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Abstract

We propose here a mechanism for history-dependent access control for a distributed object-oriented system,
implemented using reflection. In a history-dependent access control system, access is decided based not only on
the current request, but also on the previous history of accesses to some entity or service. We consider timing
constraints expressed using temporal logic, and we describe a possible implementation for our mechanism. The
expected benefits from the reflective approach are: more stability of the security layer (i.e., with a more limited
number of hidden bugs), better software modularity, more reusability, and the possibility to adapt the security
module with relatively few changes to other applications and other authorisation policies.
Keywords: Access Control Mechanisms, Authorisation, History-Dependent Constraints, Object-Oriented
Systems, Reflection, Security

1 Introduction
Security implies not only protection from external intrusions but also controlling the actions of internally-executing
entities and the operations of the whole software system. The interleaving of operations and data protection actions
may become very complicated and often intractable. For this reason, security must be specified and designed in a
system from its early design steps [10].
From another point of view

� it is very important that the security mechanisms of the application be correct and stable;

� the security code should not be mixed with the application code, otherwise it should be very hard to reuse
well-proven implementations of the security model.

If this is not done, when a new secure application is developed the designerjimplementer wastes time to re-
implement and to test the security modules of the application. Moreover, security is related to: “who is allowed to
do what, where and when”; so security is not functionally part of the solution of the application problem, but an
added feature defining constraints on object interactions. From this we can think of security as a feature operating
at a different computational level and we can separate its implementation from the application implementation.
In previous works [2, 3] we have shown that exploiting some typical reflection features, such as separation of con-
cerns and transparency, it is possible to split a secure system into two levels: at the first level there are (distributed)
objects cooperating to solve the system application; at the second level, rights and authorisations for such entities
are identified, specified and mapped onto reflective entities which transparently monitor the objects of the first
level and authorise access to other objects, services, or information. In this way it is possible to develop stable
and reliable abstractions for handling security. It is also possible to reuse them during system development, thus
reducing development time and costs, and increasing application level assurance.

This work attempts to prove the flexibility of the reflective approach, carrying over the concepts and ideas in-
troduced to design a system implementing a role-based access control policy, to a more complex policy, history-
dependent access control.

1



History-dependent access mechanisms validate access requests based on previous system computations [11]. Those
mechanisms are more complicated than the mechanisms for role-based access control, because they use dynamic
information (the history) in order to validate access requests. In spite of their complexity they permit to express
dependencies involving several different execution instants. For example, we can express constraints such as: a
user can read some information only if before he has received the permission to read it from the owner, or an object
can use a service only if it had never used it before. Similar constraints are hard to express in role-based terms.

The paper is organised as follows: in Section 2 some preliminary concepts related to computational reflection are
presented; in Section 3 we describe a model for history-dependent constraints; in Sections 4 and 5 we present more
details of the model and some ideas on how to implement it. In Sections 6 we prove the flexibility of our approach
modelling the Chinese Wall policy [5]. In Section 7 we analyse some related works and we describe the possible
evolution of this work. We conclude with some remarks on the reflective approach and the benefits and drawbacks
it involves for security enforcement.

2 Preliminary Concepts

2.1 Authorisation Rules and Access Control Mechanisms
An authorisation system plays a monitoring role, judging if the requests sent by an object to another object are
permissible requests. The judgement uses security information based on objects and subjects; where a subject
represents an entity performing or requesting an activity (i.e., an active object playing the client role), while an
object is a passive entity supplying a service (i.e., a passive object or an active object playing the role of server).
Authorisation constraints may be modelled using the access matrix model [12]. In this model the authorisation
rules are described by a bidimensional matrix indexed on subject and objects and access of type t to an object o is
allowed to a subject s when the entry hs,oi of the matrix contains access type t. Such a model can be realized by
capability lists, access control lists, or combinations of these. Examples of constraints suitable to be modelled by
an access matrix are the access modes of the Unix file system, or the Oracle authorisation system.

The access matrix expresses authorisation constraints independent from previous interactions involving other enti-
ties; we call such constraints instantaneous. Obviously by using that model it is impossible to express constraints
whose evaluation involves information about the previously allowed services. We call such constraints history-
dependent. An example of a history-dependent constraint is: an object o1 can access a reserved document d
handled by another object o2 only if o1 has received the authorisation to read the document by its author, the
object o2. In the literature, similar situations are modelled by using history-dependent access control mechanisms
(see for example [4, 11]).

2.2 Background on Reflection
Computational reflection, or just reflection, is defined as the activity performed by an agent when doing com-
putations about itself [13]. A reflective system is logically structured into two or more levels, which constitute a
reflective tower. Entities working in the base level, called base-entities or reflective entities, define the basic system
behaviour. Entities working in the other levels (meta-levels), called meta-entities, perform the reflective actions
and define further characteristics beyond the application-dependent system behaviour. Each level is causally con-
nected to adjacent levels, i.e., entities belonging to a level maintain data structures representing (or, in reflection
parlance, reifying) the states and the structures of the entities in the level below. Any change in the state or structure
of an entity is reflected in the data structures reifying it, and any modification to such data structures affects the
entity’s state, structure and behaviour. Computational reflection allows adding properties and functionality to the
application in a transparent manner (separation of concerns) [18]. For a classification and comparison of classic
approaches to reflection see [6].

2.3 Channel Reification Model
This model [1] is an extension of the message reification model, aimed to overcome some of its limitations, while
keeping its advantages. Channel reification is based on the following idea: a method call is considered as a message
sent through a logical channel established between an object requiring a service, and another object providing such
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Figure 1: Channel reification model scheme

a service. This logical channel is reified into an object called channel (as shown in figure 1). A channel is
characterised by a triple composed by the objects it connects and by the kind of meta-computation it performs.

channel � (client, server, channel_kind)

A channel kind identifies the meta-behaviour provided by the channel. In a typed object-oriented language the kind
is also the type of the channel class. The kind is used to distinguish the reflective activity to be performed: several
channels (distinguishable by the kind) can be established between the same pair of objects at the same moment.
The lack of information continuity of message reification is eliminated by making channels persist after each meta-
computation. A channel is reused when a communication characterised by the same triple is generated. In this
way, meta-entities are created only once (when they are activated for the first time), and reused whenever possible.
When an object is destroyed, all channels established fromjto it are also destroyed. This lifecycle limits channel
proliferation, since a garbage collector erases dangling channels.

Each service request is trapped (shift-up action) by the channel of the specified kind connecting client and server
objects (if it exists); otherwise, such a channel is created. In either case, the channel then performs its meta-
computation and transmits the service request to the supplier. The server’s answer is collected and returned to the
requesting object (shift-down action).

3 History-Dependent Constraints
We concentrate here on validation of method calls (also termed service requests) from one object to another. With
this restriction we do not lose generality, because each access request can be interpreted as a method call. We use
the symbols

o1Io2[ m( args ) ]

to indicate a request (both before and after the validation phase depending on the context) from the object o1 to the
object o2 for the method m with arguments args. A generic request is indicated by δi and the set of all possible
requests is ∆.

Definition 3.1 (History of system interactions at time i)
The history of system interactions at time i is the sequence of all services authorised before time i. The history
sequence is partially ordered by the occurrence relation.
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We adopt a history concept similar to the one in [9], tied to event occurrences, and not related to absolute time.
Each event δi � o1Io2[ m( args ) ] is an authorised service. From the definition 3.1 a history ~ can be seen as a
path of consequent events (δi)

~� σ0
δ1
Þ σ1

δ2
Þ σ2 � � �σk�1

δk
Þ σk

which leads the system from a state (e.g., σ0) into another (e.g., σk); all the other σi are intermediate states. From
the access control point of view the only significant information are the allowed services and not the intermediate
states. Of course, the paths leading to a certain state are not unique and they depend on the order in which events
occur. The interactions of a system are then modelled as a set of paths, i.e., a graph, whose paths are equivalent to
the ones considered in branching temporal logic [17].
Due to the similitude with the branching temporal logic model, the constraints for the authorisation of a service
can be expressed using the connectives of that logic; in particular only a subset of them is necessary, containing
connectives related to the past (i.e., so far �p , once �p , since S , before �p ) and connectives that bind a formula
to a path (

`
, and

a
). Thus, each constraint for the authorisation of the service δ is expressed by a formula Γ, and

we denote it by
Γ ) δ

which means that δ is allowed only if Γ is satisfied.
Due to the nature of the constraints we need to express, all the formulas are anchored to the current state σ0 of the
system, and have to be satisfied for all branches leading to the current state σ0; thus each generic formula is written

i
(σ0; Γ)) δ:

In what follows, for conciseness we omit the anchor and the constraints simply become Γ ) δ.
Instantaneous constraints are special cases of history-dependent constraints and in order to use a unique formalism
they are expressed using formulas with always true premises:

true) δ:

It is important to note that the set of paths includesjdescribes the whole system history from the point of view of
the allowed services. In this way, it is simple to add, remove or modify constraints. History contents does not
depend on what constraints have to evaluate, to forbid or to monitor.
In appendix A we explain in more detail history and constraint semantics.

3.1 Example of Use of Temporal Constraints
The authorisation system for this example considers a bank and its ATM network, so the objects involved are:
clients, banks, ATMs, and bank employees (bank VPs, accountants, and other employees).

Supply on Request
Only bank account holders can draw from the bank ATM. This fact can be expressed as: the client can obtain
money only if is an account holder in that bank and asks to draw money from the ATM.

�p hλx:x = ClientIATM[ drawing( sum ) ]^ isAccountHolder(Bank, Client)i)ATMIBank[ drawing( Client, sum ) ]

for all clients, and amounts. Of course we also have to check if his account has money before allowing the draw-
ing; in this example we do not consider this aspect because it does not add new elements to the explanation.

Resource Lock
An account holder cannot draw more than $1,000 within a month. As soon as he exceeds that limit no further
drawings are possible.

:hλx:x = (ClientIATM[ drawing( p1 ) ]^ (p1 > $1;000))i S hλx:x = ATMIATM[ month_end ]i)ClientIATM[ drawing( p ) ]

for all clients and amounts p, and p1.
The above constraint means (Fig. 2) that the client, in order to obtain some amount of money must not have ex-
ceeded the $1,000 limit since the end of last month.

Avoiding Information Smuggling
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Figure 2: Explanation for constraint

In a bank, some roles, e.g., accountants, receive private information such as salaries, from different employees.
In this case, information about a person should not be disclosed to other persons, e.g., the salary of the bank VP
should not be shown to other employees.

�p:(9BVP2Bank VP:hλx:x = BVPIAccountant[ inform( p ) ]^p = p2 i))AccountantIEmployee[ inform( p2 ) ]

for all bank VPs, employees, and accountants.

Note that in some examples we use predicates, such as > and =, expressed in their infix form. These examples
show only a few of the possible situations of interest but give an idea of the application of this policy.

4 The Reflective Approach
How to use reflective features in order to model role-based access control mechanisms have been studied in [2, 3,
14]. Reflection allows the separation of nonfunctional from functional code, organizing the access control policy
in a specific meta-level connected to the rest of the application by the causal connection relation. In general, access
control is enforced at the object communication level; for this reason communications-oriented reflective models
(such as the channel reification approach) are more suitable to model them than meta-object oriented models [6].
The main advantages of using a communications-oriented reflective approach is represented by the fact that a
malicious request cannot reach the server, because it is trapped by the meta-entity, which validates the request.
Those results has been determined for role-based access control mechanisms, but they can be also applied to
history-based access control mechanisms.
Modeling a history-based control policy using the channel reification model is based on associating a channel to
each communication between two objects (as in Fig. 3). Channels trap each request before it reaches the called
object (see Section 5.1 to get a better understanding of the shift-up mechanism). Once the action is trapped, the
channel looks up the system constraints and the history in order to validate the request. When the request is
validated, the channel either signals to the caller that the service is forbidden or lets the callee perform the request
(see the sequence diagram of Fig. 4 for more details of the validation phase; the diagram is based on the bank
example: supply on request and the service is allowed). The history is built from allowed requests, and each
channel contributes to its construction with their set of allowed requests. We can keep system history in two ways:
centralized or decentralized. In a large distributed system it is hard and inefficient to keep the history centralized,
because it is necessary to charge an entity (history holder) with this task. The history holder has to communicate
with all channels in order to collect all history fragments and in order to supply them histories, that they will use to
evaluate the constraints before allowing a service to be accessed. This behavior increases the overhead due to the
objects’ communication, but it guarantees history consistence. History decentralization is achieved by charging
each channel with the task of holding the part of history managed by it. In this way the bottleneck represented
by a centralized history holder is avoided, but when a channel has to evaluate a history-based constraint, it has to
complete the information it holds with the part of history, necessary in the evaluation, held by other channels, so
there are communications only when needed and rarely with the same entity.

5 Implementation
We are currently developing a Java prototype for this mechanism, where we use implementation ideas from an
earlier prototype [3] (available from http://www.disi.unige.it/person/CazzolaW/OORSecurity.html).
In this section we present channel class ValidationChannel, which is the kernel of the mechanism which realizes
the history-based access validation policy.
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Figure 4: Sequence diagram for the validation mechanism

In the case of reflective history-dependent access control we have only one kind of channel: ValidationChannel.
Channels of that kind are established between two object and they check if any request exchanged between their
referents can be allowed. Two phases can be identified in the execution of ValidationChannel:

� initialization: at channel bootstrap, the channel loads the constraints related to the services offered by its
referent (the one playing the role of server), merging together the constraints related to a unique request (re-
membering that a service can be allowed only if all its constraints are satisfied, and if (Γ1 ) δ)^(Γ2 ) δ)�
Γ1^Γ2 ) δ we substitute each group of constraints related to a unique request with a formula which joins
all the premises);

� validation: each channel spends most of its lifecycle waiting for a request and validating it; each request is
trapped during the shift-up action (Section 5.1), and the meta-behavior method handles the constraints
validation;

Each channel has a method called meta-behavior which is automatically invoked during the shift-up. In the
case of the ValidationChannel it performs the following steps:

� the first step consists of reassembling the historical environment in which the constraint will be evaluated:
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– it consults its constraint database (built during the initialization phase) looking for the constraints re-
lated to the request it must validate;

– once it retrieves the constraints to evaluate, it scans them in order to determine the previously requests
because it must know if they are allowed or not;

– from the previously retrieved information it goes back to those channels that have the missing part of
the history, needed for the evaluation;

– it asks the involved channels the missing part of the history, and it reassembles all histories into a
unique history (see Section 5.2);

� when it has rebuilt the historical environment it begins the evaluation of constraints (see Section 5.3);

� when it has evaluated the constraints, if the request must be rejected, the channel indicates this to the client,
otherwise it stores the request in the history as ‘allowed’.

In the following we explain in more detail some aspects of the validation: how the reflective behavior is realized,
history management, and the constraints evaluation routine.

5.1 Shift-Up, -Down Mechanisms

Inner Layer

Central Layer

Outer Layer

channel

2

3

1

4

Client

Server

Figure 5: Shift-up, and -down mechanism

Due to the global view property (see [6]) of the channel reification model, each reflective action starts from the client
and involves a client, a server, and a channel in its execution. The reflective behavior is achieved by overriding
the normal behavior of the bindingjlook-up between the client and the server, and the remote method invocation in
order to divert the request from the server to the channel. The client is composed of three layers (see Fig. 5). The
inner layer supplies the operations necessary to connect and to communicate with the server in a normal context.
The central layer encapsulates all operations of the inner layer and uses them to connect and to communicate with
the right channel, realizing the shift-up,-down actions. The outer layer defines the behavior of the client.
The server code remains unchanged. There is no need to wrap it because the server receives requests that have
been previously filtered by the channels, it cannot be accessed directly by the clients. When a client issues a
request, the control is dispatched to the central layer of the client (step ¶ in Fig. 5) which determines the right
Validation channel to be invoked on the basis of the identity of the objects involved in the request. The request is
then forwarded to the channel while the client idles until a reply is sent back to it (step · in Fig. 5). The channel
validates the request and, if legal, forwards it to the server (step ¸ in Fig. 5). When the channel receives the
reply from the server, it forwards it back to the client (step ¹ in Fig. 5). The server is unaware of the validation
process: it executes only filtered requests, achieving in this way a good separation of concerns and implementation
modularity.
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5.2 History: Data Structures and Management
We chose to decentralize the history, entrusting each channel with the management of its own history fragment.
In this way we reduce the overhead due to unnecessary communications, although it makes more complex to
determine the historical environment in which to evaluate each constraint (see Section 5.3 for more details).
From definition 3.1, a history is an ordered sequence of allowed requests. An allowed request is a pair (δ; i),
where δ is the request and i is the time in which that request was allowed. Time is an integer count increased at
any allowed request. Of course, the time count in the system has to be unique and increase consistently with the
order in which the requests have been allowed, but it is not a problem to build a server offering this service to the
channels. Each history fragment is a list of allowed requests, ordered with respect to the time index, and it is stored
into a channel attribute. History management consists of two actions: the first (addToHistory()), simply adds an
allowed request to the history kept by the channel, the second (mergeHistory()) merges two histories, one passed
as parameter to the one kept by the channel, keeping the event order. The merge routine is a normal merging of
two ordered lists and can be performed, in the worst case, in linear-time.

Besides these actions which manipulate directly the history fragment kept by a channel, we also need a method
(supplyHistory()) which returns the history fragment kept by the channel invoking this method. This method
is remotely invoked by another channel when it tries to complete the historical environment, before starting the
constraint evaluation. An improvement to the history management routines consists of keeping an incremental
history. Each channel keeps its history fragment merged together with the history fragments obtained from other
channels and related to entities different from its referents, and when it needs to complete the historical environment
it asks the other channels only an updating of its information and not their complete history. In this way we speed-
up the merging routine and, above all, we reduce the communication time needed to receive the complete history
kept by another channel.

5.3 The evalConstraint Function
In spite of Java support of unicode we prefer to express constraints without using special symbols. Thus
hλx:Γ(x)i becomes onlabel x Γ(x), �p Γ becomes sofar Γ, �p Γ becomes before Γ, �p Γ becomes once
Γ, :Γ becomes not Γ, and so on. As an example, the formula presented earlier becomes:

sofar not exists BVP in Bank VP (onlabel x (x=BVPIAccountant[ inform( p1 ) ] and (p=p1)))
(5.3.1)

Evaluation of constraints is the main function of the ValidationChannel, its routine (evalConstraint) de-
pends on how the constraints are coded. We chose to encode each constraint as a binary tree. Each tree node is
a connective and its children are the connective operands. Figure 6 shows the tree obtained from the constraint
above. It should be noted that the leaves of the tree are labeled by predicates or by service requests (each request
is denoted by the symbol I).

x and

p = p 1

exists

sofar not

onlabelBVP in Bank VP

BVP     Accountant[inform(p )]1

Figure 6: Constraint tree for formula 5.3.1
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time BVPDonChAccJane BVPDonnaChAccJane

1 BVPDonnaIAccJane[ inform( "John salary is $500" ) ]
5 BVPDonnaIAccJane[ inform( "Donna salary is $1,200" ) ]
7 BVPDonIAccJane[ promote( "Joe" ) ]
12 BVPDonnaIAccJane[ public_inform( "deduction on John salary 20%" ) ]
20 BVPDonIAccJane[ inform( "Joe salary is $800" ) ]
22 BVPDonIAccJane[ public_inform( "deduction on Joe salary 20%" ) ]

Table 1: History example

The evaluation consists of traversing the tree for evaluating subexpressions, and associating with the root a boolean
value depending on the values of its subtrees. The evaluation of first-order logic connectives, such as and, and
or, is simple and well-known in the literature, thus we do not discuss it. More complex and less known is the
evaluation of the temporal connectives. Obviously, temporal connectives, in order to be evaluated, need a temporal
anchor. The temporal anchor is an integer representing the time at which we perform the evaluation. The first step
performed by evalConstraint is to retrieve the current time and to use it as an anchor. The evalConstraint
applied to service requests checks if the request belongs to the history, i.e., if it occurred at the time specified by
the anchor. In order to handle the evaluation of nested temporal subformulas we detach evalConstraint from
the current time, but we make it parametric on the temporal anchor. In this way it is possible to recursively call
evalConstraint in order to evaluate the constraint subformulas simply updating the anchor in agreement with
the kind of the connective and with the fact that each subformula has to be true in a moment previous or equal to
the one in which the formula has to be true.
In order to simplify the evaluation algorithm we have analyzed the constraint typology, and from that analysis we
determined that all the history-dependent constraints we consider express only punctual temporal properties (as in
the step before event ϕ has occurred, or once event ϕ has occurred), or continuously negative properties (as so far
event ϕ never occurred, or event ϕ2 never occurred since event ϕ1 occurred). Thus it is possible to merge sofar,
and since evaluation with the corresponding not connective evaluation making easier their evaluation simply
looking for the subformula occurrence of the other connectives.
Predicates and onlabel, onstate connectives evaluation is directly linked to the system history and state.
The evaluation of all temporal connectives consists of modifying the temporal anchor in agreement with the con-
nective kind, and to apply evalConstraint to the connective operands with the new temporal anchor. We do
not apply the evaluation when we reach a leaf of the tree, in that case we have to consult the history. Thus in
the before case (the simplest) we delay by one the temporal anchor and we evaluate its operand; in the sofar
not, and once cases we loop on the operand evaluation delaying by one the temporal anchor until the operand
evaluation is true (in the case of sofar not the routine returns false instead of true). In the since not case we
delay by one the temporal anchor and we loop on the second operand until the evaluation becomes true. In this
way a new temporal anchor is determined and after we evaluate the first operand on the interval delimited by the
new temporal anchor and the initial temporal anchor in order to check if it is always false. In that case the since
evaluation is true otherwise it is false.
Now, we explain the evalConstraint by an example. Accountants play a very particular role. There is informa-
tion that they share with bank VPs, but that they cannot share with the other employees (such as the employees’
salary). In order to avoid information smuggling through the accountant, the validation system has to verify the
source of each information which the accountant passes to each employee. The constraint (or better the constraint
family) implementing this behavior is represented by formula 5.3.1. Let us consider the situation in which there are
an accountant (Jane), two bank VPs (Don, and Donna), and an employee (Joe), and the history kept by each chan-
nel (the one established between the two bank VPs and the accountant, BVPDonChAccJane, and BVPDon-
naChAccJane respectively) is shown in table 1. When Jane wants to communicate with Joe, e.g, by perform-
ing the request AccJaneIEmpJoe[ inform( "your salary is $800" ) ], the validation system, in order to
validate the request, has to evaluate formula 5.3.1. The historical environment in which AccJaneChEmpJoe
evaluates the constraint is represented by the fusion of the second and the third columns of table 1 and the current
time is 25. The evalConstraint starts evaluating the connectives sofar not; its evaluation consists of search-
ing an instant in which a bank VP exists which satisfies onlabel x (x=BVPIAccountant[ inform( p1 ) ]
and (p=p1). It starts to search from 25, and delays by one until it reaches time 20, which satisfies the subformula
BVPIAccountant[ inform( p1 ) ]. Then it tries to match1 the information Jane obtained from Don with the
information Jane wants to pass to Joe, failing. Then it continues to search until reaching time 1. Thus that operand
is not matched and Jane can pass that information to Joe. In the case when the information source was a bank VP,

1In this example we handle only a simple way of smuggling information through exact match, it is possible to use more complex matchings
through predicates.
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one of the matches shouldn’t fail, and the channel would communicate to Jane the rejection of her request.

6 Modeling Chinese Walls
The Chinese Wall policy [5] arises in the financial segment of the commercial sector which provides consulting
services to other companies. The Chinese Wall is a history-dependent policy whose objective is to prevent in-
formation flows which cause conflict of interest for individual consultants. In this section we briefly present the
Chinese Wall policy and show how to model its behavior using temporal logic constraints.
We have information about different entities (e.g., about rival companies) which can be accessed only in mutually
exclusive manner from any subject. The Chinese Wall policy categorizes such entities into mutually disjoint con-
flict of interest classes. Entities in conflict belong to the same class, and each subject can only access information
about a single entity per each conflict of interest class. As stressed in [15] the Brewer-Nash model this behavior
can be expressed by the following mandatory rules.

¶ Brewer-Nash Read Rule: subject S can read object O only if

� O belongs to the same entity as some objects previously read by S (i.e., O is within the wall), or

� O belongs to a class of interest within which S has not read any object (i.e., O is outside the wall).

· Brewer-Nash Write Rule: subject S can write object O only if

� S can read O by Brewer-Nash read rule, and

� no object can be read which belongs to a different entity of the one for which write access is requested.

The Brewer-Nash Read Rule conveys the dynamic aspects of the Chinese Wall policy. The Brewer-Nash Write
Rule is brought in to prevent subjects with Trojan horses from breaking the Chinese Walls.
In order to model the Chinese Wall policy by using temporal logic constraints we have to slightly modify some
concepts. The only kind of access we consider are requests for services (i.e., method calls), thus we lose the
distinction between write and read access, and the two Brewer-Nash rules are naturally merged. Let us consider
the entities working in the system partitioned into two sets: Clients, and Servers, with the obvious meaning;

COI = {COI1, . . . , COIn}, and
nS

i=1
COIi = Servers

where each COIi represents a conflict of interest class. Thus the Brewer-Nash rules become:

� when C2CLIENTS asks for a service from S2COIi, that service is allowed if C already asked a service from
S, or C never asked a service from an entity belonging to COIi, but different from S.

This rule is expressed by the following constraint:

9m1:�p hλx:x = CIS[ m1 ]i_
�

S 2COIi^
�
8S1 2COIi^S1 6= S: 6 9m1:

�
�p hλx:x = CIS1[ m1 ]i

���
)CIS[ m ]

This simple constraint realizes the Chinese Wall policy and it avoids information smuggling among entities be-
longing to the same conflict of interest class.

7 Related and Future Works
Escort and its path-based security architecture [16] have inspired our work. In Escort each module communicates
with another module only through a special module, called a filter. Filters implement access control policies. A
path is represented by the communications performed in order to complete the initial request. Each path can be
interpreted as the history of a service execution. We abstracted filter and path mechanisms by mapping them, into
channels and into history, respectively, in order to add flexibility (using reflection we can dynamically reconfigure
the access control protocol, substituting any part: constraints set, policy realized, and so on), and to free the idea
from the operating system context applying it to any system (separation of concerns, typical reflective feature,
makes easier to separate the security mechanism from the rest of the application).

In [3] and in [14] reflective access control mechanisms have been proposed. In both cases they enforce role-based
access control policies, realizing some advantages (listed in Section 4) due to the application of the reflective
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approach. Of this two papers, only [3] uses a communication-oriented reflective approach. The possibility of dy-
namically adapting and reconfiguring security modules through reflection has been analyzed in [19]. All the results
determined in these works have been used in the current paper, adapting them to the context of history-dependent
access control policies.

In the future, we intend to change the mechanism (see Section 5.2) used by each channel to retrieve and to re-
build the history before each constraint evaluation, from on-demand to progressive. For example, we have noted
while preparing this paper, that it is possible to determine at compile-, or bootstrapping-time which channels need
to know the history fragment built by each channel (it is enough to scan the complete constraints set, tracing all
services which, to be allowed, need that history fragment), and using that information, each history change is prop-
agated to those channels. In this way, we should achieve a performance improvement, because in the evaluation
phase we avoid the overhead due to historical environment rebuilding, and history updating can be done during the
channels’ idle periods.

An open issue of this approach is represented by the system’s history uncontrolled growth. In non-stopping or
persistent systems, the history can always be useful, thus it cannot be deleted, and its dimension can become in-
tractable. In order to avoid such a situation, it is necessary to find some deletion rules which permit to eliminate
old, and hopefully, useless fragments of history.

We think that our realization of history-dependent access control through reflection is very flexible and adaptable to
other history-dependent access control models. In order to prove this statement, in addition to modeling the Chinese
Wall policy (see Sect. 6), we are planning to adapt it to history-dependent policies based on order logic instead of
temporal logic (such as in [4]). This adaptation can be made simply by changing the constraints evaluation module
in order to cover history intervals instead of history moments.

8 Conclusion
Using computational reflection we can separate the authorisation control mechanism from the application. This
separation has the significant advantage of reducing the number of access-points of the security module to one (the
shift-up action), making easier to protect it from malicious intrusions and attacks from the base-level or from other
processes. A simple protection mechanism for the shift-up action could consist in executing the meta-level in a
different address space as an independent process, communicating with the base-level via a mechanism similar to
the local procedure calls (LPC) of Windows NT [8]. LPC is a locally optimized form of the well known mechanism
of remote procedure call (RPC) of Unix and other systems: LPC is a message-passing mechanism through which
clients make requests to servers and it is also used for the server’s reply. The main necessary feature of the LPC
mechanism is the protection domain installed around an LPC call.

Reflection offers several advantages when used to model authorisation mechanisms. Its main advantages are sepa-
ration of concerns, transparency and modularity. Due to transparency, each communication is implicitly reified by
a ValidationChannel, and it is validated before the related service is allowed. This behavior protects the system
against external and internal attacks. Moreover, due to separation of concerns and modularity, the authorisation
mechanisms can be designed within the application from early development stages, while maintaining them sepa-
rate both from the logical and implementative point of view. This fact improves reusability of both functional and
authorisation software and supports an independent testing of both.

Obviously, there are also drawbacks: one is a reduced execution efficiency: flexibility costs in efficiency. A second
problem is represented by the protection mechanism around the authorisation layer (meta-level). Running it in a
different address space may make programs too inefficient for most applications. Thus, more efficient protection
mechanisms, not performing a complete context switching, should be designed. Hardware capability systems
appear promising for this purpose.
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A Constraints Semantics
The historical evolution of the system authorisation can be modeled by a dynamic algebra HDA on the dynamic
signature2

HDΣ = (Sorts; Operations; Predicates)

where

� Objects; fMethodsg; Args� Sorts; Objects, and Args are classes of sorts, respectively, for the entities
involved in the requests and for the arguments passed in the requests; Methods describes the services
offered;

� History 2 Sorts is a dynamic sort, its elements are denoted by σ1;σ2;σ3; : : :, and lab(History)� ∆;

� In Operations there are only zerary operators representing the elements of the sorts;

� f_I_[ _( _ ) ] : O1�O2�Methods�Ag�Predicates, for all O1; O2 2Objects and for all A2Args

then, the triple HLT S = (History;∆;Þ) is a labeled transition system3.
The different possible evolutions of the dynamic elements are represented by the maximal sequences of states and
labels of the form

� � �σ�2
δ
�2
Þ HDA

σ�1
δ
�1
Þ HDA

σ0

PATH(HDA; History ) is the set of all sequences having either of the two forms below:

� � � �σ�4δ�4σ�3δ�3σ�2δ�2σ�1δ�1σ0 (infinite path)

� σ�kδ�kσ�(k�1)δ�(k�1)σ�(k�2)δ�(k�2) � � �σ�1δ�1σ0 k � 0 (finite path)

where for all i 2 Z� σi 2 (HDA )History ; δi 2 (HDA )lab(History) and (σi; δi; σi+1 ) 2 ÞHDA
, and in the case of finite

path there are no σ;δ such that (σ; δ; σ�k ) 2 ÞHDA
. For each path ρ

� σ(ρ) denotes the last state of ρ : σ0

� δ(ρ) denotes the last label of ρ : δ�1, if it exists

� ρjn denotes the path � � �σn�3δn�3σn�2δn�2σn�1δn�1σn if it exists

2In accordance with [7] a dynamic signature DΣ is a pair (Σ; DS) where:

� Σ = (Sorts; Operations; Predicates) is a predicate signature,

� DS � Sorts (the elements in DS are the dynamic sorts, ie., the sorts of dynamic elements),

� for all ds 2DS there exists a sort lab(ds) 2 SortsrDS and a predicate symbols Þ : ds�lab(ds)�ds 2 Predicates.

A dynamic algebra on DΣ is just a Σ-algebra; the term algebra TDΣ (X ) is just TΣ (X )
3A labeled transition system is a triple

LT S � (States;Labels;Þ)

where States is the set of intermediate states on which the system can evolve, Labels is the set of labels describing the possible state transitions,
and Þ : States�Labels! States is a function describing the system evolution.
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In our concern, the relevant information of the LTS are the labels. Each path ρjlab(History)
, obtained from ρ consid-

ering only the labels, is equivalent to a system history ~.
Each constraint is expressed by a formula on the system evolution such as

Γ ) δ

where Γ is a first-order branching temporal logic [17] formula, which evaluation can involve the history of system
interactions and δ is a request which authorisation depends on the evaluation of the constraint Γ.
Due to the nature of the constraints (i.e., related to events yet occurred) we have to express, they can be expressed
by using only connectives in the past; thus the formulas’ syntax will be expressed by:

DF ::= P
�
�
�∆

�
�
�:DF

�
�
�DF1^DF2

�
�
�DF1_DF2

�
�
�8x:DF(x)

�
�
�9x:DF(x)

�
�
�
i

( t; PF)
�
�
�
`

( t; PF)

PF ::= :PF
�
�
�PF1^PF2

�
�
�PF1_PF2

�
�
�8x:PF(x)

�
�
�9x:PF(x)

�
�
� [λx:DF(x) ]

�
�
� hλx:DF(x)i

�
�
��p PF

�
�
��p PF

�
�
��p PF

�
�
�PF1 S PF2

where DF, PF describe, respectively, dynamic, and path formulas, P represents boolean predicates, ∆ represents
the requests, and t is a term belonging to HDΣ.
We adopt the following interpretation for dynamic (ϕi) and path formulas (πi) in the DΣ-algebra HDA. V : X !
HDA is a variable evaluation.

dynamic formulas

HDA;V j= P( t1; :::; tn ) iff
�

t
HDA ;V
1 ; :::; t

HDA ;V
n

�
2 PHDA

HDA;V j= :ϕ iff HDA;V 6j= ϕ

HDA;V j= ϕ1 ^ϕ2 iff HDA;V j= ϕ1 and HDA;V j= ϕ2

HDA;V j= 8x:ϕ iff for all v 2 HDAsrt ;

with srt sort of x;HDA;V [v=x] j= ϕ

HDA;V j=
i

( t; π) iff tHDA ;V is defined and for all

ρ 2 PATH(HDA; History ) ;

with History sort of t;

if σ(ρ) = tHDA ;V then HDA; ρ;V j= π

path formulas

HDA; ρ;V j= [λx:ϕ ] iff HDA;V [σ(ρ)=x] j= ϕ

HDA; ρ;V j= hλx:ϕi iff either HDA;V [δ(ρ)=x] j= ϕ

or δ(ρ) is not defined

HDA; ρ;V j= :π iff HDA; ρ;V 6j= π

HDA; ρ;V j= π1 ^π2 iff HDA; ρ;V j= π1 and HDA; ρ;V j= π2

HDA; ρ;V j= 8x:π iff for all v 2 HDAsrt ; with srt sort of x;

HDA; ρ;V [v=x] j= π

HDA; ρ;V j= �p π iff exists j such that ρj j is defined, HDA; ρj j ;V j= π

HDA; ρ;V j= �p π iff either ρj�1 is not defined, or HDA; ρj�1 ;V j= π

HDA; ρ;V j= π1 S π2 iff exists j such that ρj j is defined;

HDA; ρj j ;V j= π2 and for all h such that j < h;

and ρjh is defined HDA; ρjh ;V j= π1

The remaining connectives are defined by ϕ1_ϕ2
def.
= :(:ϕ1^:ϕ2 ), 9x:ϕ def.

= :8x::ϕ;
`
( t; π)

def.
= :

a
( t; :π),

and �p π
def.
= :�p:π.

Requests’ validity implies determining predicates’ validity and corresponds to determining their belonging to the
history of the system.
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