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Abstract

In this paper we explore the object-oriented reflective
world, performing an overview of the existing models
and presenting a set of features suitable to evaluate the
quality of each reflective model. The purpose of the pa-
per is to determine the context applicability of each re-
flective model examined.
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1 Introduction

Computational reflection is a programming paradigm
suitable to develop open systems. An open system is
a software system which can be extended in a simple
manner. All the advantages of open systems manifest
themselves in the software development. The system
can comprise parts developed at different times by inde-
pendent teams. It is possible to use specific meta-entities
to test the system and then discard such meta-entities,
when the test phase ends, removing the meta-level from
the final system. Computational reflection improves the
software reusability and stability, reducing development
costs.

Nowadays, computational reflection has been used in
several fields, for example for developing operating sys-
tems [21,43], fault tolerant systems [1, 17] and compil-
ers [27].

In the literature, several models of computational re-
flection (meta-class, meta-object, message reification,
and channel reification) have been presented, and each
model has different features absent from the others mod-
els. Thus each model should be best suitable for specific
tasks.

The purpose of this paper is to analyze such models
and to determine the best applicability context for each
model.

In section 2 we present computational reflection (sub-
section 2.1) and some reflective features to evaluate the
models (subsection 2.2). In section 3 we present the
main reflective models and in section 4 we evaluate
them using the measures described. In the conclusions
we determine the applicability context of each model.

2 What one Needs to Know

In this section we present computational reflection and
some reflective features (dimensions) which can be used
as measures to evaluate the quality of a reflective model.

2.1 What is Reflection

Reflection appeared first in Al before propagating to
various fields in computer science such as logic pro-
gramming, functional programming and object-oriented
programming [13].

It was introduced in object-oriented programming
thanks to the famous works of Pattie Maes [30,31].
Reflection is the ability of a system to watch its com-
putation and possibly change the way it is performed.
Observation and modification imply an “underlay” that
will be observed and modified. Since the system reasons
about itself, the “underlay” is itself, i.e. the system has
a self-representation [31].

Bobrow et al. consider that observation and modifica-
tion are two aspects of reflection:

“Reflection is the ability of a program to manipulate as
data something representing the state of the program
during its own execution. There are two aspects of such
manipulation: introspection and intercession.

Introspection is the ability for a program to observe and
therefore reason about its own state. Intercession is the
ability for a program to modify its own execution state or
alter its own interpretation or meaning. Both aspects re-
quire a mechanism for encoding execution state as data;




providing such an encoding is called reification.” [3]

An object-oriented reflective system is logically struc-
tured in two or more levels, constituting a reflective
tower. The first level is the base-level and describes the
computations that the system is supposed to do. The
second one is the meta-level and describes how to per-
form the previous computations. The entities (objects)
working in the base level are called base-entities, while
the entities working in the other levels (meta-levels) are
called meta-entities.

Each level is causally connected to adjacent levels, i.e.
entities working into a level have data structures reifying
the activities and the structures of the entities working
into the underlying level and their actions are reflected
into such data structures. Any change to such data struc-
tures modifies entity behavior. Each level, except the
first and the last one, is a base-level for the above level
and is a meta-level for the underlying level.
Meta-entities supervise the base-entities activity. The
concept of trap could be used to explain how supervi-
sion takes place. Each base-entity action is trapped by
a meta-entity, which performs a meta-computation, then
it allows such base-entity to perform the action.

The infinite regression of the reflective tower can be
managed in different ways. Brian Smith suggested
the use of lazy evaluation in 3-Lisp [36]: an inter-
preter is not created unless needed. Others solutions
are represented by the following techniques: meta-
circularity [12] and meta-helix [25].

It is possible to observe, going beyond the reflec-
tive tower of compilers|interpreters, that each reflec-
tive computation can be separated into two logical as-
pects: computational flow context switching and meta-
behavior. A computation starts with the computational
flow in the base level; when the base-entity begins an
action, such action is trapped by the meta-entity and the
computational flow raises at meta-level (shift-up action).
Then the meta-entity completes its meta-computation,
and when it allows the base-entity to perform the ac-
tion, the computational flow goes back to the base level
(shift-down action).

2.2 How Evaluating Reflective Models

The characteristics of reflective models, that can be used
to evaluate their quality and their context applicability,
can be classified into three categories: generic mea-
sures, meta-entities features and type of reflection.

Some of the features examined are well-known in the re-
flection literature, while other features (eg. granularity,
and visibility) are considered here for the first time.

Type of Reflection

The type of reflection supported by the reflective model
specifies which system aspect can be monitored and
changed by the meta-entities.

Types of reflection are not mutually exclusive, on the
contrary a reflective model can support more than
one type of reflection, but the problem is that not all
object-oriented languages have the features necessary
to support all types of reflection in a simple way.

Structural Reflection can be defined as the ability of
a language to provide a complete reification of both
the program currently executed as well as a complete
reification of its abstract data types.

Structural reflection allows to reify and to manipulate
the computational system code. From early times,
functional languages (eg. lisp) and logic languages
(eg. prolog) have statements allowing to manipulate
the program representation. Such statements are based
on the interpretative nature of such languages and they
make it easier to introduce structural reflection into it.
Most object-oriented languages are compiled (eg. G+,
Oberon and Eiffel) and there is no code representative
at run-time. Only pure object-oriented languages, like
SmallTalk, have code representative at run-time (ie. the
class) and it is such representative which realizes the
structural reflection, see [15,35]. Structural reflection
in non pure object-oriented languages is realized in one
of the following ways, but in all cases its potentials are
limited: at compile-time as in OpenC++ from version
2 [9], or introducing run-time structures representing
(reifying) program code [37]. In the former method
all structural reflective actions are static, in the latter
the limit is represented by which aspect of the code is
reified (eg. in [37] the structural reflection consists only
in substitute methods code using first class procedures
feature of the Oberon language).

Behavioral Reflection can be defined as the ability of
the language to provide a complete reification of its
own semantics as well as a complete reification of the
data it uses to execute the current program.

Behavioral reflection manipulates the behavior of the
computational system. The manipulation is realized
by two phases: method look-up or shift-up action and
message application or shift-down action. In the former
phase, when the base-entity sends a message (calls a
method) the meta-entity intercepts it and looks for the
meta-computation to perform for that message. The
computational flow shifts from the base-level up to the
meta-level. In the latter phase, the meta-entity has the
control of the computation and applies, if needed by the



meta-computation, the requested message and then it
returns the results to the base-entity. The computational
flow shifts from the meta-level down to the base-level.
Examples of behavioral reflection realization are [8,19].

Generic Measures

The measures classified as generic derive from the re-
flective concepts, and — if present — both the devel-
opment and the execution phase of the reflective system
can benefit from them. We consider transparency, sepa-
ration of concerns, extensibility, concurrency, reflexivity
and visibility.

Reflexivity, under this term we mean to group three dif-
ferent aspects, the first two related to introspection and
the last related to intercession:

1. how much time the computational flow spends in
the meta-level,

2. when the computational flow shifts up or down
among levels, and

3. which aspects are reified by the meta-entities.

The first aspect specifies how many times during a com-
putation the flow shifts among levels, while the second
aspect specifies on which event (eg. method calls, or
variable accesses) it shifts among levels. These two
aspects are important for efficiency reasons. Each level
shift generates an overhead due to the context switch,
for this reason, techniques to realize efficient reflective
languages are based on performing meta-computation
as soon as possible (for example at compile-time), more
details in [10]. The last aspect specifies which parts of
the system are subject to reflection.

Transparency, as stated in [31] a reflective system is
logically structured into a tower of several levels and the
entities of each level work independently from the work
of the entities of the level above. Thus, introspection
and intercession should be performed transparently;
the transparency degree defines how transparently
introspection and intercession are performed, more
on transparency in [38]. The transparency degree is
measured through the number of changes that must
be made to the base-level code to integrate it with the
meta-level.

Extensibility and Separation of Concerns, in reflec-
tion philosophy, each different system’s functionality is
the concern of a different level of the reflective tower, ie.

the base-level performs its functional aspect! and each
level extends the system, composed of the underlying
tower levels, with different non-functional aspect® (eg.
fault tolerance [17], atomicity [39], concurrence [11]
and persistence [29]). Thus reflection permits to extend
a computational system. Entrusting a different aspect to
a different level is termed separation of concerns.

Transparency, extensibility and separation of concerns
are very desirable goodies during the development
phase. They allow the separated development of each
level saving time and money, improving component
reuse and consolidating the correctness and the stability
of each aspect of the system.

Visibility, with visibility we mean the scope of the
meta-computation, ie. which base-entities or base-
entities’ aspects can be involved by the meta-entity’s
meta-computation. We term global view the situation
in which the meta-computation can involve all base-
entities and aspects involved in the computation which
it reifies.

Visibility is a measure of the homogeneity of the meta-
computation with respect to the normal computation.

Concurrency, as stated in [26] concurrency and re-
flection are two concepts hard to integrate. Integration
problems are due to the tight interconnection among
base-, and meta-entities and the causal connection
existing among entities working in adjacent levels.
The causal connection requires to maintain a con-
sistent meta-representation of the state and of the
behavior of the underlying entities introducing all the
typical problem of keeping consistence of replicated
information in a distributed environment. Moreover,
the tight interconnection causes a large information
traffic among levels. For these reasons to support
concurrency the reflective model implementations split
the introspection from intercession encapsulating the
intercession in the entity to reify and the introspection
into a separate meta-entity. An example of a distributed
object-oriented reflective language is ABCL-R [41,42].

Meta-Entities Features

The features classified as belonging to the meta-
entities are measures for properties related only to the
meta-entities. We consider lifecycle, granularity and
proliferation of the meta-entities.

'where for functional aspect, we mean the minimal computation
needed to solve the problem aimed to the system.

2where for non-functional aspect we mean properties marginals to
the problem to solve.



Reflection Granularity, we mean the smallest aspect
of the base-entities of a computational system (eg.
objects and methods) that can be reified by different
meta-entities. The most interesting granularity levels
are: classes, objects, methods and method calls. For
example, if granularity is at method level, two methods
of the same object can be reified by two different
meta-entities and thus they can manifest two different
meta-behaviors. A fine granularity permits more
flexibility and modularity in the software system at the
cost of meta-entities proliferation. Of course with any
reflection granularity level it is possible to simulate the
behavior achieved by the other levels. Using a coarse
granularity, to simulate a finer granularity behavior, we
must develop the meta-entities code as a large case,
improving the complexity of the meta-entities and
each case branch handles a different meta-behavior
for a different base aspect. By contrast, with a fine
granularity to simulate a coarser granularity behavior
it is sufficient to reify all the base aspects needing the
same meta-behavior by the same meta-entity.

Meta-Entities Lifecycle, we mean the period of the
system execution in which a specific meta-entity has
to exist. Granularity and lifecycle are related measures
since the existence of a meta-entity depends on the
existence of the base aspect which it reifies. For
example, if the granularity is at method call level, the
existence of a meta-entity is limited to the execution of
the called method that it reifies. The lifecycle measure
is important for optimization reasons, a long lifecycle
increases the waste of memory and the number of
active meta-entities, while a short lifecycle increases
the overhead due to the meta-entities’ creation and
destruction.

Meta-Entities Proliferation, as meta-entities pro-
liferation we mean the estimate of the number of
meta-entities involved by the system computation. The
proliferation is a quantity depending both on reflection
granularity and on meta-entities lifecycle. Of course
a large number of active meta-entities can degrade the
system performance.

3 Reflective Models Presentation

In [18], a first reflective model classification has been
pointed out. Ferber remarks the existence of two major
reflective approaches: meta-object and communication
reification.

The meta-object approach consists in linking each base-
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Figure 1: Meta-Class Model Scheme

entity — also termed referent — with one or more meta-
entities — also termed meta-objects — reifying it. The
communication approach consists in reifying only the
base-entities interactions into specific meta-entities.

In this paper, for the former approach we analyze the
meta-class and meta-objects models, while for the latter
we analyze the message reification and channel reifica-
tion models.

3.1 Meta-Class MCM)

A class describes both the structure and the behavior
of its instances. The structure is the set of instance
variables whose value will be associated within the in-
stances. The behavior is the set of methods to which
instances of the class will be able to respond [23].

The meta-class model [6, 12] is a variant of the meta-
object approach, in which the reflective tower is real-
ized by the instantiation link. The meta-object reifying
a base-entity is its class, the meta-meta-object reifying a
meta-object is its meta-class, and so on (see figure 1).

Classes fit perfectly the role of controller and modifier
of structural information, because they keep such in-
formation hardwired in their nature. Their problem is
represented by the difficulty of specializing the meta-
behavior of a single instance. Any instance of a class
has the same meta-object; hence all instances share the
same meta-behavior. To specialize the meta-behavior
for each instance, it is possible to use the inheritance
relation (building up a dummy daughter class, differing
from the original class only for the meta-behavior) or



dictionaries keeping information and methods about/for
each instance.

To dynamically change the behavior of an object it is
necessary to substitute its meta-class, but not all lan-
guages allow the dynamic substitution of the class of
an object; moreover changing the class of an object can
lead to inconsistencies.

Usually the meta-behavior manifested by an instance is
the result of meta-class composition obtained using the
inheritance relation. In [23], Graube pointed out that
meta-class use raises the meta-class compatibility prob-
lem. Bouraqadi-Saidani and al. further explored com-
patibility problems in [4].

(--»-> inheritance —— = instanciation ) (--»-(> inheritance ——J= instanciation )

(a) Upward (b) Downward

Figure 2: Meta-class Compatibility Problems

Consider the situation represented in 2(a) where a

class A instance of the meta-class MetaA implements a
method foo which sends the message bar to the class of
the receiver of foo, and there is another class B derived
by A and instance of MetaB, and the message bar is
known only by MetaA, and there is no relation between
MetaA and MetaB. What happens when an instance of
B receives the message foo? Such a situation is termed
upward compatibility problem. Consider the situation
represented in 2(b), where the class A is an instance of
the meta-class MetaA and implements the method foo,
and MetaA implements the method bar which creates a
new instance of the receiver and sends the foo message
to it. What happens when bar is sent to B which is an
instance of MetaB which inherits by MetaA? This situ-
ation is termed downward compatibility problem. These
problems have been solved thanks to a model imple-
mented in NeoClassTalk [5].
Of course, the meta-class model is directly imple-
mentable only in those languages handling classes as
objects (eg. SmallTalk, and CLOS) or simulating such
a situation.
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Instance of

3.2 Meta-Object (MOM)

The meta-object model [24] is a variation of the meta-
object approach. But, instead of identifying the meta-
object with the class of the base-entity, meta-objects are
instances of a specific class MetaObject or of derived
classes (see figure 3). The reflective tower is realized
by the clientship relation. In this model, separate enti-
ties handle intercession and introspection on each base-
entity. Each meta-object intercepts (shift-up action) the
messages sent to its referent, and performs its meta-
computation on such messages before actually deliver-
ing (shift-down action) them to its referent.

The meta-object model makes few assumptions about
the relationships between base and meta-entities: in
principle, each meta-object can be connected to many
referents, and each referent can be linked to several
meta-objects (one at a time) during its lifecycle. Usu-
ally, a meta-object is linked to an object through an in-
stance variable, so that is in order to change the meta-
object it is possible to change the value associated to
that slot.

However most implementations, for efficiency reasons,
restrict this freedom: in CCEL [14], OpenC+ [9],
Iguana [22] and ABCL-R [32] a meta-object is linked
to one referent only, and each referent can have only one
meta-object during its lifecycle.

It is simple to specialize the meta-behavior per object,
developing a new class of meta-objects refining the orig-
inal one with the specialized meta-behavior. To special-
ize the meta-behavior per method or finer entities we
need to develop the meta-object in case-style checking
each possibility.

The major drawback of this model is that a meta-object
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can monitor a message only once it has been received
by the referent. Thus the meta-object loses information
about the sender and cannot perform actions related to
the sender’s identity.

The meta-object is the most used model, and its appli-
cations are not limited to programming languages, but
they also involve operating system (eg. ApertOS [43]),
distributed systems (eg. CodA [33]) and graphic inter-
faces (eg. Silica [34]).

3.3 Message Reification (MRM)

The message reification model [18] is a variant of the
communication reification approach. In this model,
meta-entities are special objects, called messages, which
reify the actions that should be performed by the base-
entities. The kind of a message defines the meta-
behavior performed by the message; different messages
may have different kinds. Every method call, is reified
into an object — termed message — which is charged
with its own management (e.g., delivery) in according
to the kind of the meta-computation required, and when
the meta-computation terminates, such a message is de-
stroyed.

It is possible to define different behaviors for method
calls performed by each object, specifying a different
kind for each method call. Messages are not linked
to the base-entity originating them and cannot access
their structural information. The message object ex-
ists only for the duration of the action which it embod-
ies. Thus it is impossible to store information among
meta-computations (lack of information continuity). On
the other hand, every method call creates and then de-
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stroys an object (the message). The reflective tower in
this model consists only of two levels: the base and the
meta-level.

3.4 Channel Reification (CRM)

The channel reification model [1,2,7] is an extension of
the message reification model, aimed to overcome some
of its limits, while keeping its advantages.

Channel reification is based on the following idea: a
method call is considered as a message sent through a
logical channel established between an object requir-
ing a service, and another object providing such a ser-
vice. This logical channel is reified into an object called

channel (as shown in figure 5). A channel is character-

ized by a triple composed by the objects it connects and
by the kind of the meta-computation it performs.

channel = (sender, receiver, channel _kind)

A channel kind identifies the meta-behavior provided by
the channel. In a typed object-oriented language the
kind is also the type of the channel class. The kind
is used to distinguish the reflective activity to be per-
formed: several channels (distinguishable by the kind)
can be established between the same pair of objects at
the same moment.

The lack of information continuity of message reifica-
tion is eliminated by making channels persist after each
meta-computation. A channel is reused when a commu-
nication characterized by the same triple is generated. In



this way, meta-level objects are created only once (when
they are activated for the first time), and reused when-
ever possible. When an object is destroyed, all channels
established from|to it are destroyed too. This lifecycle
limits channel proliferation, since a garbage collector
erases pending channels.

The features of the model are:

* Method-level granularity, as for message reifica-
tion: different method calls can be handled by dif-
ferent channels, thus specializing a reflective be-
havior for each method.

* Monitored channel proliferation with pending
channels elimination.

* Possibility to keep information among meta-
computations (information continuity).

* Each channel completely supervises a communi-
cation, from the beginning to the end, sender and
receiver’s work inclusive.

Each service request is trapped (shift-up action) by the
channel of the specified kind connecting sender and re-
ceiver objects, if it exists. Otherwise, such a channel
is created; in either case, it then performs its meta-
computation and transmits the service request to the
supplier. The receiver’s answer is collected and returned
to the requiring object (shift-down action).

A channel behaves like a forwarding broker. Each chan-
nel kind specializes the behavior of a broker to specific
requirements, and this specialization is transparent from
the underlying application.

GAREF [20] and executable connectors [16] are exam-
ples of reflective system that can be classified as channel
reification based.

4 Reflective Models Evaluation

In this section, we analyze each reflective model filter-
ing them by measures; this examination should high-
light the advantages and the drawbacks of each reflec-
tive model.

Meta-Class Model, this model is very suitable for
structural reflection because the meta-entities (classes)
keep all structural information of their referents (in-
stances) hardwired into their structure. It is more diffi-
cult to change their behavior, because it involves chang-
ing the class, and this affects all their instances.

Reflexivity. All the instances of a class are either reflec-
tive base-entities (ie. the class is a meta-class) or non-
reflective base-entities (ie. the class is not a meta-class).

In the latter case the computational flow is always in the
base-level, while in the former case it shifts up in the
meta-level for each action, ie.a method call or a variable
access are trapped by the meta-entity. The meta-entities
reify in a simple way common information of their ref-
erents (their instances), but they have problems to reify
and manipulate specific aspects of a single referent.
Transparency and Extensibility. System extensions are
achieved by class composition, in despite of meta-class
composability problems this mechanism guarantees a
good transparency of reflection, encapsulating all reflec-
tive primitives into a separated class and hiding their use
by wrapping them in filters.

Visibility. In this model, the visibility is weird because
the scope of meta-entity actions are its instances and the
interactions among its instances, but meta-entities have
only a partial view of an interaction between one of its
instances and an instance of another class. Thus in sev-
eral cases the homogeneity between meta-, and base-
level is lost and only in few cases it is possible to ma-
nipulate all aspects of a computation.

Concurrency. Given the nature of the model, the meta-
entity is integrated with its referents. To separate them
we need special statements. So concurrency, if it is
needed, is only possible among base-entities or among
meta-entities, but not among a meta-entity and its refer-
ents.

Meta-Entities Features. Obviously the reflection gran-
ularity is at class level. In the normal execution of the
reflective system, each meta-entity exists from the be-
ginning (each class must exist before the creation of
each of its instances) to the end (a class must exist even
without instances, because an instance can be created
at any time during execution) of the computation. The
meta-entity proliferation is very low, because there is
one meta-entity for many instances.

The only major problem for the implementation of this
model is represented by the necessity of a mechanism
to support meta-classes at run-time. Best languages
candidates are those that consider a class as an object
(pure object-oriented languages) and which have class
or support for them at run-time, for example SmallTalk.
Other languages need to be extended with mechanisms
to support classes at run-time and meta-class program-
ming [40].

Meta-Object Model, this model is the most widespread
and used one. Its advantages are the simplicity of
its protocol, the adaptability of the mechanism, and
the meta-objects interchangeability, interoperability and
composability. Meta-objects handle behavioral reflec-
tion, while structural one is often deferred to the base-




entity classes.

Reflexivity. A base-entity may or may not have a meta-
object reifying it. Encapsulated in the shift-up mech-
anism or it is up to the interpreter|compiler to check
the existence of the related meta-entity, and the shift-
up actually take place only if such meta-entity exists.
This makes it possible to discriminate in space (reflec-
tive instance) and in time (removing the link with the
meta-entity for a period of time) when to perform the
meta-computation. Each meta-entity reifies the related
base-entity and traps each message directed to it.
Transparency and Extensibility. A good degree of trans-
parency is achieved encapsulating the shift-up and shift-
down mechanisms into the interpreter|compiler. In this
way the only change necessary to integrate two levels
amounts to specifying who reifies who. In most reflec-
tive languages the developer specifies the meta-object’s
class and it is up to the compiler|interpreter to instanti-
ate the meta-object and associate it to its referent.
Visibility. A meta-entity can take actions on messages
delivered to its referent and on its referents. But, it has
no control on the sender of the messages and its visibil-
ity is limited only to what concerns its referent.
Concurrency. In this model, because of causal connec-
tion, the computation of meta-objects and that of their
referents are very tightly coupled. To separate them
on different machines, algorithms need to be imple-
mented to keep the referent consistent with its meta-
representation. Usually, to simplify the model imple-
mentation (see [11]) a meta-object with its referent are
considered as an unity of parallelism.

Meta-Entities Features. A meta-object performs intro-
spection and intercession on all the actions of its refer-
ent; so the granularity is at the object level. Likewise the
meta-object lifecycle is bound to the lifecycle of its ref-
erent. If the meta-object cannot change its referent in the
worst case it is created when the referent is created and
it is no longer needed when the referent is destroyed.
If the meta-object can dynamically change its referent
then it can be more long-lived because its lifecycle is
bound to the lifecycle of several referents. The model
presents an average meta-entity proliferation, if at any
time, we snapshot the system computation there is only
one meta-entity for each reflective entity.

Message Reification Model, in this model the meta-
entities embody messages exchanged among base-
entities and are not related neither to the sender nor to
the receiver of the message. For this reason they are not
suitable to handle structural reflection, but only behav-
ioral reflection.

Reflexivity. Each method call provokes the control flow

shift up from base- to meta-level. There is no control
on which method call originates the meta-computation
and which no. So a reflective system developed using
this model spends much time in the meta-level and it
accuses a large overhead due to the continuous context
switch. Of course, meta-entities reify only the method
calls.

Transparency and Extensibility. In this model, the sys-
tem extensibility is limited by the limited dimension of
the reflective tower. Since, the reflective tower has only
two level, we must combine all non-functional aspect in
only one level. To integrate the two levels we need only
specify the kind of the meta-computation that each com-
putation needs. So in this model there are more break-
ing points of the transparency than in the meta-object
model.

Visibility. Each meta-entity has only a limited visibil-
ity. The meta-entities only reify method calls and there-
fore they can only act on such aspect of the system. If
we don’t consider the subjects of the base-computations
then we can see a minimal homogeneity between base-,
and meta-computation.

Concurrency. Given the nature of this model, each
meta-entity is at most loosely coupled with base-, and
other meta-entities. The meta-entities cannot modify
the base-entities state, but only the computation of the
called method. These facts guarantee the possibility to
have a high degree of parallelism.

Meta-Entities Features. The model has a granularity
at level of method call. Using the kind mechanism it
is possible to differentiate the meta-behavior for each
method call. Each method call provokes the creation,
and subsequently the destruction of a meta-entity. If at
any time, we snapshot the system computation there is a
meta-entity for each base-computation under execution.
Moreover a meta-entity exists only for the time needing
to perform the base-computation it reifies.

The big advantage of this model is represented by the
very fine granularity, which allows to differentiate the
meta-behavior of each method call, but such an advan-
tage is mitigated by its lack of information continu-
ity. Because of this problem it is impossible to use this
model to realize meta-behavior which need historical in-
formation, like profiling and keeping statistics.

Channel Reification Model, this model was thought
to overcome the drawbacks of the message reification
model. Channels embody the messages exchanged be-
tween two base-entities and they also reify the sender
and the receiver of the message. So the model is suitable
to manage both behavioral and structural reflection.

Reflexivity. The model permits to shift-up in the meta-




level only when this is actually needed, so it is possi-
ble to have base-entities which actions rarely activate a
channel and base-entities whose every action activates
a channel. So it is very hard to predict how long the
computational flow stays in the meta-level. In the worst
case each method call provokes the passage in the meta-
level. A channel embodies a set of service requests from
aclient to a server and also both the client and the server.
Transparency and Extensibility. As in the message reifi-
cation model, in this model to integrate two levels we
need only specify the kind of the meta-computation that
each computation needs. But in this model it is possible
to group several method calls specifying only one meta-
behavior. In this way, the model presents less breaking
points of the transparency than the message reification
model. Given the nature of the model complex exten-
sions are achieved by channels composition. A good
level of extensibility is guaranteed by the flexibility of
the model and by the possibility of extending channels
through other channels.

Visibility. Channels have a full control on each entity,
and each aspect of the computation they embody. So
channels enjoy of a global view of the base-computation
and the meta-level reflect in a homogeneous manner the
base-level.

Concurrency. This model embodies the client-server
model. For this reason it is very suitable to be used in
a distributed environment. A channel is loosely coupled
to its referents so it can be instantiated on a different
machine. Also, a channel is loosely coupled with the
other channels and usually, the execution of a channel it
is independent from the execution of any other channel.
Meta-Entities Features. The reflection granularity of-
fered by this model is weird; a channel is associated
to the communications exchanged between two base-
entities, but not all message are trapped by the same
channel, on the contrary a channel traps only those mes-
sage exchanged by its referents and which in that mo-
ment require a meta-computation of its kind. Defining
and changing dynamically the kind appropriately it is
possible to assign a different channel for each method
call. So we can state that the granularity of this model is
at method call level. Channels are created in a lazy man-
ner, ie. at the moment of their first use and are destroyed
when one of their referents is destroyed. So channels
lifecycle is shorter than the lifecycle of it referents. In
this model there is the risk of an uncontrolled demo-
graphic explosion of the meta-entities due to a continu-
ous request of meta-computations with new kind.

This model is very suitable for distributed systems, as
seen in [2]. The possibility to establish several channels

between the same pair of objects originates the problem
of synchronizing the referents updates in order to avoid
inconsistencies.

5 Conclusions

As shown in table 1, from our analysis it results that
each considered model has its own peculiarity. These
diversities make different model suitable for different
tasks.

The models belonging to the communication reification
approach are more suitable than the others to develop
distributed reflective systems, with fine-grained paral-
lelism and loosely coupled entities.

Moreover, the models belonging to the meta-object ap-
proach are more suitable than the others to handle struc-
tural reflection, and they permit to extend reflective sys-
tems dynamically changing its structure.

Entering in details, meta-object and channel reification
are the winners of their respective categories. In respect
to the other, these models are adaptable to any require-
ment. The others models have limitations; the meta-
class model is limited by languages requirements and
the message reification model is limited by the lack of
information continuity.
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