
On the Maintainability of Aspect-Oriented Software:
A Concern-Oriented Measurement Framework

Eduardo Figueiredo1, Claudio Sant'Anna2, Alessandro Garcia1,

Thiago T. Bartolomei3, Walter Cazzola4, and Alessandro Marchetto5
1Computing Department, Lancaster University, United Kingdom

2Computer Science Department, Pontifical Catholic University of Rio de Janeiro – PUC-Rio, Brazil
3Generative Software Development Lab, University of Waterloo, Canada

4Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano, Italy
5Fondazione Bruno Kessler - IRST, Trento, Italy

{e.figueiredo, a.garcia}@lancaster.ac.uk, claudios@inf.puc-rio.br,
ttonelli@uwaterloo.ca, cazzola@dico.unimi.it, marchetto@fbk.eu

Abstract

Aspect-oriented design needs to be systematically
assessed with respect to modularity flaws caused by the
realization of driving system concerns, such as tangling,
scattering, and excessive concern dependencies. As a
result, innovative concern metrics have been defined to
support quantitative analyses of concern’s properties.
However, the vast majority of these measures have not
yet being theoretically validated and managed to get
accepted in the academic or industrial settings. The core
reason for this problem is the fact that they have not
been built by using a clearly-defined terminology and
criteria. This paper defines a concern-oriented
framework that supports the instantiation and
comparison of concern measures. The framework
subsumes the definition of a core terminology and
criteria in order to lay down a rigorous process to foster
the definition of meaningful and well-founded concern
measures. In order to evaluate the framework
generality, we demonstrate the framework instantiation
and extension to a number of concern measures suites
previously used in empirical studies of aspect-oriented
software maintenance.

1. Introduction

Designing maintainable aspect-oriented software
requires that software developers reason about the
modularity of driving system concerns as the system
evolves. With the emergence of aspect-oriented (AO)
software development [16], there is an increasing
awareness that observable phenomena relative to
evolving system concerns might be the key factors to the
deterioration of system maintainability, such as
increasing concern tangling and scattering [16]. These
observations provide classical indicators on when to use

AO composition mechanisms [16]. On the other hand,
outcomes of recent empirical studies have pointed out
that the use of AO techniques can: (i) increase the
number of undesirable concern couplings [12, 15], and
(ii) decrease the cohesion of modules realizing a certain
concern [14]. These concern modularity flaws make the
change and removal of involved concerns error prone
[11, 12] and lead to the manifestation of ripple effects
[15].

Concern-driven design anomalies cannot be
straightforwardly detected with conventional module-
oriented metrics [12, 14, 15], such as Chidamber and
Kemerer metrics [7]. As a result, a growing number of
concern measures have been proposed in the literature
[6, 8, 9, 18, 21, 22]. Their common goal is the
association of quantification of concern properties with
their impact on modularity flaws. A concern is any
consideration that can impact the implementation of a
program [19]. Concern measures lead to a shift in the
measurement process: instead of quantifying properties
of a particular module, they quantify properties of one or
multiple concerns with respect to the underlying
modular structure. Even though the usefulness of
concern measures is paradigm-agnostic [8, 22] they have
been consistently used to support the maintainability
assessment of AO designs [9, 18] and their comparison
with OO designs [11, 12, 14, 15].

However, the area of concern measurement is still in
its infancy and it suffers from not subsuming to a unified
measurement framework. The terminology used in
existing definitions of concern measures is diverse and
ambiguous by nature. Their definitions make it not clear
the target level of abstraction, ranging from architecture-
level to implementation-specific metrics, and the target
concern modularity property. They rely on the jargon of
specific research groups, thereby hampering: (i) the
process of instantiating, comparing, and theoretically

validating concern measures, (ii) their adoption in
academic and industry settings, (iii) independent
interpretation of the measurement results, and (iv)
replication of empirical studies using concern measures.

In this context, this paper presents a concern-oriented
framework that supports the instantiation and
comparison of concern measures. The framework
subsumes the definition of a core terminology (Section
3) and criteria (Section 4) in order to foster the definition
of meaningful and well-founded concern measures.
Before presenting the measurement framework, we
discuss the limitations of the state-of-the-art on concern
measurement (Section 2). To evaluate the proposed
framework’s generality we have demonstrated the
framework instantiation and extension to a number of
concern measures (Section 5). These concern measures
have been used in empirical studies on maintainability of
AO software. Hence, we also discuss how the proposed
measurement framework can help to point out
limitations on the used measures.

2. Concern Measurement

This section presents a comprehensive survey and
critical review of existing measurement frameworks
(Section 2.1) and concern measures (Section 2.2) for AO
systems. Section 2.3 summarises the shortcomings of
existing concern measurement approaches.

2.1. Measurement Frameworks

Measurement frameworks have been proposed to
validate [17], compare and instantiate measures [1, 3, 4].
Kitchenham et al. [17] defined a measurement
framework that identifies the elementary components for
measures validation. However, these components are
generic and not tailored to the context of concern
measurement. Moreover, this framework does not target
the instantiation of new concern metrics and their
comparison. For instance, it does not define criteria for
selecting the granularity of concern-related elements
being measured or for restricting the domain of such
elements [1, 3, 4].

To cope with metrics definition support, Briand et al.
proposed measurement frameworks for coupling [3] and
cohesion [4] in object-oriented systems. As these
frameworks do not take aspect-oriented constructs into
consideration, Bartolomei et al. [1] extended the
coupling framework to deal with abstractions and new
composition mechanisms supported by aspect-oriented
programming. These frameworks provided formalisms
for expressing coupling and cohesion measures in a fully
consistent and operational manner. Besides, they aim at
comparing measures, integrating measures which
examine the same attributes in different ways, and

supporting the definition of new coupling and cohesion
measures. On the other hand, none of the
aforementioned frameworks can be tailored to the
measurement of driving design concerns.

In this context, although a large number of different
concern measures have been proposed [6, 8, 9, 18, 21,
22], there is a lack of standard terminology and
formalism, leading to definitions of concern measures
which are either ambiguous or difficult to understand.
The extension of existing measurement frameworks to
cope with concern measures is not straightforward since
they need to be adapted in a number of ways. For
instance, a concern-aware measurement framework has
to specify a set of criteria regarding the projection of
concerns onto the system modular structure, which is not
the focus of existing measurement frameworks.

2.2. Concern Measures

This section presents a survey of existing concern
measures [6, 8, 9, 18, 20, 21, 22]. All analysed measures
have a common underlying characteristic that
distinguishes them from conventional modularity
measures [7]: they capture information about concerns
traversing one or more structural component. Each
concern measure of this section is presented in terms of a
brief definition and an example. As far as the example is
concerned, we rely on an OO design slice of a product
line for mobile device applications [11], presented in
Figure 1. This figure shows a partial class diagram
realizing the Chain of Responsibility (CoR) design
pattern [13] implemented in the product line. The
concern measures are computed based on projecting a
concern onto structural elements. For instance, in order
to quantify the measurement attributes of the CoR
pattern, elements realising it are shadowed in the design
of Figure 1.

nextController()
handleCommand()

<<interface>>
IController

nextController()
handleCommand()

<<interface>>
IController

nextController

...
nextController()
getNextController()
setNextController()

AbstractController

...
handleCommand()

CoreController

...
handleCommand()

PhotoController

...
handleCommand()

SMSController

...

Chain of Responsibility

Application Domain

Concerns

Chain of Responsibility

Application Domain

Concerns

Figure 1. Concern projection of the CoR design pattern.

Concern Measures by Sant’Anna et al. Sant’Anna and
his colleagues [21] defined three concern measures
which quantify the diffusion of a concern over
components, operations, and lines of code. Concern
Diffusion over Components (CDC) and Concern

Diffusion over Operations (CDO) [21] measure the
degree of concern scattering at different levels of
granularity. CDC counts the number of classes and
aspects related to a concern whereas CDO counts the
number of methods and advices. Figure 1 shows that
behaviour related to the CoR pattern is spread over five
components (CDC) and nine operations (CDO). In
another work [20], Sant’Anna et al. tailored CDC and
CDO for measuring concern scattering in the system
architectural description. For instance, CDC counts the
number of architectural components instead of classes.

In addition to CDC and CDO, these authors define
Concern Diffusion over Lines of Code (CDLOC) which
aims at computing the degree of concern tangling. This
metric counts the number of concern switches (Figure 2)
for each concern through the lines of code [21]. Figure 2
shows the code regarding the CoR pattern shadowed in
the AbstractController class. In this class, there are
four concern switches between CoR and other concerns.
Hence, the value of the CDLOC metric for this concern
is four.

public class AbstractController
implements IController {

private IController nextController;

...

public void nextController(Command command) {
if (handleCommand(command) == false)

getNextController().handleCommand(command);
}
public IController getNextController() {...}
public void setNextController(...) {...}

} concern switch

concern switch

concern switch

concern switch

Figure 2. Projection in the AbstractController class.

Concern Measures by Ducasse et al. Ducasse et al. [8]
defined a generic technique, called Distribution Map, to
analyse properties of the system. Based on this
technique, they describe four concern measures. In their
approach, boxes can represent the program structure
(Figure 3). For instance, large rectangles, called
partitions, can be used to represent classes whereas
small squares can correspond to internal members of
classes, i.e., methods and attributes. Besides, small
squares are filled with the colour that represents their
corresponding property. Figure 3 presents our running
example (Figure 1) using Distribution Map. The grey
squares represent methods and attributes that implement
the CoR design pattern.

Four concern measures are proposed by Ducasse et
al. [8]: Size, Touch, Spread, and Focus. The Size metric
counts the number of small squares associated to a
property. The Touch metric counts the relative size given
in terms of the percentage of small squares realising a
property. For instance, Figure 3 shows that the Size
value of CoR is nine and the Touch value is 0.23 (9/39).

Spread counts the number of partitions that contains
shadowed squares. Note that, in our running example
(Figure 3), Spread gives the same result (five) of the
CDC metric proposed by Sant’Anna [21]. Finally, the
Focus metric quantifies the closeness between a
particular partition and the property.

AbstractControllerIController PhotoController CoreController

SMSController

Figure 3. Distribution Map showing the CoR property.

Concentration, Dedication, and Disparity. Wong et
al. [22] introduced three concern measures, namely
Disparity, Concentration, and Dedication. Disparity
measures how many “blocks” related to a feature are
localised in a particular component. A feature is the
functionality exercised by a given input and a block is a
sequence of consecutive statements, so that if one
element is executed, all are [22]. The more blocks in
either a component C or a feature F, but not in both, the
larger the disparity between C and F. Concentration and
Dedication are also defined in terms of blocks and they
quantify how much a feature is concentrated in a
component and how much a component is dedicated to a
feature [22].

Eaddy, Aho, and Murphy [9] presented two concern
measures based on lines of code (LOC) that capture
different facets of concern concentration and component
dedication. In their work, Concentration is defined as
the quotient of LOC in a component realising a concern
by the total LOC realizing it in the system. Similarly,
they also define the Dedication metric as quotient of
LOC in a component realising a concern by the LOC of
the component [9].

Basic Concern Measures. Lopez-Herrejon and Apel
[18] define two of what they call basic concern
measures: Number of Features (NOF) and Feature
Crosscutting Degree (FCD). The NOF metric counts the
number of features in a system or subsystem. The FCD
metric counts the number of classes that are crosscut by
a feature. Besides, Ceccato and Tonella [6] present a
concern measure, called Crosscutting Degree of an
Aspect (CDA), which counts the number of modules
affected by a given aspect. FCD [18] and CDA [6] have
the same value (five) for the CoR concern in Figure 1.

2.3. Liabilities of Concern Measurement

A systematic analysis of existing concern measures
points out fundamental divergences in the manner

concerns are addressed and quantified. One reason for
the differences is the distinct objectives pursued by the
authors. For example, to investigate maintainability
indicators, Wong et al. [22] focus only on the
implementation level while Sant’Anna et al. [20, 21]
examined architecture design, detailed design and
implementation. Besides, Ducasse et al. also uses a
distinct representation of the system. We discuss in the
following the significant differences observed among the
concern measures and the liabilities associated.
Inconsistent Terminology. The non-uniform,
distributed manner in which concern measures are often
being defined and developed result in a lack of standard
terminology. Many concern measures are expressed in
an ambiguous manner which limits their use. For
instance, the basic modularity unit is called (i)
component by Sant’Anna et al., (ii) partition by Ducasse
et al., and (iii) module by Ceccato and Tonella.
Similarly, a concern is called property [8] and feature
[22]. This also makes it difficult to understand how
different concern measures relate to each other.
Incomplete Attributes. Existing concern measures
target at quantifying four categories of concern
properties: scattering, tangling, size, and closeness.
Examples of metrics in these categories were presented
in Section 2.2. For instance, closeness metrics quantify
how close the intention of a design element is in relation
to the concern. The metrics Disparity, Concentration,
and Dedication, proposed by Wong et al. [22], are
examples of closeness measures. However, existing
metrics (Section 2.2) do not capture the whole spectrum
of modularity properties associated with one or more
concerns. For example, in spite of the wide recognition
that coupling and cohesion play pivotal roles on the
system maintainability [3, 4, 7, 15], there are no formal
measures defined to quantify those concern’s modularity
properties.

Overlapping Measurement Goals. There are many
different decisions that have to be made when defining a
concern measure, such as with respect to the goal of the
measure. Unfortunately, for many concern measures
these decisions are not documented. It is, therefore, often
unclear what the potential uses of existing measures are
and how different concern measures could be used in a
complementary manner. For instance, the definitions of
CDC [21], Spread [8], FCD [18], and CDA [6] are very
similar since all these measures have value of five for
the CoR concern in the example of Section 2.2 (Figures
1 to 3). However, without a set of criteria to compare
concern measures, similar measurement goals are not
easy to spot and empirical studies, relying on those
metrics, cannot be replicated in a reliable fashion [8, 17,
18, 21].

3. Terminology

This section presents a standard terminology which
allows all existing concern measures to be expressed in a
consistent and meaningful manner. We seek to define a
terminology and formalism that is, as much as possible,
language independent and extensible.

3.1. Concern-Oriented Meta-Model

Figure 4 presents a generic concern-oriented meta-
model of the structural abstractions defined for an
aspect-oriented system. It not only defines possible
relations of concerns and the system’s structure, but also
subsumes key abstractions for module specifications.
Each type of abstraction is alternatively called an
element. Concerns can be realized by an arbitrary set of
elements. An aspect-oriented system S consists of a set
of components, denoted by C(S). A component c has an
interface, I(c). Besides, each component c consists of a
set of attributes, Att(c), a set of operations, Op(c), and a
set of declarations, Dec(c). The set of members of a
component c is defined by M(c) = Att(c) ∪ Op(c) ∪
Dec(c).

The reader should notice that for generality purposes,
a component is a unified abstraction to both aspectual
and non-aspectual modules. This decision makes the
meta-model paradigm and language independent [5]. For
example, a component represents either a class or an
interface in Java programs, and a component is a class,
an interface, or an aspect in AspectJ programs [16]. An
operation o consists of a return type, Rt(o), a set of
parameters, Par(o), a pointcut expression, PE(o), and a
set of statements, St(o). A declaration d can also have a
pointcut expression, PE(d).

ComponentOperation

Attribute

Parameter

Return Type

Statement PointcutExpr

Interface

System

Declaration

Concern

Figure 4. Abstract meta-model of aspect-oriented
systems.

On top of this structure, we can define concerns
which are selections of any type of elements as
presented in Figure 4. A concern is not an abstraction of
a modelling or programming language, such as
components and operations. However, a concern can be
considered as an abstraction which is addressed by those
elements that have the purpose of realising it. An
example concern is a software requirement. In this way,
in order to have concern-based measurement it is
necessary to assign for each structural element (e.g.,
component) the concerns it is realising. The set of

concerns addressed by the system S is defined as Con(S).
Furthermore, a concern con can be realised by a set of
components, C(con), a set of attributes, Att(con), a set of
operation, Op(con), or a set of declarations, Dec(con).
The set of members that implement a concern con is
defined as M(con) = Op(con) ∪ Att(con) ∪ Dec(con).

3.2. Components and Connections

Connection is defined as a dependency relationship
between two elements, where one element, called
Server, provides a service to another element, the Client
[7]. Two types of connections can be defined: explicit
connection and implicit connection. For instance, an
explicit connection of a component c, EC(c), is caused
by elements of c calling an operation or accessing an
attribute of other components. On the other hand, an
implicit connection of a component c, IC(c), is caused
by a join point being reached or by a handler catching an
exception. The set of connections of a component c is
defined as CC(c) = EC(c) ∪ IC(c).

For convenience purpose, we define that the set of all
components of a system, C(S), can be partitioned in 3
subsets: Application, AC(S), Framework, FC(S), and
Library, LC(S). The set of all components, attributes,
operations, and declarations of a system S is denoted by
AC(S), Att(S), Op(S), and Dec(S), respectively.
Furthermore, components may participate on inheritance
relationships. For a given component c, the following
sets are defined: (i) Ancestors(c) - all recursively defined
parents; (ii) Parents(c) - the directly declared parents;
(iii) Children(c) - the directly derived children, and (iv)
Descendants(c) - the recursively derived children.
Because of inheritance relationships between
components, the following member sets are defined for a
component c:
• MNEW(c) - Members newly implemented in the

component (not inherited).
• MVIR(c) - Members declared as virtual.
• MOVR(c) - Members inherited and overridden.
• MINH(c) - Members inherited and not-overridden.

3.3. Language Instantiation

The aforementioned structures are abstract enough to
be instantiated for different modelling and programming
languages. This section provides a brief illustration on
how our generic meta-model (Sections 3.1 and 3.2) can
be instantiated to languages targeting different levels of
abstraction. We use an architecture modelling language
for the component-and-connector view [2], and two
programming languages, namely Java and AspectJ [16].
We have chosen AspectJ as a representative of aspect-
oriented programming languages, and Component-

Connector models as an example of modelling language
used in early design stages. Table 1 defines how a subset
of elements of the meta-model can be mapped to these
three languages. A blank cell means that the abstraction
is not implemented by any elements of the language. For
example, declarations are only valid for aspect-oriented
languages such as AspectJ (Table 1).

Table 1. Meta-model instantiation.
Element Component-

Connector [2] Java AspectJ [16]

System Architecture
Design Java System AspectJ System

Concern Architecture
Concern Concern Concern

Component Architecture
Component

Class and
Interface

Class, Interface, and
Aspect

Interface Architecture
Interface

Method
Signature Method Signature

Attribute - Class Variable
and Field

Class Variable, Field, and
Inter-type Attribute

Operation Operation and
Event

Method and
Constructor

Method, Constructor,
Inter-type Method and

Constructor, and Advice

Declaration - - Pointcut and Declare
Statement

4. The Framework Structure

This section presents the concern measurement
framework which relies on the terminology presented in
the previous section. In order to define a concern
measurement framework, we have analysed and,
whenever it is feasible, tried to maximise the use of
criteria defined in existing measurement frameworks for
OO [3, 4, 17] and aspect-oriented [1] systems.
Moreover, we have identified recurring characteristics of
existing concern measures proposed in the literature
(Section 2.2). From these analyses a set of criteria that
should be considered when comparing concern measures
or developing a new measure has emerged. The next
subsections provide details on each criterion.

4.1. Entities of Concern Measurement

One of the goals of concern measurement is to
capture characteristics of concerns, such as size, and
manipulate them in a formal way. The entity of
measurement determines the elements that are going to
be measured. When we choose a certain element type as
the entity of measurement, it means that we are
interested in characteristics of this type. For example, if
we choose component, it means we are interested in
concern-related information about components.

Criterion Instantiation. Usually concern measures use
concerns as the entity of measurement, but other
selections are also possible. For example, the metrics
Concentration and Dedication [22] have distinct entities

of measurement. While Concentration has concerns as
entities, the Dedication metric is interested in
information of components. Although all elements in the
meta-model of Figure 4 may be selected in this criterion,
the most common entities of concern measurement are:
(i) System, (ii) Concern, (iii) Component, (iv) Attribute,
and (v) Operation.

4.2. Concern-Aware Attributes

Attributes are the properties that a concern (or an
entity) possesses. For a given attribute, there is a
relationship of interest in the empirical world that we
want to capture formally in the mathematical world [17].
For example, if we observe two concerns we can say
that one is more spread than the other. A concern
measure allows us to captures the “is more spread than”
relationship and maps it to a formal system, enabling us
to explore the relationship mathematically. An entity
possesses many attributes, while an attribute can qualify
many different entities [17]. These relationships can be
confirmed by example. To see that an entity can have
many attributes, consider a concern as an entity of
measurement which can exhibit attributes such as
scattering and tangling. In addition, an attribute may
apply to one or more different entities. For example, size
can apply to several different software entities, such as
components or concerns.

Criterion Instantiation. In the attribute selection, we
may choose any property of the entity that we want to
measure. In fact, existing concern measures in the
literature cover a vast range of measurement attributes.
For example, the measures proposed by Sant’Anna [21]
(Section 2.2) target scattering (CDC and CDO) and
tangling (CDLOC). On the other hand, Wong’s
measures Concentration, Dedication and Disparity [22]
assess the closeness between components and concerns.
Possible values of a measurement attribute include: (i)
Scattering, (ii) Tangling, (iii) Closeness, (iv) Coupling,
(v) Cohesion, and (vi) Size.

4.3. Units

A concern measurement unit determines how we
measure an attribute. An attribute may be measured in
one or more units, and the same unit may be used to
measure more than one attribute [17]. For example,
concern size might be measured by counting either the
lines of code or the number of components which
implement it. Similarly, the number of components may
be used to measure the attributes size and scattering of a
concern.

Criterion Instantiation. The concern measures
discussed in Section 2.2 have heterogeneous units of

measurement. For instance, the metrics CDC, CDO and
CDLOC [21] count number of components, operations,
and concern switches, respectively. On the other hand,
none of the concern measures proposed by Wong et al.
[22] have units of measurement. We may choose any
countable elements as measurement units, for example,
(i) Concerns, (ii) Components, (iii) Operations, (iv)
Attributes, and (v) Lines of Code.

4.4. Concern Measurement Values

A measured value cannot be interpreted unless we
know to what concern it applies, what attribute it
measures and in what unit. Some concern measures,
such as those ones proposed by Wong et al. [22], do not
specify any unit of measurement. The lack of units in the
metrics investigated in Section 2.2 is a result of
equations which divide two values with the same unit,
e.g., the Touch metric divides members (implementing a
concern) per members (of the system).

Criterion Instantiation. We expect concern measures
to be defined over a set of permissible values. For
instance, the CDC measure value [21] is defined on the
non-negative integers. Besides, values of Concentration,
Dedication and Disparity [22] are bounded in the range
of 0 and 1, inclusive. A set of permissible values may be
finite or infinite, bounded or unbounded, discrete or
continuous.

4.5. Concern Granularity

The granularity of a concern measure is the level of
detail at which information is gathered. This criterion is
determined by two factors: (i) element granularity -
what elements are to be measured, and (ii) element
distinction - how the elements are counted. The element
granularity factor specifies what is being counted, i.e.,
which elements aggregate values. For example, when we
say “the number of concerns of a component that...” the
entity is component but what we are counting
(granularity) is concern. The element distinction factor
defines whether we ignore duplicated elements or not
when re-applying the concern measure to a different
goal. For instance, it is allowed to count the same
component for different concerns in a given measure
(e.g., CDC). The difference between element granularity
and measurement unit is clear because all measures have
to define an element which is being counted. However,
the measurement unit can either be omitted or be coarser
or finer than the granularity (e.g., giving weights to
elements).

Criterion Instantiation. The survey of concern
measures in Section 2.2 points out very heterogeneous
options for element granularity and element distinction.

For instance, element granularity ranges from lines of
code (e.g., CDLOC) to components (e.g., CDC) and
concerns (e.g., NOF). There are also metrics which
allow elements to be counted more than once, such as
CDC and CDO [21], and metrics that allow each
element to be counted only once, such as Size and
Touch [8]. Possible values of granularity are, for
example: (i) Concern, (ii) Component, (iii) Operation,
(iv) Attribute, and (v) Lines of Code. Element
distinction has to be “yes” (count only once) or “no”
(count all possible occurrences).

4.6. Domain

There are two pertinent issues of domain: how to
account for inheritance and how to restrict types of
elements for being measured. Regarding inheritance,
concern measures have to define how components
related via inheritance should behave. For instance,
inherited operations should be excluded or included in a
given concern measure. In the domain criterion,
measures have also to define the types of elements that
should be accounted for. For example, they might
strictly count elements of the application domain
(excluding classes of the framework and libraries).

Criterion Instantiation. The possible values for
inheritance are “yes” (account) or “no” (ignore).
Besides, if inheritance is taken into consideration
measures have to specify which set of elements should
be included: Ancestors, Parents, Children, or
Descendants. We may restrict elements in the domain
based on: Application, Framework, and Libraries. Other
categorizations are also conceivable. However, we
suggest using a categorization scheme where the
decision, into which category a given element belongs,
can be made automatically. Based on the original
definitions of the concern measures, we cannot decide if
the metrics take into consideration inherited members or
not and how they restrict the domain. Therefore, we
acknowledge that the investigated concern measures do
not consider inheritance and that they are applied to
application elements only.

4.7. Concern Projection

Concern measures must specify a measurement
protocol that must be followed in the empirical studies;
otherwise these empirical studies cannot be replicated
and replication is the basis of scientific validation [17].
A measurement protocol must be unambiguous and must
prevent invalid measurement procedures such as double
counting. For instance, one of the most sensitive parts in
concern measurement is the projection of abstract
concerns onto elements in the design. At least two

definitions have to do with this projection: (i) what the
concerns are and (ii) onto what artefacts the concern is
going to be mapped. Besides, concern measures have to
specify whether they allow overlapping of concerns or
not. For instance, it is possible two different concerns be
projected onto the same operation.

Criterion Instantiation. Most of the concern measures
do not clearly state which sorts of concerns they are
interested in. When the specification of a concern is not
clear in the measure definition, we assume it is applied
to all kinds of concerns. Typical concerns in a software
project include [19]: (i) Features, (ii) Non-Functional
Requirements, (iii) Design Idioms, and (iv)
Implementation Mechanisms (e.g., caching). Examples
of design elements which can be mapped to concerns are
(i) Components, (ii) Operations, (iii) Attributes, and (iv)
Lines of Code. All three concern measures proposed by
Sant’Anna (i.e., CDC, CDO, CDLOC) are applied to all
kinds of concerns. However, they map a concern to
different artefacts: CDC requires a mapping of concerns
to components, CDO to operations, and CDLOC to lines
of code. Of course, a mapping to finer level such as
operations can easily be extended to coarser level like
classes. In other words, the CDC metric also accept a
mapping of concerns to operations or lines of code.

5. Evaluation

This section introduces an evaluation of the concern
measurement framework in three steps. First, we
illustrate the application of our framework by describing
and formalising a concern measure (Section 5.1).
Second, we systematically apply the framework to
existing concern measures in order to define and
compare them in an unambiguous and fully operational
manner (Section 5.2). Third, we identify extensions to
the framework based on the instantiation of new concern
measures for different assessment purposes (Section
5.3).

5.1. Application of the Framework

This section demonstrates the application of our
concern measurement framework to the metric Concern
Diffusion over Operations (CDO) [11, 14, 15, 21]. We
first describe the metric textually using our standard
terminology (in italic). Then, we go through the whole
process of analysing and selecting each criterion and,
finally, we derive a formal definition.
Description. Concern Diffusion over Operations (CDO)
counts the number of operations whose main purpose is
to contribute to the implementation of a concern. In
addition, it counts the number of methods, constructors,
and advice that access any primary component of the

concern by accessing its attributes, calling its operations
or using it in parameters, return types, declarations and
statements.

1. Entity of Concern Measurement. Concern is the
entity of measurement for this metric.

2. Attribute. CDO quantifies scattering of a given
concern over the operations of the system.

3. Unit. The unit is number of operations.
4. Properties of Values. Permissible values for this

metric are not greater than Op(S) (finite), do not
define any interval a priori (unbounded), and allow
integers only (discrete).

5. Granularity. The granularity of elements that are
being measured is operation.

6. Domain. It considers application components (not
components in the framework or libraries) and does
not take inherited operations into account.

7. Concern Projection. Concerns can be anything
that directly contributes to the functionality of the
system, i.e., which is materialised in the design or
implementation. It requires projection of concerns
onto operations (or finer grained artefacts).
Overlapping of concerns is allowed.

Using the selected criteria and the concern
terminology described in Section 3 we derive the
following formal definition for CDO:

CDO = ⎮ { o ∈ (Op(c) ∩ Op(con)) | c ∈AC(S) ∧ con ∈ Con(S) } ⎮

Number of
operations

Operations common
to a component c
and a concern con

Component c
belongs to the
Application

domain

Concern con
belongs to the
set of concerns
of the system S

5.2. Measures Instantiation and Comparison

In addition to CDO illustrated in Section 5.1, this
section presents the instantiation of 14 concern measures
in our framework. These measures were selected for
several reasons. First, they were proposed by different
authors in various research groups. Hence, they do not
rely on a uniform terminology. Second, the selected
measures present a very heterogeneous definition, apply
to distinct abstract level ranging from architecture to
implementation and quantify diverse assessment goals.
Finally, these concern metrics have been applied in a
number of maintenance case studies [8, 11, 12, 14, 15,
20] and they have been proved to be important internal
quality indicators.

Table 2 shows the selected criteria for the sample set
of concern measures. Rows list the concern measures
and columns the framework criteria. It is interesting to
note that concern metrics present heterogeneous values
in some criteria, such as Attribute and Measurement
Unit. For instance, existing concern measures in the
literature cover at least four attributes of concerns,
namely scattering, tangling, size, and closeness.

Table 2. Instantiation of concern measures

Concern Measures 1. Entity 2. Attribute 3. Unit 4. Values 5. Granularity
and Distinct

6. Domain and
Inheritance

7. Concern, Artefact
and Overlapping

CDC [20, 21]
CDA [6] Concern Scattering Components Finite, unbounded,

discrete
Component,

No
Application,

No
All, Component,

Yes

CDLOC [21] Concern Tangling Concern
Switches

Finite, unbounded,
discrete (even values)

Line of Code,
No

Application,
No

All, Line of Code,
No

Size [8] Concern Size Members Finite, unbounded,
discrete Member, Yes Application,

No All, Member, No

Touch [8] Concern Size None Infinite, bounded,
continuous Member, Yes Application,

No All, Member, No

Spread [8] Concern Scattering Components Finite, unbounded,
discrete

Component,
No

Application,
No All, Component, No

Focus [8] Concern Closeness None Infinite, bounded,
continuous Member, Yes Application,

No All, Member, No

Disparity [22] Concern,
Component Closeness None Infinite, bounded,

continuous Member, No Application,
No

Feature, Member,
Yes

Concentration [22] Concern Closeness None Infinite, bounded,
continuous Member, No Application,

No
Feature, Member,

Yes

Dedication [22] Component Closeness None Infinite, bounded,
continuous Member, No Application,

No
Feature, Member,

Yes

NOF [18] Component Tangling Concerns Finite, unbounded,
discrete Concern, Yes Application,

No
Feature,

Component, Yes

FCD [18] Concern Scattering Components Finite, unbounded,
discrete

Component,
No

Application,
No

Feature,
Component, Yes

Concentration [8] Concern Closeness None Infinite, bounded,
continuous

Line of Code,
No

Application,
No

All, Line of Code,
No

Dedication [9] Component Closeness None Infinite, bounded,
continuous

Line of Code,
No

Application,
No

All, Line of Code,
No

However, to the best of our knowledge, none of the
existing concern measures target at other equally
important concern-aware attributes, such as coupling
and cohesion. Examples of concern measures addressing
these attributes are presented in Section 5.3.

Table 2 also highlights the need of concern measures
which contemplate other domains (criterion 6) rather
than the Application one. For example, Briand et al [3]
state a hypothesis that “maintainability is influenced by
dependencies on both stable (library) and unstable
classes (application)”. To verify this hypothesis, one
might use concern measures to evaluate the influence of
library concerns in the design of the system. None of the
concern measures in Table 2 deal with inheritance,
which also indicates the lack of exiting concern
measures covering some criteria.

As discussed in Section 2, the concern measures
CDC, CDA, Spread and FCD have similar definitions.
Actually, CDC and CDA have exactly the same
instantiation in our framework. Although the framework
confirms that similarity, it also helps to point out small
differences among the concern measures. For instance,
while CDC and Spread are applied to all sorts of
concerns, the FCD metric is intended to features [18].
Besides, overlapping of concern is permitted in CDC
and FCD, but it is not allowed in the definition of Spread
due to constraints in the concern representation
(Distribution Map [8]). Finally, the two concern
measures Concentration and Dedication are both defined
by Wong et al. [22] and Eaddy et al. [9]. In spite of their
similarities, the granularity is member in the former and
line of code in the latter (Table 2).

5.3. On the Framework Extensibility

This section evaluates whether the measurement
framework accomplishes the definition of new concern
measures to different goals. In this evaluation we
attempt to create three new concern measures: Concern
Sensitive Coupling (CSC), Lack of Concern-based
Cohesion (LCC) and Dynamic Concern Diffusion over
Components (dCDC). These concern metrics
contemplate options (coupling, cohesion and dynamic
issues) in the set of criteria which are not covered by
existing concern measures. In the following, we describe
these concern measures textually and present their

formal definition. Table 3 shows the chosen options for
each criterion in the measures’ instantiation.

Concern Sensitive Coupling (CSC) quantifies the
number of server components that a concern realised by
a given client component is coupled to. In other words,
CSC counts the number of explicit connections that are
associated to the concern in a component.

CSC = ⎮ { r ∈ EC(c) | c ∈ (AC(S) ∩ C(con)) ∧ con

∈ Con(S) } ⎮

Lack of Concern-based Cohesion (LCC) counts the
number of concerns addressed by the assessed
component. LCC is based on a similar metric defined in
the architecture level [20].

LCC = ⎮ { con ∈ Con(c) | c ∈ AC(S) } ⎮

Dynamic Concern Diffusion over Components
(dCDC) measures the number of components that are
exercised (i.e., accessed, called, and instantiated) during
the execution of a given feature.

dCDC = ⎮{ c ∈ (AC(S)∩C(con)) | con ∈ Con(S)}⎮

The instantiation of the three concern measures
shown in Table 3 highlights the generality of our
framework. Although being very heterogeneous, all
three concern measures were able to be instantiated in
the concern measurement framework. However, some
minor extensions were required. For example, an
annotation “dynamic” was attached to the measurement
attribute of dCDC in order to make its dynamic nature
explicit. Furthermore, a similar extension “efferent” was
used in CSC. This annotation shows that the CSC metric
counts afferent connections, i.e., where components are
playing the client role.

6. Conclusion

This paper (i) presented a standard terminology and
formalism; and (ii) provided a set of criteria for the
comparison, evaluation, and definition of concern
measures in aspect-oriented systems. Besides, it
provided detailed guidance so that concern measures can
be defined in a consistent and operational way. It also
revisited the state-of-the-art, about which we draw the

Table 3. Instantiation of new concern measures
Concern
Measures 1. Entity 2. Attribute 3. Unit 4. Values 5. Granularity

and Distinct
6. Domain and

Inheritance
7. Concern, Artefact

and Overlapping

CSC Concern [Efferent]
Coupling Connections Finite, unbounded,

discrete Component, No Application, No All, Statement, Yes

LCC Component Cohesion Concerns Finite, unbounded,
discrete Component, No Application, No All, Component,

Yes

dCDC Concern [Dynamic]
Scattering Components Finite, unbounded,

discrete Component, No Application, Yes
(MNEW, MOVER, MINH)

Feature,
Component, Yes

following conclusions. There is a very rich body of ideas
regarding the way to address concern measurement.
However, some concern’s modularity properties, such as
coupling and cohesion, are not addressed and many
concern measures have similar definitions and
measurement goals.

The proposed terminology and formalism is abstract
and language independent since the framework is
intended to be extensible. By no means have we claimed
that the set of framework extensions discussed in
Section 5.3 are complete; further extensions might be
necessary. In fact, the concern measurement framework
proposed in this paper is a first step stone towards the
well definition (and formalisation) of concern measures.
As future work, we plan to explore the usefulness of the
measurements derived by using our framework and the
dynamic aspects of concern measurement.

7. Acknowledgements

This work is supported in part by the European
Commission grant IST-33710 - Aspect-Oriented,
Model-Driven Product Line Engineering (AMPLE),
grant IST-2-004349: European Network of Excellence
on Aspect-Oriented Software Development (AOSD-
Europe). Eduardo is supported by CAPES - Brazil.

8. References
[1] Bartolomei, T.; Garcia, A.; Sant'Anna, C.; and Figueiredo,

E. “Towards a Unified Coupling Framework for
Measuring Aspect-Oriented Programs”. Proc. of Workshop
on Software Quality Assurance (SOQUA). Portland, 2006.

[2] Bass, L., Clements, P., Kazman, R. “Software Architecture
In Practice”, 2nd ed., Addison-Wesley, 2003.

[3] Briand, L., Daly, J., and Wust, J. “A Unified Framework
for Coupling Measurement in Object-Oriented Systems”.
IEEE Transactions on Software Engineering, 25(1), pp.
91-120, 1999.

[4] Briand, L.; Daly, J.; and Wust, J. “A Unified Framework
for Cohesion Measurement in Object-Oriented Systems”.
Proc. of the Software Metrics Symposium, pp. 43-53, 1997.

[5] Bryton, S.; Brito e Abreu, F. “Towards Paradigm-
Independent Software Assessment”. Int’l Conf. on the
Quality of Information and Comm. Tech. (QUATIC), 2007.

[6] Ceccato, M. and Tonella, P. “Measuring the Effects of
Software Aspectization”. In proceedings of the 1st
Workshop on Aspect Reverse Engineering, 2004.

[7] Chidamber, S. and Kemerer, C. “A Metrics Suite for Object
Oriented Design”. IEEE Transactions on Software
Engineering, pp. 476-493, 1994.

[8] Ducasse, S.; Girba, T.; and Kuhn, A. “Distribution Map”.
Proc. of the Int’l Conference on Software Maintenance
(ICSM), pp. 203-212. Philadelphia, 2006.

[9] Eaddy, M.; Aho, A.; and Murphy, G. “Identifying,
Assigning, and Quantifying Crosscutting Concerns”. Proc.
of the Workshop on Assessment of Contemporary
Modularization Techniques (ACoM), 2007.

[10] Fenton, N. “Software Metrics: A Rigorous Approach”.
London: Chapman-Hall, pp. 28-37, 1991.

[11] Figueiredo, E. et al. “Evolving Software Product Lines
with Aspects: An Empirical Study on Design Stability”.
To appear in proceedings of the Int’l Conference on
Software Engineering (ICSE), Leipzig, Germany, 2008.

[12] Filho, F. et al. “Exceptions and Aspects: The Devil is in
the Details”. Proc. of the International Symposium on
Foundations of Software Engineering (FSE), Portland,
2006.

[13] Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J.
“Design Patterns: Elements of Reusable Object-Oriented
Software”. Addison-Wesley, 1995.

[14] Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U.,
Lucena, C., and Staa, A. “Modularizing Design Patterns
with Aspects: A Quantitative Study”. Proc. of the Aspect-
Oriented Software Development Conference (AOSD),
Chicago, 2005.

[15] Greenwood, P. et al. “On the Impact of Aspectual
Decompositions on Design Stability: An Empirical
Study”. In proceedings of the European Conference on
Object-Oriented Programming (ECOOP). Berlin,
Germany, 2007.

[16] Kiczales, G. et al. “An Overview of AspectJ”. In
proceedings of the European Conference on Object-
Oriented Programming (ECOOP), pp. 327-355, 2001.

[17] Kitchenham, B.; Pfleeger, S.; and Fenton, N. “Towards a
Framework for Software Measurement Validation”. IEEE
Transactions on Software Engineering, vol. 21, no. 12,
1995.

[18] Lopez-Herrejon, R. and Apel, S. “Measuring and
Characterizing Crosscutting in Aspect-Based Programs:
Basic Metrics and Case Studies”. Proc. of the Int’l
Conference on Fundamental Approaches to Software
Engineering (FASE), 2007.

[19] Robillard, M., and Murphy, G. “Representing Concerns in
Source Code”. ACM Transactions on Software
Engineering and Methodology (TOSEM), 16(1), 2007.

[20] Sant’Anna, C., Figueiredo, E., Garcia, A, Lucena, C. “On
the Modularity of Software Architectures: A Concern-
Driven Measurement Framework”. Proc. of the European
Conference on Software Architecture (ECSA). Madrid,
2007.

[21] Sant’Anna, C. et al. “On the Reuse and Maintenance of.
Aspect-Oriented Software: an Assessment Framework”.
Proc of the Brazilian Symposium on Software
Engineering (SBES), 2003.

[22] Wong, W.; Gokhale, S.; and Horgan, J. “Quantifying the
Closeness between Program Components and Features”.
Journal of Systems and Software, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialUnicodeMS
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /SymbolMT
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

