getStateMachine(TL2)

return

# TL1 and TL2 have the same state machine, but ...
(S1.transitFrom("green").include? "red") and

(S1.transitFrom("red").include? "green") and

(S2.transitFrom("green").include? "red") and

(S2.transitFrom("red").include? "green") and

# ... they start from the opposite state.
(((S1.color=="green") and (S2.color=="red")) or

((S2.color=="green") and (S1.color=="red")))2

end

def all_synchronized?

# Synchronized traffic lights are really synchronized?
OD = Reification.getObjectDiagram()

synchronized = true

# For each traffic light pointed out in the object diagram ...
for TL1 in OD.getAllInstances("Traffic Light")

# ... it checks if it is associated to another traffic light ...
unless (tl = TL1.asssyncid2) then

# ... if yes, it verifies their synchronization.
TL2 = OD.getInstance(tl)

synchronized &&= synchronized?(TL1, TL2)

end

end

return synchronized

end

As you can note, the script exploits the state machine de-
fined for each traffic light in the statechart encapsulated in

2Note that, for sake of clarity, attributes specified in the class diagram
are used as well as attributes of the class object instead of using the ap-
propriate methods getAttributeValue.
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Figure 4: Object diagrams: a) object diagram for UTCS during normal activities b) modified object diagram during road
maintenance.

the Reification data structure. Exploring the statechart
the script gets the traffic light state machine, its initial state
and the transitions from a state to the others. Therefore
it can verify whether the traffic lights at the same cross-
point are synchronized. Analogously, a scripts that check
the reachability on the map has been written but it is not
reported for sake of brevity.

4 Road Maintenance: what does it happen?

Road maintenance is a typical event hard to predict at
design time. Such a kind of prediction is difficult because
the event can become manifest in many variants, e.g., it can
involve just a road or a group of roads, the involved area
can be completely close to the traffic or the traffic can be-
come limited in one-way or limited in time, and so on. At
design-time, the software engineer can provide some sce-
narios or some patterns of behavior (e.g., he can suggest
how to hijack the traffic flow into the near roads) for man-
aging such unexpected events but often their management
is demanded at run-time.

What if an external event, such as a car accident or the
road surface becomes unpaved, temporarily block the traf-
fic flow in a road as showed in Fig. 1.b?

Removing Church Street from the city map, as depicted
in Fig. 1.b, involves several small changes in the whole
map and to the traffic flow. Some of the surrounding streets
must be followed in a different direction to allow cars of
reaching every place in the map. Traffic lights governing
the traffic flow in and out of Church Street must be turned
off (as the one at the corner with Main Street) or moved in
a different place (as the one in Main Street moved at the
corner with Upper Street).

Of course, a similar reorganization must involve also

the UTCS that supervises the traffic flow and coordinates
the work of traffic lights and other entities. Usually, such
a kind of software adaptation is performed by redesign-
ing the whole system and implementing the changes. As
showed in Fig. 4.b, it is necessary to remove the object rep-
resenting the interrupted street (or at least to disconnect it
from the other objects) and the objects representing turned
off traffic lights from the object diagram in Fig 4.a; to mod-
ify the connection link3 of the remaining roads accordingly
to the map in Fig 1.b. Few changes should also occur to the
system statechart but they are not significant for the pur-
poses of this work and for sake of brevity they will not
be treated and the corresponding diagram will not be re-
ported. Besides, in our case study, we did not consider the
necessity of signalling that the access to Church Street is
forbidden by adding a barrage; a similar approach to the
road management would imply the introduction of a new
class Barrage to the class diagram and the adaptation of
the class Road, generating a lot of changes also in the other
diagrams as a domino effect, augmenting the complexity
of the case study to the detriment of its clarity.

The design adaptation must be propagated to the sys-
tem code by mapping the changes into the original classes
and introducing new classes and new instances. Some ad-
vanced tools as Rational Rose R and Poseidon4UML R

could help the designer/programmer to automate this last
phase.

Notwithstanding that, the proposed situation is quite
simple and just few changes must be done to the original
design, the nonstopping nature of the UTCS does not per-
mit a similar approach that foresee a system stop. More-
over, in the UTCS, the reactiveness to sudden and unex-

3The connection link is a road attribute that represents which roads can
be reached following that road; this attribute implicitly represents which
direction can be followed.
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pected events is particularly important. Therefore the de-
scribed approach cannot be applied to the case study with-
out an infrastructure that dynamically and promptly ex-
ploits design information for system adaptation.

5 Dynamic Design Adaptation

Our reflective middleware [3] has been designed to
evolve nonstopping systems by adapting their design in-
formation. In the meta-level, a specific meta-object called
evolutionary meta-object plans how the system must be
adapted when an external event occurs. The plan designed
by the evolutionary meta-object is a set of UML diagrams
derived from the original system design (represented by
Reification) by manipulating the involved entities. In
our test case, the evolutionary meta-object must transform
the object diagram showed in Fig. 4.a into the object dia-
gram showed in Fig. 4.b. It must carry out an analogous
transformation also to the statechart showed in Fig. 3.

The plan of evolution is prepared on a clone
of Reification to preserve system consistency.
Reification provides an high-level API invocable
from Ruby that easily allows to add entities to, to remove
entities from and to modify entities in the UML diagrams
through their XMI representation.

As well as for the consistency checking also evolution
is driven by a set of Ruby rules indexed on events. The
evolutionary meta-object has just to invoke the right rule
with the appropriate parameters. A plan for managing the
maintenance of a generic road is prepared by invoking the
following Ruby script.

def plan_inaccessible_road(r, map, tls)

# Planning system adaptation when road r is inaccessible.
OD = Reification.getObjectDiagram()

StateChart = Reification.getStateChart()

# Adapt the link-id of each road as specified by map.
for R in OD.getAllInstances("Road")

if map[R.road-id4] != nil then

R.link-id4 = map[R.road-id]

end

end

# Traffic lights next to r have to be removed
for T in OD.getAllInstances("Traffic Light")

if T.corner-id.include? "Church" then

OD.removeInstance(T)

StateChart.removeStateMachine(T)

end

end

# Traffic lights in tls must be added at new crossroads.
tls.each_key {|name|

theTL = OD.addInstance(name, "Traffic Light")

tls[name].each_key {|attribute|

theTL.addAttribute(attribute, tl[attribute])

}

}

# Traffic lights at the same corner must be synchronized.
tls = OD.getAllInstances("Traffic Light")

state = "Synch State 0"

for T in tls

# finds S the TL on the same crossroad of T.
S = onSameCorner(T)5

S.asssyncid = T.asssyncid4 = state.succ

StateChart.addConcStateChart("TL", T, S, state)

end

# At last, r can be removed.
OD.removeInstance(r)

end

The plan consists of modifying the object model and the
statechart of the system, so that, (i) all the roads next to the
inaccessible road change their flow direction according to
the planner information, (ii) all the traffic lights near the
inaccessible street are removed, (iii) new traffic lights are
introduced at crossroads created after the changes in the
flow direction, the behavior of such traffic lights will be
synchronized, and (iv) at last the inaccessible road is re-
moved from the system (it will be reintroduced when it is
accessible again).

In our test case the maintenance of Church Street is
managed by the following invocation:

plan_inaccessible_road("Church St.",

{ "Left" => "Upper", "Upper" => "Right",

"Narrow" => "Upper" },

{ "TL-Upper" => { "sem_id" => "s1-U1",

"corner-id" => "Upper St. & Main St." },

"TL-Main" => { "sem_id" => "s2-M12",

"corner-id" => "Main St. & Upper St." }

})

The adaptation plan created by the evolutionary meta-
object is not immediately applied on the system that must
be adapted. It is passed to the consistency checker meta-
object that verifies whether the system will remain consis-
tent after the evolution. As explained in section 3, the con-

4Note that, for sake of clarity, attributes specified in the class diagram
are used as well as attributes of the class object instead of using the ap-
propriate methods getAttributeValue and setAttributeValue.

5The function onSameCorner(T) looks in the street or square for an-
other traffic light that is in front of T. For sake of brevity we do not detail
its code further.
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sistency checker meta-object will invoke all the rules that
define the consistency of the system against the redesigned
meta-data. The plan will be applied to the base-level sys-
tem only if it passes the consistency check otherwise the
evolutionary meta-object tries to design a novel evolution-
ary plan.

Finally, the implicit causal connection of the reflec-
tive middleware is responsible of modifying the base-
level system in accordance with the proposed evolution.
The adopted mechanism for transposing design informa-
tion into the real system is based on the UML virtual ma-
chine [6].

6 Summary

A good design is the basis of every good project, this is
particularly true when design information should be used to
verify and adapt a running system without stopping it. In
this paper we have shown the role of design information in
the adaptation of software systems at run-time. The evolu-
tion is managed by a reflective middleware that reifies and,
when events occur, manipulates system design information
(the system meta-data).

Manipulation is realized by Ruby scripts that drive both
the adaptation plan and the consistency checks. We have
chosen to write evolutionary and consistency rules as Ruby
scripts rather than as logic formulas because: they are ex-
pressive as well as (maybe more than) logic formulas; (ii)
we don’t have to write an interpreter for the rules; finally
(iii) they can directly interact with the base-level represen-
tation through the reflective facilities of Ruby without ex-
tra efforts.

The paper focuses on a case study but it should be clear
that the approach is general and usable to evolve most of
the software systems. One problem still open with this
approach is related to writing the rules driving the whole
evolutionary mechanism: they are not simple and require a
deepen knowledge of the system to be adapted. Moreover,
not always the required changes in the design can be auto-
matically mapped in changes to the code, this could limit
the applicability or could require to manually generate the
code for the system adaptation to be used by the middle-
ware. In the future we will address these issues.
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