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Abstract—An increasing number of modern software systems
need to be adapted at runtime while they are still executing.
It becomes crucial to validate each adaptation before it is
deployed to the running system. Models are used to ease software
maintenance and can, therefore, be used to manage dynamic
software adaptations. For example, models are used to manage
coarse-grained anticipated adaptations for self-adaptive systems.
However, the need for both fine-grained and unanticipated adap-
tations is becoming increasingly common, and their validation is
also becoming more crucial.

This paper proposes an approach to validate unanticipated,
fine-grained adaptations performed on models before the adap-
tations are deployed into the running system. The proposed
approach exploits model execution where model representations
of the test suites of a software system are executed. The proposed
approach is demonstrated and evaluated within the Fine Grained
Adaptation (FiGA) framework.

Index Terms—model-based validation, model-based dynamic
adaptation, executable UML models, system validation, software
analysis and visualization, unanticipated adaptation.

I. INTRODUCTION

The ability to perform runtime adaptations is becoming a

requirement for many critical software systems. These systems

need to be adapted without being stopped. For example,

intelligent transportation systems must provide continuous

services to human and software clients for safety reasons.

Online gaming systems with thousands of users interacting

with each other at any given time cannot be stopped for

economic or business reasons.

Runtime adaptation is needed based on changes in a soft-

ware system context and requirements. These changes can

be foreseen at design time, or may be unforeseen and dis-

closed only at runtime. Anticipated adaptations of the foreseen

changes are prepared during development and included in the

system design. Unfortunately, this approach cannot support

unforeseen changes. When such changes are needed at run-

time, unanticipated adaptations must be planned and deployed

into the running system. In both cases, the dynamic adaptation

process is complex, and models can be used to manage this

complexity by representing aspects of a running system at a

higher abstraction level [1].

Models@RunTime (M@RT) research [2] uses component-

based models to support dynamic adaptation in autonomous

systems [3], [4]. These approaches support coarse-grained and

anticipated adaptations that are controlled and automated by

the MAPE feedback loop in autonomous systems [5]. Adapta-

tions in these approaches are restricted to adding/removing

components and links between components. Unanticipated

adaptations require human intervention to implement them.

They can involve code changes, and can be fine-grained at the

level of classes, methods, and statements.

Models that provide a fine-grained view of the running

system and its implementation (e.g., activity models) can be

used by developers to plan fine-grained adaptations to support

unforeseen changes. For example, the fine grained adaptation
(FiGA) framework supports unanticipated and fine-grained

adaptation of a running system through model adaptation [7],

[8]. These models can be used to ease system maintenance

by minimizing the interventions performed directly on the

code. For example, a developer can use a class model to

understand static relations between objects and make changes

in object attributes and references, and an activity model to

make changes to the system behavior [7].

Using design time models to describe anticipated adapta-

tions enables developers to reason about and validate these

models during development time [6]. Since unanticipated

adaptation is not planned a priori, it needs to be validated

at runtime before its deployment to the running system.

In this work, we propose a new model-based validation

approach that uses test models to validate unanticipated and

fine-grained adaptations at the model level. The proposed

approach consists of three steps: (1) test models are generated

from the original test suites of the running software system

that will be adapted. (2) Developers adapt these test models

(and create new test models) to specify new test configurations

and assertions if the adaptation to the models of the software

system introduces new behavior or changes existing behavior.

(3) The models representing the test cases are executed to

validate the adapted models of the software system before the

adaptations are deployed to the running software system. The

proposed validation approach is integrated with the (FiGA)

framework [7], [8].

Sect. II provides a motivating example and introduces the

proposed validation approach. Sect. III describes the FiGA
framework with the integration to support validating models

at runtime. An explanation of how model execution of JUnit
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test suites is supported in the FiGA framework is provided in

Sect. IV. A demonstration and evaluation of our approach are

presented in Sect. V. Related work is presented in Sect. VI,

and Sect. VII concludes with plans for further work.

II. MOTIVATING EXAMPLE AND PROPOSED SOLUTION

It is evident that any human activity is potentially error-

prone. This naturally includes the process of planning the

adaptation of a running system using a model abstraction.

For systems that cannot be stopped, the adaptation must be

deployed immediately after the planning process. This results

in the need to validate the adaptation before its deployment

to avoid potential failures. To demonstrate the critical need

for validation, we show in Sect. II-A a small scenario where

the adaptation of a model introduces some logic faults and

how these propagate to the code. Section II-B gives a general

overview of how we could approach this problem.

A. Motivating Example

Airline reservation systems (ARS) are a typical example of

highly-available systems used by thousands of users everyday

that for economic reasons, cannot be stopped to permit any

kind of maintenance. As the name suggests, ARSs implement

features related to flight reservations. A flight is characterized

by the airline, the departure and destination airports, and its

time schedule. Each customer can look for a flight and reserve

a seat on it. In our design, a SystemManager class provides

access to all the ARS functionality; including the access to

airport, airline, and flight instances.

Runtime adaptation to ARS. The first version of our

ARS implementation has a limitation in its flight reservation
functionality: a search for a trip between two airports provides

only direct flights, if any. Clearly this means that when

the two airports are not connected by a direct flight, the

reservation functionality fails even though the two airports may

be connected through another airport.

The existing functionality has to be adapted to deal with

such a limitation. The adaptation affects some methods in-

cluding the Airline::bookSeat() method that implements

the flight reservation functionality. Given the departure and

destination airports, and some other information about the

travel schedule, the Airline::bookSeat() method searches

for a flight whose departure and destination airports coincide

with those given. Such a behavior is described by the framed

portion of the activity diagram in Fig. 1. The previously

described limitation is overcome by looking for flights that

have the given airports as departure or destination airport

and then trying to combine them in a journey from the

departure airport to the destination airport with a layover at

some intermediate airport. Priority is given to direct flights

over flights that involve a layover.

The adapted activity model (Fig. 1) has a logic fault. The

else transition flow of the decision node (test1) that checks

the departure airport is linked to the decision node (test2)

that checks the destination airport. As a consequence, the

destination airport is not checked for all flights and some

Airline::bookSeat

receive arguments
and initial-
ize variables

loop test test

call
Flight::bookSeat

loop test test1 set origIndex

test2 set destIndex

test

calls to
Flight::bookSeat

for origIndex

and destIndex

print result

i<flights.size() && ! success

(flights.get(i).getOrigName().equals(orig)
&& flights.get(i).getDestName().equals(dest))

i<flights.size() && ! success

!flights.get(i).getOrigName().equals(orig)

!flights.get(i).getdestName().equals(dest)

!flights.get(origIndex).getDestName().equals(. . . )

!(i<flight.size() && !success)

!(i<flight.size() && !success)

Fig. 1. Adapted activity model for the Airline::bookSeat() method.

........
for(int i=0; (i<flights.size() && !success) ;i++){

3
if(flights.get(i).getOrigName().equals(orig)){
origIndex = i;

} else if(flights.get(i).getDestName().equals(dest)){ destIndex = i;}
6

if(flights.get(origIndex).getDestName().equals(
flights.get(destIndex).getOrigName())){

flights.get(origIndex).bookSeat(row, col, s);
9

flights.get(destIndex).bookSeat(row, col, s);

Listing 1: Portion of adapted code with logic fault.

connections are still missing from the final result. This logic

fault propagates from the adapted model to the generated code

that will be used to update the running software. Listing 1

shows the generated code that contains the logic fault. The

fault is at line 5, where the IF statement at this line is nested

inside the else branch of another IF statement.

From the example, it should be clear how faults introduced

in the models propagate to the running system. Therefore,

validating the adapted behaviors and fixing faults at the model

level is crucial for generating well designed and correct code

before we can deploy the changes to the running system.

B. Proposed Solution

Unit and system test cases validate the software system at

the code-level. While code-level test suites are available for

testing the implementation of a software system, model-level

test suites are not available for the model representation of
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such a system in the current FiGA framework [7], [8]. Reverse

engineering can provide a model of the code-level test suites

that can be used to validate the models of the system.

The proposed approach assumes that the running software

system to be adapted using models comes with its code-level

test suites. In the proposed approach, test models are extracted

from the code-level test suites, and these test models are used

to validate the adapted models of the system. The model

representation of the test suites should be adapted when the

system adaptation affects the existing functionality because the

available test suites can no longer correctly validate the system.

The adaptation of the test suites at the model-level includes

modifying existing test cases and creating new ones. Model

validation takes place by executing the model test suites.

We propose using UML class and activity models to

represent, adapt, and execute test suites. Each test case is

represented as an activity model. Generally, the major elements

of a code-level test case are as follows: (1) object declaration

and initialization statements, (2) statements to call methods

under test, and (3) assertion statements. These elements are

mapped to action nodes in the activity model representing their

test case. For example, object declaration and initialization

statements are grouped together and represented as an action

node. In the code represented as action nodes, calls to methods

are mapped to calls to the corresponding activity models

representing these methods.

Validation of the adapted models representing the program

is done by executing the models representing the test suites.

Therefore, activity models of test cases and models of the

program must be executable: activity model elements are

associated with executable code statements. For example, each

outgoing transition flow of a decision node contains a condi-

tional expression, and each action node contains a set of code

statements that represent the action node behavior. Action,

merge, and decision nodes are executed according to UML

semantics. Executable UML activity models are supported by

the Rational Software Architect tool1.

In the motivating example, the adapted activity model in

Fig. 1 of the Airline::bookSeat() is validated as follows.

Executable activity models are extracted from test cases for

the Airline::bookSeat() method to test the activity model

of this method, which is also executable. Developers adapt the

activity models of the test cases when needed. The adapted

models are executed to validate the adapted activity model

and detect faults. Complete details for validating the adapted

ARS using the proposed approach are provided in Sect. V-A.

III. VALIDATION INTEGRATION INTO THE FIGA

FRAMEWORK

The Fine-Grained Adaptation (FiGA) framework [7], [8]

allows a developer to adapt a program running on a standard

JVM without stopping it by modifying UML models and

propagating model changes to the source code. The program

change process is kept separate from the running program

1http://www-03.ibm.com/software/products/en/ratisoftarchsimutool

instance until the changes are ready to be compiled and loaded

into the Java virtual machine, so as not to compromise the

service provided by the program. The FiGA framework uses

the JavAdaptor [9] tool, which can update a running Java

program without stopping it. JavAdaptor works at a low level,

requiring as an input the compiled version of the class to

update and a connection to the Java virtual machine in which

the program is executing. Therefore, the program update is

driven by changes to the Java source code. As shown in Fig. 2

the FiGA framework supports the adaptation of a running

program through a repetitive loop composed of five steps.

Step (1): Model Generation from Program Code.
Reverse R[10] is used to generate the UML diagrams from

the application source code. The source code is annotated, and

these annotations drive the model extraction from the running

code of the application, which is performed by Reverse R. The

annotations are introduced only once by developers during

development time.

Step (2): Modification of Program Model. Developers

change the models to deal with the needed adaptation. Each

model change can be expressed as a sequence of elementary

model changes (γi) that can be easily and automatically

mapped to a code change (δi). The model changes are de-

termined by model differencing [12], [13], and mapped into

calls to the change operators with the proper parameters.

Step (3): Adaptation Process for Program. The sequence

of elementary model changes (Γ) and their mappings to

program code changes (Δ) are related using the σ mapping

function. Therefore, the following holds:

M1 =M0 � Γ ≡ S0 � σ(Γ) = S0 �Δ = S1

This relationship is used by the FiGA framework to adapt the

source code according to the model changes. Complete details

of the adaptation semantics are given in Cazzola et al. [7], [8].
Step (4): Propagating Changes to the Program. Model

changes are not propagated to the program after every ele-

mentary operation. To ensure a consistent adaptation, its de-

ployment to the running program is triggered by the developer

only when all required model changes are performed.

Step (5): Updating the Running Application. Finally,

the modified Java classes are passed to the JavAdaptor tool,

which deploys the program changes to the running application

without stopping it [9]. At this point, future adaptations occur

using the adaptation cycle starting again from step 1 but with

the new source code instead.

The validation approach presented in Sect. II can be

smoothly integrated in the adaptation loop for the FiGA
framework. The same process is used (1) to extract the models

from the code for the test cases, (2) to adapt the models for

the test cases, and (3) to maintain models for the test cases

synchronized with their code. Only one new step needs to be

added: model validation. To summarize, the validation process

consists of five further steps. The steps labeled with a prime

are not new steps; they are an application of the corresponding

FiGA steps to a different code portion, i.e., the test cases.
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Fig. 2. Overview of the Extended FiGA Approach.

Step (1)’: Model Extraction from Test Suites. Reverse R

extracts UML class and activity models from the application

test suites. The test suite code is annotated, and these an-

notations drive the model extraction performed by Reverse R.

The annotations are introduced in the test suites only once

by developers during development time. Each individual test

case is mapped into an activity model. In the experiment we

considered JUnit test suites.

Step (2)’: Modification of Test Suites Model. The de-

veloper adapts the models for the test suites. As for the

program, any model change is decomposed into a sequence

of elementary changes that are mapped to code changes.

Step (3)’: Adaptation Process for Test Suites. The code

for the test suites is adapted as described in Step (3).

Step (3b): Validation of Adapted Program Model. The

validation process consists of the execution of the models for

the test suites against the adapted models for the program. If

the execution of some test model fails revealing some faults,

the adaptation process is stopped and the developer has to

modify the models of the program to fix the faults (i.e., goes

back to step 2 and 2’). The validation process is completed

when all the models for the test cases pass, after which the

adaptation can be deployed.

Step (4)’: Propagating Changes to the JUnit Test Suites.
Similar to the program code, the code for test suites is also

kept synchronized with their models.

IV. ENABLING MODEL EXECUTION

The Rational software architect (RSA) simulation

toolkit 9.02 is used to execute the activity models. It supports

model execution via the UML action language. Action code

2http://www-03.ibm.com/software/products/en/ratisoftarchsimutool

can be associated with action nodes and transition flows

of activity models. Each action node has a code snippet

associated with it where code statements can be entered, and

each transition flow has a code snippet associated with it

where a boolean expression can be entered [14]. We added

the Java and JUnit libraries to the tool and enabled model

execution using Java as the action language instead of using

the UML action language. Other libraries can be added and

used at the model level in a similar way to the addition of

the JUnit library.

In the original FiGA framework [7], [8], the annotated code

was mapped to comments associated with action nodes, which

permitted changing the code at the model level but not its

execution. In order to exploit the RSA model simulation tool,

we extended the FiGA framework to support (1) mapping Java

statements to code snippets of action nodes and transition

flows (Sect. IV-A), and (2) mapping calls between methods

to calls between the activity models representing these meth-

ods (Sect. IV-B). These new mappings are supported in the

extended FiGA framework presented in this paper.

A. Mapping Java Statements to Code Snippets

In the extended FiGA framework, Reverse Rmaps annotated

Java statements to code snippets of action nodes and transition

flows of decision nodes.

Action nodes. If Java statements are annotated with the

@CallAction annotation, then Reverse Rcreates an action node

and adds the Java statements to the code snippet of the action

node. When the model execution flow reaches an action node,

the code snippet associated with the node is executed. For

example, the activity model in Fig. 3 is extracted from the

annotated test case in Listing 2. The @CallAction annotation
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@Test
public void test_bookSeat() {

3 @CallAction(id="Declare and initialize objects"){
Airport Den = new Airport("DEN");
Airport Dtw = new Airport("DTW");

6 Airline Delta = new Airline("DELTA");
ArrayList<Airport> airports =

new ArrayList<Airport>(Arrays.asList(Den, Dtw));
9 ArrayList<Airline> airlines =

new ArrayList<Airline>(Arrays.asList(Delta));
SystemManager reserve = new SystemManager(airports, airlines);

12 }

@CallAction(id="Method calls"){
15 @CallBehavior(Behavior="SystemManager::createFlight"){

reserve.createFlight("DELTA", "DEN", "DTW", 2013, 5, 6, "123");}
@CallBehavior(Behavior="SystemManager::createSection"){

18 reserve.createSection("DELTA","123", 1, 1, SeatClass.business);}
@CallBehavior(Behavior="SystemManager::bookSeat"){
reserve.bookSeat("DELTA", "DEN", "DTW", SeatClass.business);}

21 }

@CallAction(id="Assertions"){
24 assertEquals(reserve.findAvailableFlights("DEN", "DTW"), false);

}
}

Listing 2: Test case before adaptation: reserving a direct flight.

test_bookSeat

Declare and initialize objects

Method calls

Assertions

Code snippet
Airport Den = new Airport("DEN");

Airport Dtw = new Airport("DTW");

....

Code snippet
ModelCall.call(“SystemManager::createFlight”,

reserve, "DELTA", "DEN", "DTW", 2013, 5, 6, "123");

ModelCall.call(“SystemManager::createSection”,

reserve, "DELTA","123", 1, 1, SeatClass.business);

ModelCall.call(“SystemManager::bookSeat”, reserve,

"DELTA", "DEN", "DTW", SeatClass.business);

Code snippet
assertEquals(reserve.isAvailable( "DEN",

"DTW"), false);

Fig. 3. An activity model extracted from the test_bookSeat() test case.

at line 3 decorating the statements commands Reverse Rto

create an action node labeled with "Declare and initialize

objects" (cf. Fig. 3). The annotated statements (from line 4

to 11) are copied to the code snippet associated with the

created action node.

Decision nodes. A Java conditional statement that is an-

notated with the @Decision annotation is mapped to a decision

node with outgoing transition flows. The boolean expression of

the conditional statement and the negation of the expression

are represented as code snippets of the outgoing transition

flows. When the model execution flow reaches a decision node,

its outgoing transition flows are evaluated and the transition

that evaluates to True is executed. If developers think that

visualizing branches of a conditional statement in the model

is not important, then they can annotate the statement with

the @CallAction. In this case, the conditional statement and

its body are copied to a code snippet of an action node, and

executed as already explained.

B. Mapping Method Calls to Activity Model Calls

In the extended FiGA framework, formal input arguments

of a Java method are represented as local model attributes in

the activity model extracted from that method. Additionally,

Reverse Rmaps method call statements that are annotated with

@CallBehavior to calls to activity models representing the

called methods. For example, the annotated method call in

line 16 of Listing 2 is mapped to a call to the activity model

of the SystemManager::createFlight() method. In Listing 2,

the value of the Behavior attribute is the id of the called

activity model. The corresponding call statement in the activity

model of Fig. 3 is as follows:

ModelCall.call("SystemManager::createFlight", reserve, "DELTA",

"DEN", "DTW", 2013, 5, 6, "123")

where ModelCall is a static class that we implemented. The

call() method takes as inputs the id of the called activity

model, the caller object, and the actual arguments of the call

statement. The call() method contains statements to call the

necessary methods from the RSA model simulation library to

execute the called activity model.

The RSA model simulation tool does not support passing

arguments between activity model calls (as explained in [14]

on page 29). Therefore, we implemented this functionality

in the ModelCall class (within the extended FiGA frame-

work). When an activity model is called for execution by the

ModelCall.call() method, the called activity model receives

the actual arguments from the ModelCall class and saves them

in its local attributes.

Activity models are only generated from annotated methods.

During development time, developers have the choice not to

annotate some of the program methods (e.g., constructors,

getter, setter, toString, and helper methods) if they think that

generating activity models for these methods is not important

and would just increase the complexity of the software sys-

tem’s full model. In this case, no activity models are extracted

for such methods. Signatures of such methods are stored in the

class model, and developers can modify their implementation

in the class model (e.g., clicking on an operation shows its

code view where the implementation can be modified). These

methods can be called from activity models, i.e., a statement

to call such a method is contained in a code snippet of an

action node.

V. EVALUATION AND DISCUSSION

This section consists of two parts: a demonstration of the

validation approach, and a mutation testing experimental study.

A. Demonstration of the validation approach

We demonstrated the validation approach when integrated

with the FiGA framework using the ARS example introduced

in Sect. II-A and the NanoXML/Java3 parser. The goal of the

3http://nanoxml.sourceforge.net/orig/
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TABLE I
ORIGINAL ARS AND NANOXML 2.0, AND THEIR BASELINE TEST CASES

Software
System

Number
of
classes

Number
of meth-
ods

LOC

Number
of
baseline
tests

Number
of
activity
models
of meth-
ods

Number
of
activity
models
of test
cases

ARS 9 58 721 61 43 61

NanoXML 19 147 5827 68 59 68

TABLE II
ADAPTED MODELS OF ARS AND NANOXML 2.0, AND THEIR TEST CASES

Software
System

Change
type Classes

Activity
models
of meth-
ods

Activity
models
of test
cases

ARS Added 0 5 8

Deleted 0 0 0

Modified 4 14 20

NanoXML Added 2 16 20

Deleted 0 0 0

Modified 6 13 0

demonstration is to show that the proposed validation approach

can be used to adapt test cases at the model level, and can

validate adapted models of a program and detect failures.

The ARS study: The ARS comes with a JUnit test suite

that contains unit and system test cases. The test suite achieves

100% branch coverage. The ARS is dynamically adapted to

support (1) reservation on flights with stops as described in

Sect. II-A, and (2) the automatic re-booking for passengers

whose flights have been canceled.

The class and activity models were generated via Reverse R

from the ARS and its JUnit test suite. Table I summarizes

the data about the original ARS and its generated models.

For example, 43 of ARS methods were extracted as activity

models (the rest are helper methods represented only in the

class model). An activity model was extracted for each test

case. For example, Fig. 3 shows the extracted activity model

from the annotated test case shown in Listing 2.

The activity models of the ARS and its test cases were

modified according to the considered adaptations. Table II

summarizes data about the adapted models. For example, the

activity model of Fig. 3 tests the functionality of reserving

a seat on a direct flight. This activity model was adapted to

test the same functionality in case of connecting flights. Fig. 4

shows the adapted activity model, where some initializations

were added to the code snippet of the action node labeled with

"Declare and initialize objects". New calls to the activ-

ity models responsible for creating flights and seat sections

were added and assertion statements were also modified. The

added/modified statements are shown in red in Fig. 4.

The activity models (both adapted and unchanged) for test

cases were executed to validate the adapted ARS models.

Faults unintentionally introduced during the adaptation process

(16 faults) were disclosed by the test cases. For example,

the activity model in Fig. 4 was executed to validate the

test_bookSeat

Declare and initialize objects

Method calls

Assertions

Code snippet
Airport Den = new Airport("DEN");

Airport Dtw = new Airport("DTW");

Airport Ord = new Airport("ORD");.....

Code snippet
ModelCall.call(“SystemManager::createFlight”,

reserve, "DELTA", "DEN", "ORD", 2013, 5, 6, "123");

ModelCall.call(“SystemManager::createFlight”,

reserve, "DELTA", "ORD", "DTW", 2013, 5, 6, "222");

ModelCall.call(“SystemManager::createSection”,

reserve, "DELTA","123", 1, 1, SeatClass.business);

ModelCall.call(“SystemManager::createSection”,

reserve, "DELTA","222", 1, 1, SeatClass.business);

ModelCall.call(“SystemManager::bookSeat”,

reserver,"DELTA","DEN","DTW", SeatClass.business);

Code snippet
assertEquals(reserve.isAvailable("DEN","ORD"),false);

assertEquals(reserve.isAvailable("ORD","DTW"),false);

Fig. 4. Adapted activity model to test connecting flights.

reservation functionality for connecting flights. The statement

ModelCall.call(“SystemManager::bookSeat”,

reserver,"DELTA","DEN","DTW", SeatClass.business)

passes the execution flow to the activity model for the

SystemManager::bookSeat() method which, in turn, exe-

cutes the faulty activity model (shown in Fig. 1) of the

Airline::bookSeat() method. The execution of this activity

model violates the assertions of the test case revealing the

logic fault (presented in Sect. II-A) in the activity model.

The NanoXML study: The NanoXML is an XML parser

for Java. Multiple versions of NanoXML are available4, each

adding new functionality to the previous version. For example,

NanoXML 2.1 supports parsing XML namespaces that are

not supported in version 2.0. We chose NanoXML in order

to demonstrate the proposed approach on software that was

implemented by a third party with a size larger than the

ARS size, and to show that the adaptation and its validation

are feasible at the model level when a NanoXML version is

adapted to another version at the model level.

The NanoXML package provides XML files to be used as

inputs to test the NanoXML software. Each file contains XML

data with different properties than XML data in other files.

We created 68 code level test cases for NanoXML 2.0 such

that each test case contains (1) statements to read and parse

an input XML file, and (2) assertion statements to check the

properties of the results.

We used the extended FiGA framework to apply model

level adaptation from NanoXML version 2.0 to version 2.1

to support parsing XML files with namespaces. The class and

activity models were extracted from NanoXML 2.0 and its

test cases. Table I summarizes the data about NanoXML 2.0

4http://sir.unl.edu/portal/bios/nanoxml.php
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and its models. Among the 147 methods, 59 methods were

extracted as activity models. The rest are helper methods that

are represented and can be adapted in the class model as

explained in Sect. IV-B.

Based on code differences between NanoXML version 2.0

and 2.1, the class and activity models of version 2.0 were

adapted to get to version 2.1 at the model level. Table II sum-

marizes the data about the adaptation. New activity models (20

models) were added for creating test cases that tests parsing

XML files with namespaces. After the adaptation process, the

88 activity models representing the test cases (20+68) were

executed to validate the adapted models representing version

2.1. Faults unintentionally introduced during the adaptation

process (18 faults) were disclosed by the test cases.

The ARS and NanoXML studies showed that modifying

existing test cases and creating new ones were feasible at the

model level, and executing these test cases disclosed faults

unintentionally introduced in the adapted models. The studies

also showed that the process for model-based adaptation within

the FiGA framework works correctly.

B. Mutation Testing Experiment

The goal of the mutation testing experiment is to compare

the effectiveness of testing at the model level using the

proposed approach with the effectiveness of testing at the code

level. The effectiveness is measured by the number of faults

that can be found at the model and at the code levels.

We applied mutation testing [15] in this experiment. Mu-

tation testing is a fault-based testing technique that measures

the effectiveness of test cases. Mutation testing uses mutation

operators to apply syntactic changes in a program to introduce

simple faults and create a set of faulty versions of the program,

called mutants. Test cases of the original program are used to

execute these mutants, and if these test cases expose faults in

a mutant, then the test cases are said to have killed the mutant.
The ARS is the subject of this experiment that consists of the

following four steps:

First, MuJava [16] was used to apply first-order method-

level mutation operators to the original ARS program. Dif-

ferent mutants were created for the ARS. The set of all

mutated versions is called P. The applied mutation operators

are: (1) replacement/insertion/deletion of arithmetic/condition-

al/logical operators, (2) relational operator replacement, (3)

assignment operator replacement, (4) statement deletion, and

(5) predicates with a boolean constant replacement.

In the second step, the mutation in each pi of P was repeated

on a copy of the class model and activity models representing

the ARS as follows. For each mutated statement at the code

level, we found its corresponding element at the model level

and applied the same mutation operator to it. Note that code

statements are associated with action nodes and transition

flows in activity models. Each mutated copy of the ARS class

and activity models based on pi is called mi, and the set of

all mi is called M.

The baseline JUnit test suite for the ARS is called PT, and

the set of activity models of the ARS test cases (extracted

TABLE III
EXPERIMENTAL RESULTS

Mutations Introduced/Killed Number

Mutants in M 654

Mutants in P 654

Mutants killed by MT 541

Mutants killed by PT 541

by Reverse Rfrom the ARS baseline JUnit test suite) is called

MT. No changes were made to the test cases in MT and PT, so

they were not able to kill all mutants generated by the MuJava.

In the third step, the test cases of MT were used to evaluate all

mutants in M, and the killed mutants were reported. Similarly,

the test cases of PT were used to evaluate all mutants in P,
and the killed mutants were reported. The results are shown

in Table III.

The set of faults corresponding to the killed mutants of M
is called FM, and the set of faults corresponding to the killed

mutants of P is called FP. In the fourth step, faults in FM were

traced to those in FP in order to find if the testing at the code

level and model level disclosed the same faults, and to verify

that each fault in FM corresponds to a fault in FP. Each fault

in FM was traced to a fault in FP through the FiGA mapping

operators (details of these operators are in [7] and [8]) that map

a model change to a corresponding code change. If a model

fault in FM is mapped to a corresponding code fault that is

listed in FP, then the two faults can be considered similar even

though they are represented at different abstraction levels.

Discussion of results. The results of the experiment showed

that at the model level, MT killed exactly the same set of

mutants that were killed by P at the code level (541 mutants).

We reviewed the remaining 113 mutants that were not killed,

and found that they included 81 equivalent mutants that cannot

be killed at the model level or code level. Therefore, the

mutation score was 541/(654-81)=94.4%. The remaining 32

mutants can be killed by MT and PT if they are improved by

adding more test cases to check additional internal states that

are not checked by MT and PT.

Moreover, by applying the fourth step we found that each

fault in FM has a similar fault in FP but they are represented

at different abstraction levels (i.e., a sequence of statements

at the code level are grouped as an action node at the model

level). Therefore, the sets FM and FP are isomorph. According

to that, the test cases at the model level showed no loss of

effectiveness compared to the test cases at the code level. The

reason is that the same set of faults existed at two different

abstraction levels and the test cases at both levels disclosed

these related faults.

The FiGA mapping operators were used to trace all faults

in FM to faults in FP and verify that with model level testing

we can disclose the same set of faults that can be disclosed

with code level testing. For example, the fault explained in

Sect. II-A can be traced from the model to the code as follows.

The test case of Fig. 4 failed when executed on the ARS

models, and the fault causing the failure was detected in the
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activity model of Fig. 1. The fault was the addition of a new

decision node (test2) and connecting the else transition flow

of the decision node (test1) to it. This fault was mapped

to a corresponding code using the FiGA mapping operators

that specify the corresponding code change and determine its

location in the program (in which method and after which

statement). The code corresponding to the fault disclosed at

the model level is the one at line 5 in Listing 1. If the code

level testing disclosed a fault in such a piece of code, then the

two faults can be considered the same.

VI. RELATED WORK

Most of the existing model-based approaches for runtime

adaptation support coarse-grained reconfiguration of software

structure [3], [4], [17]. These approaches support anticipated

adaptations. Morin et al. [4] use a runtime model that conforms

to a user defined meta-model. Architectural invariants are

anticipated and defined during design time on this meta-

model, and used to check the validity of every constructed

configuration during runtime. Garlan et al. [3] use a runtime

model that maintains explicit architectural constraints at design

time, and at runtime, these constraints are periodically checked

to make sure that they are not violated by model adaptations.

Song et al. [17] apply structural model differencing to check

the syntactic validity of architectural changes to a system.

Amoui et al. [18] proposed an approach for fine-grained

adaptations at runtime. This approach utilizes TGraphs to

represent runtime models for self-adaptive systems, and it

supports fine-grained adaptation at the method and field level.

However, this approach does not support or address unan-

ticipated adaptations and their validation at runtime. Other

approaches use models during development time to validate all

possible configurations of an adaptive system, such as Zhang

et al. [6]. However, enumerating adaptation rules and system

configurations is not possible for unforeseen changes, and thus,

unanticipated adaptations are not tested in these approaches.

Piechnick et al. [19] proposed an approach for applying

unanticipated adaptations such that new component types and

adaptation plans can be introduced at runtime. However, this

work does not propose a technique for validation.

VII. CONCLUSIONS AND FUTURE WORK

We presented a new approach to validate model-based fine-

grained and unanticipated adaptations of running Java software

systems. The approach validates the functional correctness

of UML class and activity models representing fine-grained

behaviors of a program. Test cases are represented as activity

models, and they are executed to validate runtime adaptations

at the model level. The approach was demonstrated and

evaluated within the FiGA framework. The results indicated

that the approach worked at the model level and showed

no loss of effectiveness compared to code level testing, and

detected the same failures that were detected at the code level.

We plan to evaluate the validation approach on different

software systems and different fault types to investigate the

effectiveness and efficiency of the approach. We will extend

the validation approach to incorporate a model-based regres-

sion test selection technique. We also plan to support automatic

annotation of Java code. Currently, annotations are introduced

by developers during development time.
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