
Sectional Domain Specific Languages

Walter Cazzola
DICo, University of Milano, Italy

cazzola@dico.unimi.it

Ivan Speziale
DICo, University of Milano, Italy

ivan.speziale@studenti.unimi.it

ABSTRACT
Nowadays, many problems are solved by using a domain specific
language (DSL), i.e., a programming language tailored to work on
a particular application domain. Normally, a new DSL is designed
and implemented from scratch requiring a long time-to-market due
to implementation and testing issues. Whereas when the DSL sim-
ply extends another language it is realized as a source-to-source
transformation or as an external library with limited flexibility.

The Hive framework is developed with the intent of overcoming
these issues by providing a mechanism to compose different pro-
gramming features together forming a new DSL, what we call a
sectional DSL. The support (both at compiler and interpreter level)
of each feature is separately described and easily composed with
the others. This approach is quite flexible and permits to build up a
new DSL from scratch or simplifying an existing language without
penalties. Moreover, it has the desirable side-effect that each DSL
can be extended at any time potentially also at run-time.

Categories and Subject Descriptors: D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Processors—Compiler Generators.

General Terms: Languages.

Keywords: DSL, Compilers, AOSD, Modularity.

1. INTRODUCTION
DSLs are used to solve several problems, such as typesetting

documents and code (TEX/LATEX, lout, . . .), to express and verify
constraints in several domains (OCL, iLOG CP, C4J, . . .) and to
coordinate the computation and/or to data query (Linda, SQL, . . .).

In some cases, these are simply a bunch of programming fea-
tures — useless standalone — embedded in a general purpose pro-
gramming language or provided as external libraries (e.g., Linda
and SQL). More often, they are Turing complete programming lan-
guages devoted to a specific aim (e.g., LATEX). In both cases there
are some issues that hamper their realization/usage: in the latter
case, to implement and test a new DSL requires time and often
it also has a steep learning curve; in the former case the learning
curve is smoother but performances and flexibility are often com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DSAL’09, March 3, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-455-3/09/03 ...$5.00.

promised especially when the DSL is realized as program transfor-
mation towards another high-level programming language. More-
over, in general, it is quite hard to tailor an existing DSL to the
needs of a given problem or to let coexist features coming from
two or more DSL into a single programming language.

Let us consider to need the LATEX’s typesetting capability acces-
sible from our preferred scripting language to improve how matri-
ces and vectors are typeset. Currently, we could follow two ap-
proaches:

1. to generate a complete LATEX program from the normal out-
put, to pass it to the LATEX compiler, to get the result back and
to visualize it as done by the preview-latex1 component of
the AUCTEX emacs plug-in;

2. to develop a new DSL integrating the desired feature in the
original programming language, similarly to how plasTEX2

and PyTEX3 work.
The first approach results easier to use/learn and more transparent
to the user that just need to know the original programming lan-
guage but it is limited to what is provided, — e.g., AUCTEX pre-
views only the formulas. On the other side, the second approach
originates a new DSL that sounds odd to the experts of both lan-
guages without neglecting the time necessary to develop it.

In our view, the observed problems derive from the monolithic
approach adopted to define a programming language and to im-
plement its compiler. Classic approaches [1] to programming lan-
guage definition and to compiler designing are grammar-centric;
grammars are used to describe the syntax of a programming lan-
guage and how a program written in that language should be trans-
lated by the compiler (syntax directed translation). Even if the
compiling process can be modularized the language definition can-
not, this, in our view, is the major obstacle to render a programming
language easily extensible.

In this work, we present our approach, called Hive, to DSL de-
velopment that exploits parsing expression grammars [4] to render
the language definition sectional and extensible and aspect-oriented
technology to support the sectional construction of a compiler by
composing programming features from several languages.

2. HIVE
Our approach to compiler/interpreter building is inspired by Hy-

per/J’s multi-dimensional separation of concerns and basically re-
flects the fact that the DSL has a sectional definition and each lan-
guage feature can be easily plugged and unplugged. A complete
compiler/interpreter built up with Hive is the result of a composi-

1www.gnu.org/software/auctex/manual/preview-latex/
2plastex.sourceforge.net
3www.pytex.org

11

www.gnu.org/software/auctex/manual/preview-latex/
plastex.sourceforge.net
www.pytex.org

tional process involving several building blocks. We call modules
these basic units. Each module encapsulates a specific concern,
such as the syntactical aspect of a loop, and thus is bound to a pre-
cise role, the syntax definition in our example. The role category
determines where a module will be attached to. Roles that are a
sort of dimensions in the Hyper/J parlance, are bound to the phases
of the compilation and interpretation process.

integers

conditionals

loops

pa
rs

in
g

ty
pe

ch
ec

ki
ng

ev
al

ua
ti

on

Figure 1: Sectional DSL

The full definition of a language
construct is the collection of the mod-
ules addressing the roles pertaining to
that construct; in Hive, we call slices
this collection of modules. For in-
stance, the slice regarding a loop may
be composed of modules with a syn-
tactical, a type checking and a evalu-
ation role. In this scenario designing
a domain specific language consists of
defining a set of slices and composing
them together. In Fig. 1 is depicted the
general multi-dimensional structure of

a DSL developed by using Hive, the colored jigsaw pieces are mod-
ules, those in the same row cope to describe the same feature and
are part of the same slice whereas their color specific which role
they play. Not necessarily the number of modules composing each
slice is always the same nor a module for each role must be present
in a slice.

To plug a slice in, we need a mechanism to precisely select the
insertion point inside the compiler/interpreter. The process for se-
lecting these insertion points, or joint points in aspect-oriented par-
lance, is naturally grammar driven: they correspond to the nonter-
minal symbols of the grammar; a grammar that dynamically grows
as new slices are plugged in. In our case the code to be introduced
at the join points, advice in aspect-oriented jargon, participates to
define/implement the compiler/interpreter of the new DSL and con-
sists of the grammar productions (in the syntactic module) with the
related semantic action routines (in the other modules).

The Hive approach to compiler/interpreter building is symmet-
ric [6], i.e., there is not a basic language to modify in order to get
the new DSL rather it is generate by the slices composition. The
composition specification defines the grammar join points and its
advice. A complete compiler/interpreter reifies its grammar join
points, so that it can be subsequently extended with new produc-
tions. A pleasant effect of symmetric composition is that many
slices can be easily reusable by different domain specific languages.
Beyond slices that have a syntactical dimension, there are some
which do not have any. These slices encapsulate those concerns
that could affect all the others crosswise, such as memory or sym-
bol table management. We call these, endemic slices. Conceptually,
we can imagine to project all the slices making up a compiler/in-
terpreter into a bi-dimensional space (see Fig. 1). While slices per-
taining to some constructs of the DSL are placed somewhere inside
the bi-dimensional space, endemic slices slip out (the black jigsaw
pieces in Fig. 1).

Our framework provides multi-dimensional separation of con-
cerns applied to compilers/interpreters. The whole structure of the
compiler/interpreter is the result of the composition of the slices,
each regarding a particular construct of the final DSL. The com-
piler/interpreter can be orthogonally decomposed into a chain of
phases/modules, such as parsing, type checking and so on. Build-
ing from scratch a new DSL consists of selectively reusing only
those slices that best fit to our needs and composing them with the
new ones.

2.1 Hive Vocabulary
Since we are switching DSL construction to an aspect-oriented

approach, we need to show how the new terminology differs from
the classic one.

As introduced before, in Hive, join points correspond to non-
terminals and advice correspond to productions. In Hyper/J sim-
ilar concepts are expressed during concerns mapping and hyper-
modules specification as names and features. In fact, while in the
former we define which code pertains to which features, in the lat-
ter we decide how the code have to be composed.

The main difference between traditional aspects and what in Hive
we call module, is that an aspect requires a base code to be woven
into. Furthermore a module defines only its type, while the way it
gets composed is provided in a later stage. Instead within an as-
pect the programmer has to specify the pointcut, which the advice
is applied to. Actually in our framework we do not have a sophisti-
cated language for expressing join points selection but we demand
this topic for future works. In our context, a join point selection
mechanism should allow a programmer to specify context driven
compositions, such as how to change the meaning of an instruction
depending on which scope it is executed, e.g. in a loop.

The main matching between Hive and Hyper/J is the slice con-
cept. We consider a slice as the collection of those modules with
different roles pertaining to the same construct. Although hyper-
slices allow the encapsulation of more generic features, they share
other peculiarities such as declarative completeness and loosely
coupling between slices.

Orthogonally to the slices we have the dimension; they are a
collection of modules as well but characterized by the fact they
play the same role; each role is a compiler/interpreter phase and
the modules are contributing to the definition of the corresponding
phase. To some extents, dimensions in Hive reassembles dimen-
sions in Hyper/J.

3. FRAMEWORK IN DETAIL
The keys for implementing this approach to compiler/interpreter

engineering are a flexible language for roles definition and a tool
for integrating roles into slices and building up the compiler and/or
interpreter.

3.1 Slices, Modules and Roles Definition
Each slice describing a certain programming feature is defined

as a collection of modules pertaining to that feature; modules are
defined through their role. The role concept plays the glue role in
the slice definition.

slice for {
module for with role syntax;
module generic-loop with role type-checking, evaluation;

}

To separate the module from the slice definition will allow to
have a composition mechanism with a fine granularity — a module
can be used in the definition of several slices and modules from
several slices can be (re)used to define another slice.

At the moment, the Hive framework supports only few dimen-
sions: parsing (role syntax), type checking (role type-checking)
and run-time evaluation (role evaluation); in the future more di-
mensions will be available.

Each dimension is processed by a specific back-end. Modules
pertaining to the parsing dimension cope to form the DSL grammar
and are processed by a parser generator; actually they are backed
by Rats! [5]. Rats! allows a clean and modular grammar definition
exploiting the power of parsing expression grammars (PEGs) [4].

12

PEGs are a recognition-based formalism, explicitly designed for
describing machine oriented syntax. PEGs are close under compo-
sition, intersection and complement. PEGs can be parsed in linear
time by the packrat parser [3]; a packrat parser is essentially a top-
down parser with memoization capability. In broad terms, grammar
manipulation can be brought back to handle methods. An unusual
feature of PEGs is that they are scannerless, thus lexeme specifica-
tion has to be done within the grammar. All those characteristics
motivated our choice.

Inside each dimension it is possible to use some functionality
provided by the corresponding back-end — e.g., the syntax role
allows to use both regular and quoted expressions, such as the term
"for" to identify the homonym keyword in the language. More-
over, data can pass from a dimension to another through attributes
associated to the grammar nonterminals (aka join points) — look
at attributed grammars in [1] for the general idea; the attributes are
defined by the colon (:) operator and accessed through the tilde
(~) operator. The following piece of code shows two modules of
the for slice: the parsing and evaluation dimension; these mod-
ules have four attributes (init, condition, increment and state-

ments) that permits to the code-generator to generate the code for
the source parsed by the parser.

module for {
role(syntax) with assign-stmt, inc-stmt {

statement ^
"for" "("

assign-stmt:init ";"
bool-expression:condition ";"
inc-stmt:increment

")" "{" statement-list:statements "}"
}
role(evaluation) {
~init ; while(~condition) { ~statements ; ~increment ; }

}
}

A module can be derived from or can use other existing modules;
this dependency is described by the with keyword.

The modules with a syntax role will form the syntax of the
DSL when composed. They introduce new productions pivoting
on some common nonterminals, such as statement, stmt-list or
bool-expression or on nonterminals defined (and potentially ex-
ported to other slices) in the inherited slices, e.g., assign-stmt and
inc-stmt. In the above example, the new production describes the
for syntax in terms of bool-expressions and statements and pegs
the new syntax to the statement nonterminal.

The modules with an evaluation role will give a semantics to
the introduced slice, i.e., they teach to the interpreter how to eval-
uate the new syntax. The semantics is given as piece of code with
some attributes (distinguishable by the ~ operator) that need to be
expanded. Since our prototype works on the Java virtual machine
the evaluation code is Java code but nothing prevents from defin-
ing the back-ends in different programming languages.

Endemic slices are somewhat different from normal slices: they
do not introduce linguistic features rather they provide ancillary
stuff crosscutting the implementation of many linguistic features.
The symbol table and the memory management implementation are
typical examples of endemic slices.

To use an endemic slice within a module, it is necessary to list it
in the requirement (with) list of the module and to compose it with
the other slices when we are building up the compiler/interpreter
for the DSL.

Since an endemic slice embeds a crosscutting concern for sev-
eral dimensions, — e.g., the symbol table can be accessed by the
type-checking dimension and by the evaluation dimension — is un-

thinkable to limit its use to only a dimensions. Similarly to the
evaluation code, the ancillary stuff introduced by an endemic slice
is written in Java.

module less-than-expression {
role(syntax) {
bool-expression ^

expression:lvalue "<" expression:rvalue
}
role(type-checking) with symbol-table {
if(! ~lvalue instanceof IntegerLiteral) {

Object o = getSymbol(~lvalue);
if(! o instanceof IntegerLiteral)
throw new RuntimeException();

}
if(! ~rvalue instanceof IntegerLiteral) {

Object o = getSymbol(~rvalue);
if(! o instanceof IntegerLiteral)
throw new RuntimeException();

}
}
role(evaluation) with symbol-table {
Object first, second;
~result = Boolean.FALSE;
if(! ~lvalue instanceof IntegerLiteral)

first = getSymbol(~lvalue);
else first = ~lvalue;
if(! ~rvalue instanceof IntegerLiteral)

second = getSymbol(~rvalue);
else second = ~rvalue;
if(first.compareTo(second) == -1)

~result = Boolean.TRUE;
}

}

The less-than-expression slice embeds the < predicate. It
shows how the evaluation dimension get an explicit return value
to be used in the evaluation of this expression by assigning a value
to the result variable implicitly defined for each slice. In our ex-
ample the value of the expression should be a boolean and it is
set accordingly; its value can be accessed by calling the default
method called getResult(). To achieve a correct composition is
not mandatory to set result, in fact some constructs, such as print
statements, do not need to any return value.

3.2 Composition phase
Composition is basically a two step process driven by a configu-

ration file that permits to identify all the involved slices. The first
composition step affects the composition between modules con-
cerning the same slice, while the second regards slices integration.
During modules composition only dependencies between modules
of the same slice are solved. The composition between slices is
responsible for defining the final grammatical structure.

The whole composition process pivots on the grammar nonter-
minal concept or if you prefer on what we call grammatical join
points. Some remarkable nonterminals — such as declaration,
expression, statement and so on — are given (as empty sets)
and can be used to build up the language from the basics. New
nonterminals can be easily added by definition, as happens in

assign-stmt ^ identifier "=" expression

where assign-stmt is added to the remarkable nonterminals and
can be used in the definition of new slices.

To obtain the desired language structure, it is necessary to enroll
all the necessary remarkable nonterminals by listing them in the
composition file. Moreover we have to list all the slices that will
compose the final DSL; from this list the composition process can

13

determine the whole bunch of nonterminals and which is the gram-
mar structure for the DSL. Similarly it can build up the type system
and the interpreter.

language for-dsl {
nonterminal: bool-expression, stmt-list, statement
slices:
for, assignment, print, symbol-table, increment,
identifier, less-than-expression, integer-literal

}

In the composition file all the pending symbols must be linked,
to obtain the desired grammatical structure. The skeleton is intro-
duced into the composition specification by means of a nonterminal
declaration. Those joint points do not provide any hierarchy, the
association among nonterminals and join points (when it is no the
obvious one) is up to the DSL creator. The key concept towards lan-
guage extension and reuse is that both initial join points and slices
are reified into the resulting compiler/interpreter. For that reason is
possible to augment the DSL by adding some new construct, mod-
ifying or deleting the old ones.

3.3 Reusability and extensibility
To complete the overview of the Hive approach and to give a

glimpse to its merits, we examine the extensibility and reusability
of a DSL developed in Hive.

In the previous pages, we have defined, what we could call the
for-language, a quite trivial DSL with just the sequence, the for
loop (with assignment and auto increment operations), variables
(without declaration), literals and the < operator between expres-
sions. At the moment, integer is the only supported type but it is
quite desirable to have a more complex type system.

Let us suppose to need a for-language with integers and charac-
ters, as the one described by the following grammar (some trivial
productions are omitted for sake of space).

StmtList ::= Stmt ; StmtList | Stmt ;
Stmt ::= for (AssignStmt ; BoolExpr ; IncStmt) { StmtList } |

AssignStmt | print Id | IncStmt
IncStmt ::= Id ++
AssignStmt ::= Id = Expr
Expr ::= BoolExpr | Id | IntLiteral | CharLiteral
BoolExpr ::= Expr < Expr

Since the apparent differences from the for-language are min-
imal should be easy to get its compiler/interpreter from those al-
ready realized. Actually, such a kind of extension affects in several
way a programming language and its compiler/interpreter:

– new literals (the characters) are available;
– the existing constructs must be adapted to support the new

type, e.g., the < operator must compare characters too;
– the type checking phase needs to check if two expressions

are type-compatible and takes some actions (coercion, pro-
motion, to raise an exception, . . .) if not.

As stressed by Bracha [2], to turn on/off or extend a type system
are desirable features but not so easy to realize since they affect the
whole structure of the compiler/interpreter as a pandemic.

Hive thanks to its sectional structure permits to easily replace the
type-system of the whole DSL. To ease the process we introduce a
new endemic slice encapsulating the type-checking policy.

slice type-manager {
role(endemic) {
public Hashtable<Class,Class> CompatibilityTable;
public checkCompatibility(Class, Class) { ... }

}
}

How the type checking is carried out is out of the scope of this
paper; let us simply consider that the type-manager slice provide
the other slices with a checkCompatibility() method.

Given that to adapt the existing less-than slice means simply to
define a new module embedding the type checking for the < opera-
tor which exploits the type-manager slice.

module less-than-polymorphic {
role(type-checking) with type-manager {
if (!checkCompatibility(~lvalue, ~rvalue))
throw new TypeException("Incomparable Types!!!");

}
}

The slice definition for the new polymorphic < operator must be
composed of the modules with the roles syntax and evaluation

previously defined and the module with role type-checking just
defined and the initialization of the type-manager endemic slice.

slice less-than {
module less-than-expression with role syntax, evaluation;
module less-than-polymorphic with role type-checking;
init {
CompatibilityTable = new Hashtable<Class, Class>();
CompatibilityTable.put(int.class, int.class);
CompatibilityTable.put(char.class, char.class);

}
}

From the given initialization integers and characters are not com-
parable elements. Similarly we can easily extends all the available
slices (if necessary) getting the desired DSL.

4. CONCLUSIONS
This work present our initial work on designing (and realizing)

a development framework (a programming language and compil-
er/interpreter generators), named Hive, to support flexible and ex-
tensible DSL design and implementation. The approach has an
aspect-oriented architecture considering the implementation of a
programming feature as a crosscutting concern at compiler/inter-
preter level. The proposed approach has the benefit to permit to
easily define new DSLs as a variant of existing programming lan-
guages by removing or adding slices (our modularity unit for a pro-
gramming feature/crosscutting concern) from/to the existing com-
piler/interpreter. In the future, we intend to deeply work on the slice
definition and composition mechanism and to their impact in soft-
ware evolution and maintenance merging the sectional-compiler
idea with just-in-time compiler technology.

5. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison Wesley, 1986.
[2] G. Bracha. Pluggable Type Systems. In Proc. of Workshop on

Revival of Dynamic Languages, Oct. 2004.
[3] B. Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear

Time. In Proc. of ICFP’02, Pittsburgh, USA, Oct. 2002.
[4] B. Ford. Parsing Expression Grammars: a Recognition-Based

Syntactic Foundation. Proc. of the POPL, pp. 111-122. 2004.
[5] R. Grimm. Better Extensibility through Modular Syntax. In

Proc. of PLDI’06, pp. 38–51, Ottawa, Canada, June 2006.
[6] W. Harrison, H. Ossher, and P. Tarr. Asymmetrically vs. Sym-

metrically Organized Paradigms for Software Composition.
Technical Report RC22685 (W0212-147), IBM, Dec. 2002.

14

	1 Introduction
	2 Hive
	2.1 Hive Vocabulary

	3 Framework in detail
	3.1 Slices, Modules and Roles Definition
	3.2 Composition phase
	3.3 Reusability and extensibility

	4 Conclusions
	5 References

