
APPROACHES TO DESIGNING COMPLEX
DEPENDABLE SYSTEMS

Andrea Clematis �;1, Vittoria Gianuzzi ��,
Alexander Romanovsky ���, Andy M. Tyrrell ����,

Walter Cazzola y

� IMA - CNR, Via De Marini, 6 - 16149, Genova, Italy
�� DISI, Universit�a, Via Dodecaneso, 35 - 16146, Genova, Italy

���Dept. of Computing Science - University, Newcastle upon
Tyne, NE1 7RU, UK

����Dept. of Electronics - University, Heslington, York, YO1
5DD, UK

yDSI Universit�a di Milano, Via Comelico39/41, 20135 Milano,
Italy

AbstractThe problem of designing complex dependable systems is addressed in this
paper. Due to some peculiarities of their application and behavior these are often
referred to as reactive systems. Two main paradigms for their design have recently
been proposed; we name these paradigms living processes and hidden concurrency,
depending on their approach to concurrency handling. The analysis of application
requirements and constraints is proposed as a methodology for selecting the most
suitable implementation paradigm for a given application. Finally, it is shown that in
some cases an intermediate paradigm may provide a suitable solution.

Keywords: Fault-tolerant software, Distributed computer control systems,
Programming approaches.

1. INTRODUCTION

Computer based systems are used in a wide range
of applications including such di�erent �elds as
automatic banking, factory automation, power
plant control, and y-by-wire systems. There are
a lot of di�erences between all these applications,
and each has its own speci�c requirements; never-
theless, it is possible to �nd important character-
istics common for all these systems.

One common property is that all of them are
intended to guarantee the correct functionality of
the controlled equipment. The equipment works

1 This work has been partially supported by a grant of
Italian MURST and British Council (Investigation of Fault
Tolerant Mechanism for Parallel Systems in Real Time
Applications).

correctly if it is able to deliver the expected service
by properly interacting with the external world.
For this reason, the term reactive, or event driven
systems, is often used.

Another common characteristic is the complexity
of the system. Their design and implementation
are never trivial and in some cases are highly com-
plex. One of the main reasons for this complexity
is the concurrent nature of reactive systems, i.e.
the necessity of keeping track and coordinating
two or more concurrent activities.

Yet another common aspect is the general require-
ment of high dependability, which may involve the
use of di�erent types of fault tolerant strategies.

In the past years these systems have been ex-
tensively considered, and various programming

methodologies have been proposed to design and
implement them. These programming methodolo-
gies take into account the fact that reactive sys-
tems are concurrent and fault tolerant programs.
Fault tolerance is achieved through the use of
some form of fault tolerant action which is in-
tended to enhance the system dependability. Spe-
cial techniques like software diversity (Avizienis
and Kelly, August 1984) are used if a very high
level of reliability is required.

The number of di�erent programming method-
ologies proposed to implement dependable reac-
tive systems is quite high, and in some cases the
decision about what is the best choice may be a
di�cult one due to these sometimes contradictory
possibilities. What is missing, in our opinion, is
a strategy to de�ne in a clear way the require-
ments of the applications so that the appropriate
programming methodology can be selected.

In this paper we summarize di�erent program-
ming methodologies using two main paradigms.
They have been named living processes and hid-
den concurrency are distinguished by their ap-
proach to concurrency structuring. The character-
istics of each paradigm are discussed in Section 2.
Then we outline the structure of a general multi-
component architecture for reactive systems. The
use of application requirements and application
constraints checklists is introduced as a way to
select the appropriate implementation paradigm.
Finally, we show that it is possible to de�ne an in-
termediate paradigm that combines the character-
istics of living processes and hidden concurrency
and can be used in a wide range of applications.

2. PROGRAMMING PARADIGMS FOR
REACTIVE SYSTEMS

The general structure of a reactive system is
represented in Figure 1. It is possible to identify
three main system components:

� the system state vector;
� the set of events;
� the control software.

The system state vector provides a representation
of the controlled physical system; the set of events
de�nes the possible changes in the state of the
controlled system, and the control software im-
plements the governing mechanism of the system
which reacts to events and keeps the system state
in the desired conditions.

To implement this type of system it is necessary to
de�ne the relationships among the di�erent com-
ponents as well as the internal organization of each
single component. Many issues have to be taken
in consideration at this regard like the decision

Controlled

System

(Environment)

Control

Software

System State Vector

Event

Figure 1. A general representation of a reactive
system

of using a centralized or distributed system state
vector and the respective control access rules, the
consequent organization of the control software
and other.

To increase the dependability of concurrent sys-
tems, several approaches for software fault tol-
erance have been proposed; among them we re-
call the Conversation (Randell, 1975) and the
Concurrent Recovery Block (Kim, 1982). Both
papers propose to design the system as a set of
distributed atomic actions, the most critical of
them can have alternative implementations, called
"alternates". The primary alternate is executed
�rst and the acceptance test is checked. If it is
not ensured then the next alternate is tried. This
continues until either the test is ensured or all
alternates fail (in the latter case the action signals
failure).

2.1 Living Processes Approach

A program can be composed of a set of processes,
each one assigned to perform one speci�c kind of
work (such as to control part of a plant). Groups
of processes cooperate from time to time, in order
to reach a common goal. We will refer to this
solution as living processes paradigm. A more
dependable cooperation can be developed inside
using the Conversation scheme (Randell, 1975).
A conversation is entered by a set of processes as
reaction to the occurrence of an event. Alternates
are de�ned inside each process (see Figure 2).

Several implementations for fault tolerant actions
have been de�ned, see for example (Clematis
and Gianuzzi, 1991),(Gregory and Knight, 1985),
(Tyrrell, 1987).

72

P
1

C
2

P
32

P P
4

Conversation

Boundary

C
1

Inter-process

information

exchange

time

Figure 2. Processes P1, P2, P3, P4 take part in
conversation C1; only P2 and P3 are involved
in nested conversation C2.

In (Tyrrell, 1987), a centralized coordinator is
used for each conversation to provide fault toler-
ant control of a distributed systems, written in Oc-
cam. A conversation is entered by its constituent
processes and a conversation control process acts
as a test line coordinator for the conversation.
When a conversation is started, a nominated
member of the set of entry processes initializes
the conversation coordinator, which exists for the
duration of the conversation.

In the approach proposed in (Clematis and Gi-
anuzzi, 1991), described using Ada, the coordina-
tor of the conversation is a monitor which lives
forever, since the same conversation could be ex-
ecuted more than once. In both proposals, each
process implements its conversation code as a set
of alternates.

The third example is the Colloquy, de�ned using
as an extension of Ada (Gregory and Knight,
1985). Here each colloquy (a conversation-like
structure) is a separated program section to which
processes enrol in order to participate. Each pro-
cess executes part of this code. Di�erent processes
can enter each alternate. In this case, static analy-
sis of the program is not feasible, thus a deadlock
can occur.

In all these proposals we have the following re-
strictions:

(1) Shared data composing the state vector are
recorded within processes they are managed
by. They are statically distributed.

(2) Depending on the event, processes decide
to enter the conversation in which they are
interested.

(3) Alternates are de�ned inside each process.

(4) Hardware faults can be tolerated restarting
the involved processes on di�erent nodes,
from their saved checkpoints.

All the papers cited above examine in deep the
problems related to the implementation of the
conversations, such as deserter processes, infor-
mation smuggling, deadlock among conversations,
but they are lacking in considering problems re-
lated to the overall system design, such as: which
is the scheme to be chosen in a given application,
which part of the system is responsible for veri-
fying the event occurrence and for activating the
related conversation, how can the state vector be
distributed.

2.2 Hidden-Concurrency Approach: Event-Driven
Atomic Actions

There are several concurrency models for which
this cooperation scheme may be not the best
solution. A complementary model is the hidden
concurrency paradigm, in which each action is
implemented by a set of processes the live of
which is limited to the temporal extension of
the action. Typically, such a scheme is like a
master/slave approach: a control manager selects
an action, and the workers perform the selected
task. Such a model could be more useful when
parallelism is used for performance improvement,
for example, in operating systems for a parallel
machine providing fault tolerant services.

In such a paradigm, alternates are de�ned by
di�erent sets of concurrent processes (Kim, 1982),
(Romanovsky and Strigini, 1995). For example,
paper (Romanovsky and Strigini, 1995) o�ers a
practical method for using backward recovery
and software diversity within Ada. The authors
consider conversations for coordinated backward
recovery of concurrent processes and propose:

� a restricted scheme similar to Kim's "concur-
rent recovery block" (Kim, 1982), but pro-
viding for deadlines on the execution of the
diverse modules;

� programming rules for applying this scheme
to Ada procedures; and

� a way for automatically enforcing these rules
through a source code pre-processor.

Within this scheme each conversation is pack-
aged as a fault-tolerant (ft-) procedure which has
several diverse designed bodies (alternates) - see
Figure 3. They are tried sequentially one-by-one.
The state vector is managed by the starter pro-
cess, and variables are passed to the processes
implementing the action as IN-OUT parameters.
The execution of each body consists of concurrent
execution of several tasks which are forked when
the variant starts and jointed when it is �nished.

73

p
1

p
2

p
3

p
4

p
a

p
b

p
c

FP

P

time

alternate 1

alternate 2

Figure 3. The execution structure of a ft-
procedure FT: its alternate has four internal
tasks (p1, p2, p3, p4) and the second alter-
nate has three tasks (pa, pb, pc). Process P
calls this procedure and when the execution
of alternate1 fails, alternate2 is executed.

The number of tasks may be di�erent in di�erent
alternates, depending on the algorithm chosen in
the alternate for implementing the ft-procedure.
In addition, each ft-procedure has an acceptance
test which should be checked when an alternate
has been completed.

To conclude, within the ft-procedure scheme the
concurrency is hidden inside alternates and the
user of the ft-procedure is unaware of this, as well
as he/she is unaware of software errors which may
happen during the ft-procedure execution.

The two paradigms discussed above are comple-
mentary: the static distribution of processes and
of the state vector avoids the problem of con-
tinuously activating remote processes and of dis-
tributing the state vector, while the distribution of
the action bodies allows to take advantage of the
centralized state vector management and makes it
easier to avoid information smuggling and dead-
lock.

3. APPLICATION REQUIREMENTS AND
SYSTEM CONSTRAINT ANALYSIS

Considering the model of a reactive system pre-
sented above it is evident that these systems may
be designed using a multi-component architecture
and a stepwise re�nement methodology. The re-
lationships among the components elements or
modules can be speci�ed in a implementation

independent way, and then the implementation
may be carried out using the di�erent program-
ming structures discussed in the previous section.
The choice of a speci�c implementation strategy
depends on di�erent factors and mainly:

� the type of application and its requirements;
� the selected hardware architectures;
� the type of fault tolerance that the system
should provide.

As discussed in Section 2 at the higher level of
abstraction the three main component elements
in this architecture are: the system state vector;
the set of events; the control software.

At a successive level of abstraction further infor-
mation about each component and their relation-
ships have to be de�ned:

� the system state vector is a set of atomic data
(e.g. the value of a sensor).

� events a�ect the system state, and are de-
tected by the control software looking at the
system state.

� the control software detects events by check-
ing predicates on the system state, when an
event is detected the appropriate control ac-
tion is triggered.

Up to this point the system may be described
independently of the implementation strategy,
which is then selected considering application re-
quirements and possibly constraints like use of
distributed or centralized hardware architecture.

Di�erent general requirements can be considered:

� the physical topology of the application: this
permits to understand if the system tends to
be centralized or distributed;

� the type of interaction between the controlled
system and the external world: typically a
system is interfaced with the external world
through sensors and actuators. In many cases
a console exists which permit to monitor and
command the system itself; in other cases
we could be in presence of a multi-terminal
system like an automatic banking station;

� the degree of coupling and mutual relation-
ships among the system sub-components: in
most cases this is quite low and the interac-
tions among more than two sub-systems is
quite limited.

Dependability issues will regard at least the fol-
lowing items:

� Is the continuity of the system required?
� Do the functions of the system require the use
of complicated algorithm, so that algorithmic
diversity is necessary?

74

System constraints may concern both hardware
and software and may drive towards a speci�c
paradigm. For example the use of a centralized
or distributed hardware platform has often to be
intended as a system constraint. Another system
constraint is the indication of an implementation
programming language.

4. A PRACTICAL APPROACH TO
DESIGNING COMPLEX DEPENDABLE

SYSTEMS

Reactive systems for real time distributed applica-
tions are usually written following the live process
scheme. Consistent parts of these processes per-
form local control and only occasionally a joint
action is required, for example when the operator
or an alarm situation impose a change in the work-
ing parameters. Moreover, sensors and actuators
are usually positioned in distributed way; thus,
it makes sense to manage the state vector values
locally for each process.

Living processes approach looks to be the natural
choice in order to add software fault tolerance.
However, such a scheme exhibits limited possibili-
ties in process interaction and, since the alternate
are de�ned inside each process, o�ers few possi-
bility for implementing diversity.

Hidden concurrency is more suitable: the unit
of replication is the whole action, thus di�erent
teams could write the actions using possibly di�er-
ent languages, number of processes and synchro-
nization paradigms. If di�erent languages are used
for each alternate, they are likely to be more inde-
pendent, as experiments have indicated. However,
this scheme could be not e�cient, for example
for the need of creating processes and terminating
them each time an action is activated, even when
locally executed, for the need of maintaining state
vector values on a central process, which could act
as bottleneck.

An intermediate scheme, hereafter called the hi-
erarchical scheme, which collects suitable fea-
tures of both, can however be studied. More than
a completely new scheme, it is a di�erent imple-
mentation of hidden concurrency: the user gives a
high level description of the distributed program
following such a scheme, giving a list of actions
together with their alternates. The code is then
distributed among already existing processes, fol-
lowing possibly automatic transformations of the
original program.

The �nal aspect of these systems is that of the
living processes scheme, however it is reached by
means of successive re�nements starting from the
action set. The starting point is a set of fault
tolerant distributed actions, activated by one or

Conversation

Manager

Manager

Location

Actions Process

Local

Location

Host

Figure 4. Hierarchical approach structure

more centralized processes, and working on a set
of state variables, as we have shown before.

Let us now describe the steps to be performed to
achieve the �nal representation.

A new logical entity is de�ned: the location, that is
a subset of state vector variables. The distribution
speci�cation of the target hardware system results
in the localization of the variables on the physical
location to which are connected the sensors/actu-
ators related to those variables. A logical location
corresponds to each such physical locations. In
this way, a partition of the state vector variables
is performed.

For each location a coordinator (location man-
ager is de�ned. This process manages the location
variables, activates the local actions passing them
the needed parameters, and synchronizes with the
central coordinator to notify changes in its loca-
tion variables. Moreover, a set of processes is also
de�ned: each one is composed by a set of local
actions, that is sequential code which is part of a
fault tolerant action. Each process executes code
written using a given language and communica-
tion paradigm. The central coordinator maintains
a copy of the state vector, continuously updated
by the distributed coordinators. It decides the ac-
tivation of actions requiring the interaction among
di�erent locations, ensuring concurrency consis-
tency (see Figure 4).

Given that scheme, the �rst step is to de�ne the
location variable sets for each node. Then, for each
action alternate, one ore more code components
are separated, each one related to a physical lo-
cation. The alternate sequential components allo-
cated on the same node are inserted in a single
process. A component is activated on request of
the location manager. Checkpoint and rollback
actions are performed locally.

75

With respect to the hidden concurrency scheme,
the continuous activation of new processes is
avoided, assuming that an existing process is sus-
pended at the end of an action and resumed when
another its component must be activated. The
local coordinator allows a more e�cient work in
local operation, when no distributed coordination
is needed, and the locality of the useful state vec-
tor prevents from an unnecessary communication
with the central coordinator. Moreover, di�erent
languages and communication styles can be used
in implementing action alternates.

5. AN INDUSTRIAL APPLICATION
EXAMPLE

We consider an industrial system for plastic ma-
terial pressing. The system is composed by n pro-
duction lines, that is n pipelines of machines, and
two belts, one to feed the lines with raw materials
and another one to carry out the �nished goods
(see Figure 5).

The problem is the environment control in the
plant with respect to the following requirements:
speed maintenance with respect to a given speed
for each line, pressing quality, loading and drawing
belts speed coordination. We refer henceforth to
this requirement as the target. Each time the state
changes, either for a machine failure or upon op-
erator request, the system must be recon�gured,
to conform itself to the new state. The set of
working machineries and their operating level (full
or partial) is referred as system con�guration. The
operator is allowed to rede�ne the target of the
system and to know the actual system con�gura-
tion.

The target is obtained controlling the machines
by means of a distributed computer system: each
machine and each belt is controlled by a host.
The running software must either maintain the
machine operativity, following the local target,
and cooperate with the other computers in order
to reach the global target.

A high availability of the system is required, and
a strict respect of operating directives is needed
to avoid damages to manufacturing machineries.
Thus, some level of hardware and software redun-
dancy must be provided in the system to avoid
machineries stressing and to be able to maintain
the required conditions in spite of machineries
going temporarily out of order.

Besides local events that must be handled with
locally executed actions, a subset of events and
actions can be pointed out, requiring the inter-
action among di�erent machineries, such as the
following ones:

E1. the operator sets the target

Each line is initialized separately

Speed values of the two belts are

automatically evaluated.

E2. machine alarm

The line to which the machine

belongs is slackened or stopped.

Belt speed is modified accordingly.

Operator is alarmed.

E3. belt alarm

Possible stop.

The machines and the other belt

must be slackened.

E4. machine (or belt) restoring

Re evaluation of the optimal speeds.

Operator is informed.

Each action modi�es the system con�guration, a
collection of data which can be:
- accessed in order to know the occurrence of an
event,
- modi�ed during an action,
- and known locally to control the machine or belt.

Sensors and actuators are connected locally on
each host.

5.1 Implementation with living processes approach

The system shown above is usually described in
terms of a collection of distributed processes, each
one carrying out a sequential piece of code and
keeping local system state up to date. To im-
plement the conversation scheme, processes must
synchronize for reaching an agreement on which
event is occurred, thus the system behavior is also
described in terms of possible process interactions.

The scheme of each process is:

loop forever

collect local data;

..................

when global_event(i) then

local_Action(i); endif;

..................

when time=Dtime then

local_Action_timeout; endif;

..................

end loop;

where global eventi is a predicate evaluated on
variables maintained by remote processes, and
local Actioni is a local sequential code. Alter-
nates are de�ned inside each local action like in
Recovery Block scheme, thus limiting the diver-
sity; deadlock is possible, since processes could
independently decide to enter di�erent actions,
and the general execution ow of the distributed
software system can be not easily understandable,
since processes can interact in unexpected ways.

76

production line 1

production line 2

production line n

drawing belt loading belt

produced goods row material

Figure 5. Industrial system for plastic material pressing

5.2 Implementation with hidden-concurrency
approach

In this case, system con�guration is kept by a
centralized process, which continuously monitors
the system (thus sensor data must be sent to it
from decentralized hosts) and activates remote
actions.

The scheme of such process is:

loop forever

collect remote data;

....................

when event(i) then

Action(i);

....................

when time=Dtime then

Action_timeout(j);

....................

end loop;

where eventi is a predicate evaluated locally on
the system state. Following the approach pro-
posed in (Romanovsky and Strigini, 1995), the
action body of a critical action is composed by
a set of alternates. Each alternate should include
the list of hidden processes, the locations in which
they must be activated, their code and a list
of IN and OUT parameters (part of the system
state). Remote processes are created/destroyed
each time, wasting computing time and possibly
loosing real time deadlines. However, this ap-
proach allows the programmer to clearly de�ne

triggered atomic actions, to easily avoid infor-
mation smuggling and deadlock, and possibly to
assign priority among actions.

In the previous example, for each event, the occur-
rence of which is checked by the central process, a
distributed action must be de�ned. Its execution
is triggered by the central process itself, which also
activates remote processes.

5.3 Implementation with hierarchical approach

In the hierarchical approach the most favorable
features of both approaches can be exploited.

At the higher level there is the de�nition of the
state vector variables and of a set of triggered
conversations, as for the hidden-concurrency ap-
proach, in order to describe the system behavior
in terms of interaction units. The higher level
description follows:

State Vector Variables:

.......... /* Data */

Conversation set:

{

......................

Conversation Ci:

when event_i(Ev(Ci)) do

if alternate_1

do Action_1(Data(Ci_1))

if alternate_2

do Action_2(Data(Ci_2))

77

.............

if alternate-n

do Action_n(Data(Ci_n))

ensuring acc_test_i(ATData(Ci))

......................

}

where alternatej is a global variable initially set
to 1 and implemented each time the acceptance
test fails, Actionj is a distributed atomic action
and Ev(Ci), Data(Ci;j), ATData(Ci) are the
subsets of the State Vector Variables involved in
the computation.

At the lower level, the description of the processes
implementing each conversation action is given.

State Vector Variables can usually be partitioned
in logical units (called locations in section 4), each
one loaded on the host to which it belongs. Each
location is also bounded to the set of processes
(composing the conversation actions and de�ned
at the lower hierarchical level) working on those
variables. Thus, for each location, a unique pro-
cess can be built, composed by a set of sequential
atomic actions, triggered by the occurrence of a
global event. Event occurrence can be checked by
a centralized process, or by using a distributed
handshaking, as proposed, for example, in (Back
and Kurki-Suonio, 1988).

6. EPILOGUE

We have considered two di�erent approaches to
the design and implementation of fault tolerant re-
active systems. We have pointed out that through
application requirements and constraints analysis
it is possible to identify the characteristics of a
suitable programming paradigm. A new program-
ming paradigm has been derived in this way, and
its applications to a test case study has been
discussed.

With respect to two paradigms which we have
identi�ed in the paper, these of the living pro-
cesses and of the hidden concurrency, the hierar-
chical approach maintains a high readability and
allows an easy testability or correctness checking
as the second approach, together with the e�-
ciency and reality adherence of the �rst approach.

The logical description of the system starts with
the state vector de�nition, the description of the
events and of the related actions. Each action is
replicated in several alternates, each one imple-
menting a possibly concurrent di�erent algorithm.

By means of the variable localization, that is
of their partitioning on the target hosts, it is
possible to distribute the actions as well. Then,
by means of a process of stepwise re�nement, the
single sequential alternates are merged in a unique

process, but keeping them separately, so that each
one can be activated on request of the location
manager.

The local manager is then the local control pro-
cess. Moreover, since reliability is better achieved
if the di�erent versions are developed using dif-
ferent programming languages, each action alter-
nate can be written using a di�erent language
and assuming a particular communication and
synchronisation style. Thus the location manager,
which manages the location (the local part of the
state vector) must present a specialized interface
for each version.

The location manager is responsible for coordi-
nate:
? the hosts, since it communicates to the cen-
tral coordinator state vector updates and receives
from it the local action activation request,
? the local action process, to which it sends the
activation request,
? the di�erent local action versions, since it also
manages the location variables, independently
from the programming paradigm implemented by
each version.

7. REFERENCES

Avizienis, A. and J.P.J. Kelly (August 1984).
Fault tolerance by design diversity: concepts
and experiments. IEEE Computer pp. 67{80.

Back, R.J. and R. Kurki-Suonio (1988). Dis-
tributed cooperation with action systems.
ACM Trans. Progr. Lang. & Sys. 10(4), 513{
554.

Clematis, A. and V. Gianuzzi (1991). Software
fault tolerance in concurrent ada programs.
Microprocessing and Microprogramming 32,
1{5, 365{372.

Gregory, S.T. and J.C. Knight (1985). A new lin-
guistic approach to backward error recovery.
Proc. 15th Symp. on Fault Tolerant Computer
Systems pp. 404{409.

Kim, K.H. (1982). Approaches to mechaniza-
tion of the conversation scheme based on
monitors. IEEE Trans. on Soft. Eng. SE-
8(3), 189{197.

Randell, R. (1975). System structure for software
fault tolerance. IEEE Trans. on Soft. Eng.
SE-1(1), 220{232.

Romanovsky, A. and L. Strigini (1995). Backward
error recovery via conversations in ada. Soft-
ware Engineering Journal 10(8), 219{232.

Tyrrell, A.M. (1987). Increasing software reliabil-
ity of distributed systems with occam. Proc.
2nd Int. Conf. Computers and Applications
10(8), 219{232.

78

	1 Introduction
	2 Programming Paradigms for Reactive Systems
	2.1 Living Processes Approach
	2.2 Hidden-Concurrency Approach: Event-Driven Atomic Actions

	3 Application Requirements and System Constraint Analysis
	4 A Practical Approach to Designing Complex Dependable Systems
	5 An industrial application example
	5.1 Implementation with living processes approach
	5.2 Implementation with hidden-concurrency approach
	5.3 Implementation with hierarchical approach

	6 Epilogue
	7 REFERENCES

